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Topological zero-dimensionaldefect andflux
states in three-dimensional insulators

Frank Schindler 1 , Stepan S. Tsirkin 2, Titus Neupert2,
B. Andrei Bernevig 3,4,7 & Benjamin J. Wieder 5,6,8

In insulating crystals, it was previously shown that defects with two fewer
dimensions than the bulk can bind topological electronic states. We here
further extend the classification of topological defect states by demonstrating
that the corners of crystalline defects with integer Burgers vectors can bind0D
higher-order end (HEND) states with anomalous charge and spin. We
demonstrate that HEND states are intrinsic topological consequences of the
bulk electronic structure and introduce new bulk topological invariants that
are predictive of HEND dislocation states in solid-state materials. We demon-
strate the presence of first-order 0D defect states in PbTe monolayers and
HEND states in 3D SnTe crystals. We relate our analysis to magnetic flux
insertion in insulating crystals. We find that π-flux tubes in inversion- and time-
reversal-symmetric (helical) higher-order topological insulators bind Kramers
pairs of spin-charge-separated HEND states, which represent observable sig-
natures of anomalous surface half quantum spin Hall states.

In crystalline solids, there are numerous sources of disorder and
defects. One type of crystal defect—integer dislocations—can manifest
as edge dislocations, in which planes of atoms are missing within a
region of the sample. Integer dislocations can also manifest as screw
dislocations, in which planes of atoms in a portion of the crystal are
successively shifted by an integer linear combination of lattice
vectors1. Screw and edge dislocations—which locally represent 1D line
defects in 3D crystals—are each characterized by a gauge-invariant
Burgers vector B.

In pristine crystals—defined by the absence of disorder
and defects—the electronic states form bands, which may be
classified by their topological properties2–17. When a crystal
exhibits unitary symmetries beyond translation—such as spatial
inversion (I), then the band topology may conveniently be diag-
nosed by symmetry eigenvalues through elementary band
representations, which give rise to symmetry-based indicators18,19.
Well-established symmetry-based indicators of insulating band
topology include the Fu–Kane parity criterion4, and the strong 3D

Z4 and weak 2D Z2 invariants of I - and time-reversal- (T -) sym-
metric 3D insulators20–23.

Over the past decade, numerous proposals have been introduced
to link the seemingly disparate limits of pristine crystalline solids with
nontrivial electronic band topology and the more realistic setting of
crystals hosting defects24–30. This has led to the identification of elec-
tronic defect states in both topological insulators (TIs)2–6 and topolo-
gical crystalline insulators (TCIs)7–14. In particular, it has been
extensively demonstrated24–29 that screw and edge dislocations in
T -symmetric 3D insulators can bind helical pairs of 1D states if the
defect Burgers vector alignswith theweak-index vectorMν = (νx, νy, νz):

B �Mν mod 2π =π, ð1Þ

where νi is the Z2-valued weak index in the ki =π plane4. For a
T -symmetric 3D insulator with vanishing strong indices4,10,15,20–23,
Mν ≠0 further indicates that the insulator can be adiabatically
deformed without breaking a symmetry or closing a gap into a
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decoupled stack of 2D TIs—known as a weak TI4. In weak TIs hosting
defects with B directed along the stacking direction, (B ⋅Mν)/π indi-
cates the number of decoupled 2D layers connecting the crystal
defects. Hence intuitively, if (B ⋅Mν)/π is odd [i.e. Eq. (1) is satisfied],
then the defects carry robust helical modes. In terms of momentum-
space band topology, Eq. (1) and its T -broken variant26 predict
defect bound states. They respectively diagnose which of the
Brillouin-zone- (BZ-) boundary planes have Hamiltonians that are
topologically equivalent to 2D TIs and magnetic Chern insulators. In
the above discussion of Eq. (1) and throughout the remainder of this
work, we have defined the BZ boundary as the set ofmomentum-space
surfaces for which k ⋅bi =π, where bi is a primitive reciprocal lattice
vector.

In addition to crystal defects, static magnetic flux has also been
proposed as a probe of bulk topology6,27,31–33. For example, static π-flux
cores inChern insulators (2D TIs) have been shown to bind 0D solitons
with e/2 charge (spin-charge separation), where we have defined all
charges with respect to the point of charge neutrality. In 3D TIs and
magnetic axion insulators (AXIs)4–6,15–17,19,23,34–38, π-flux tubes provide a
means of probing the topologically-quantized bulk magnetoelectric
polarizability. Specifically, in 3D TIs, a pair of π-flux tubes will bind a
pair of "wormhole-like” helical modes (subdivided into one pair of
helicalmodes per tube)33. If T is relaxed in amanner that preserves the
quantizedbulk axion angleθ =π, the 3DTI is converted into amagnetic
AXI, and the flux-tube helical modes will become gapped and leave
behind anomalous ± e/2 end charges, one at one end of each flux tube,
in a manifestation of the axionic magnetoelectric effect. Specifically,
the topological axion angle θ =π is the coefficient of the magneto-
electric response Ee ⋅Be, where Ee and Be are the electric and magnetic
fields, respectively. Hence, the e/2 end charges bound toπ-flux tubes in
an AXI represent signatures of the quantized bulk magnetoelectric
polarizability (nontrivial axion angle), because the external magnetic
field has induced a quantized electric polarization aligned with the
magnetic field.

In recent years, the set of topologically nontrivial 2D and 3D
insulating phases has been greatly extended beyond TIs, Chern insu-
lators, and AXIs by incorporating the constraints imposed by crystal-
line symmetry on electronic band structures18,20. Recently introduced
symmetry-protected 2D topological insulating phases include 2D TCIs
with mirror-protected edge states8,39–41, as well as fragile TIs
(FTIs)17,23,39,42–45 and 2D obstructed atomic limits (OALs)15,17,18,23,39,46,47

with 0D fractionally charged or spin-charge-separated corner states. In
3D, TCI phases with gapped 2D surfaces and gapless 1D hinges have
recently been discovered, and have become known as higher-order TIs
(HOTIs)15–17,20–23,35,37,46. After the discovery of higher-order topology,
earlier examples of magnetic AXIs were recognized to in fact be
magnetic chiral HOTIs17,37. In an AXI, each surface exhibits an odd

number of massive or massless twofold Dirac cones corresponding to
an anomalous half-integer surface Hall conductivity, and domain walls
betweengapped surfaceswithdifferinghalf-integerHall conductivities
bind chiral hinge modes17,19,35–37.

T -symmetric HOTI phases with helical hinge modes have also
been predicted in rhombohedral bismuth crystals48, the transition
metal dichalcogenides MoTe2 and WTe2

23,49, and BiBr12,13,49. Through
scanning tunneling microscopy (STM) and quantum oscillation
experiments, incipient support for the existence of helical hinge states
was subsequently reported in the aforementioned candidate HOTIs
bismuth48, MoTe2

50,51, WTe2
52, and BiBr53,54. However, the experimental

data attributed to helical higher-order topology has also attracted
alternative explanations30,55,56. Unlike AXIs, T -symmetric helical HOTIs
exhibit trivial axion anglesθmod 2π =0 andare therefore non-axionic.
To date, there does not yet exist a θ-like bulk topological field theory
for non-axionicHOTIs toprovide clarity for the experimentaldata17,19,57.

In this work, we present novel defect and static flux response
effects in 3D insulators, which provide experimentally observable sig-
natures of fragile and non-axionic higher-order topology in solid-state
materials (see Table 1). We begin below by reviewing spin-charge
separation in non-interacting electronic materials. We then introduce a
more general formulation of Eq. (1) that captures the dislocation bound
states of all possible topologically nontrivial insulating phases, including
FTIs and OALs; this formulation is based on a mapping from (d−1)-
dimensional [(d−1)-D] subspaces of the BZ to (d−1)-D real-space surfaces
in d-D crystals with (d−2)-D defects. Next, we show that our extended
formulation of topological defect response captures all previously
identified topological electronic crystal dislocation states and reveals
the existence of higher-order end (HEND) states bound to the surface
and corner terminations of screw and edge dislocations in FTIs, OALs,
and HOTIs [see Supplementary Note (SN) 4 for numerical defect-state
calculation details]. We analytically and numerically demonstrate that
0D HEND states are equivalent to the fractionally charged or spin-
charge-separated corner states of 2D FTIs andOALs, and are anomalous,
intrinsic consequences of the bulk electronic structure. Using tight-
binding calculations (detailed in SN 4), we specifically demonstrate the
presence of topological HEND states in 3D HOTIs and weak FTIs driven
by double band inversion23,43,48 on the BZ boundary. Lastly, we use
density functional theory (DFT) to demonstrate the presence of intrinsic
HEND corner states on edge dislocation networks in the 3D TCI8 and
HOTI16 SnTe (SN 6B). Following our crystal-defect calculations, we next
extend the TI and TCI magnetic flux-threading analyses in refs.
6, 27, 31–33 to T -symmetric helical HOTIs. Below and in SN 2A3, 2B2,
and 5, we first reproduce the earlier results of refs. 6, 27, 31–33 by
analytically and numerically demonstrating the static π-flux response of
2D TIs and Chern insulators, as well as 3D AXIs. We then demonstrate
the existence of a novel quantized π-flux response in I - and

Table 1 | Summary of dislocation- and flux-state responses derived in this work

Summary of higher-order dislocation- and flux-state responses in inversion-symmetric 3D insulators

Fragile topological insulators and
obstructed atomic limits

Magnetic axion insulators (AXIs) Helical higher-order topological insulators (HOTIs)

Integer
dislocation

Nontrivial if and only
if: B �MF

ν mod 2π =π
Nontrivial if and only if: B �MF

ν mod 2π =π Nontrivial if and only if: B �MF
ν mod 2π =π

π-Flux tube Trivial Nontrivial, signature of surface half quantum
Hall state, bulk magnetoelectric polarizability

Nontrivial, signature of surface half quantum spin Hall
state, bulk magneto-spinon polarizability (MSP)

We have uncovered a new bulk weak topological indexMF
ν [detailed in theMethods section and in Supplementary Notes (SN) 2A1, 2A2, 2B1, 2B3, and 3B] that indicates whether integer dislocations

with Burgers vectorB in an inversion-symmetric 3D insulator bind anomalous 0D states on their ends andcorners, whichwe termhigher-order end (HEND) states.WhileMF
ν can benontrivial in stable

topological crystalline insulators (TCIs)with 1Dhingemodes [e.g.magneticaxion insulators (AXIs)4–6,17,19,34–38 andhelical higher-order topological insulators (HOTIs)15,16,20–23,46],MF
ν can alsobenontrivial

in insulators with less robust forms of topology, such as fragile topological insulators42–45 and obstructed atomic limits18,39,47. Integer dislocations therefore do not provide an unambiguous probe of
bulk higher-order topology. Through first principles and tight-binding calculations, we further demonstrate a nontrivial HEND-state dislocation response in the 3D TCI8 and HOTI SnTe16 (see the
Methods section and SN 6B for calculation details). We have also studied the related problem of magnetic π-flux insertion in 3D insulators. For AXIs, π-flux tubes are known to provide probes of the
anomalous half quantumHall states on gapped 2D surfaces, as well as the bulk topological magnetoelectric response6,33. For helical HOTIs, we find that π-flux tubes reveal previously unrecognized
bulk and surface topological features similar to those of AXIs, including surface halves of time-reversal-symmetric quantum spin Hall states, and a spin-charge-separated variant of the bulk axionic
magnetoelectric effect.
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T -symmetric HOTIs. Specifically, we show that a pair of static π-flux
tubes in an I - and T -symmetric HOTI together binds an odd (anom-
alous) number of chargeless spinons per surface at a half system filling,
suggesting that the bulk exhibits a novel form of quantized "magneto-
spinon polarizability” (MSP). Because a half-filled pair of fluxes in an
isolated 2D TI binds an even number of chargeless spinons, then our
results further imply that each gapped surface of an I - and T -symmetric
HOTI is topologically equivalent to "half” of a 2D TI. We conclude by
discussing experimental venues for observing the HEND states and
response effects introduced in this work.

Results
Review of spin-charge separation without interactions
Throughout this work, we will demonstrate the existence of 0D defect
and flux bound states with spin-charge separation in non-interacting
insulating crystals. Hence, before discussing defect and flux states in
2D and 3D insulators, we will briefly review spin-charge separation in
non-interacting T - and spin-rotation- [SU(2)-] invariant systems as a
generalization of the familiar charge (fermion number) fractionaliza-
tion previously discussed by Jackiw, Rebbi, Goldstone, and
Wilczek17,34,39,58,59.

We begin by considering two I -related pairs of topological
defects or flux tubes in a 2D or 3D insulator that each bind a pair of 0D
states (four degenerate single-particle states in total), taking each pair
of states to behalf-filled at charge neutrality (Fig. 1b, c). The arguments
below do not depend on whether the twofold degeneracy of each pair
of states is enforced by spinful T or SU(2) symmetry, and therefore for
simplicity, wewill focus on the case in which the two states within each
pair are time-reversal (Kramers) pairs. Enforcing I × T symmetry
(wherewehave denoted a global I centerwith a red × symbol in Fig. 1),
there is one filled state per Kramers pair. Hence, each Kramers pair
carries a balanced (net-zero) charge with respect to charge neutrality,
but necessarily "softly” breaks T symmetry, because each pair of states
is filled with an unpaired spin-1/2 degree of freedom. We emphasize

that without a spin conservation symmetry such as sz, however, each
unpaired electron is not required to exhibit a quantized spin projec-
tion along a particular high-symmetry axis.

Next, if the system is doped away from charge neutrality by
adding twomore electrons, T and global I symmetries can conversely
be satisfied individually (Fig. 1d). In the system configuration with two
extra electrons, each fully filled Kramers pair of states carries a charge
−e (taking electrons to have charge −e). Unlike in the previous system
configuration with chargeless spin-1/2 0D states at zero doping
depicted in Fig. 1b, c, at a system doping of −2e, each Kramers pair of
states is charged, but exhibits a net-zero spin, because T [or SU(2)]
symmetry pairs electrons with reversed spins. Similarly, if we remove
one electron from each Kramers pair of states in Fig. 1b, c, then we
realize a system configuration in which there is a total charge of +2e,
implying that each fully empty pair of states carries a charge +e and
does not carry an electron spin (Fig. 1a). Hence, the 0D Kramers pairs
of states exhibit the same well-established spin-charge separation and
reversed spin-charge relations as the solitons in polyacetylene60.

Defect response of inversion-symmetric 2D insulators
In this work, we rigorously establish a prescription for identifying
insulators that bind anomalous 0D defect states as a consequence of
the bulk topology. We will first here numerically demonstrate that
I -symmetric 2D insulators with band inversion at high-symmetry
points on the 2D BZ boundary exhibit a nontrivial dislocation
response. We will then bolster the numerical results through first-
principles and tight-binding calculations demonstrating a nontrivial
first-order defect response in PbTe monolayers (see the Methods
section and SN 6A for calculation details).

We begin by considering a simplemagnetic 2D insulatorwith only
rectangular lattice translations Tx,y and I symmetry, such that the
system respects the symmetries of magnetic layer group p�119,39 (Fig. 2,
numerical details provided in SN 4A1). We consider the case in which
the pristine crystal is initially furnished with a single occupied,
uncoupled, spinful s orbital and a single unoccupied, uncoupled,
spinful p orbital – both at the origin of each unit cell. This implies that
initially, the electronic structure at each I -invariant crystalmomentum
(TRIM point) consists of one occupied state with a positive parity (I)
eigenvalue and one unoccupied state with a negative parity
eigenvalue18,19.

Next, by tuning model parameters to invert the bands at dif-
ferent TRIM points (Fig. 2a), we may realize several different insu-
lating phases. When only one of the parity (I) eigenvalues of the
occupied band is negative, the bulk is a symmetry-indicated Chern
insulator with Chern number Cmod 2= 119. In Fig. 2d (Fig. 2f), we
show the occupied parity eigenvalues of a ∣C∣ = 1 Chern insulator
driven by band inversion at Γ (Y). Inserting a pair of dislocations with
Burgers vector B= ŷ that preserves global I symmetry (Fig. 2b) and
calculating the energy spectrum of the corresponding tight-binding
model with periodic boundary conditions (PBC), we observe a pair of
anomalous midgap states with charges ± e/217,34,39,59,60 for the parity
eigenvalue in Fig. 2f, but not for the parity eigenvalues in Fig. 2d,
reproducing the conclusions of refs. 26, 27. Specifically, the spec-
trum in Fig. 2e is the same as that of a trivial (uninverted) insulator
with two I -related point dislocations. On the other hand, the spec-
trum in Fig. 2h cannot be symmetrically deformed into the spectrum
of an I -symmetric trivial insulator with two point dislocations.
Hence, as defined in refs. 17, 39, 47, the midgap dislocation states in
Fig. 2h are filling-anomalous. Throughout this work, we will use PBC
and filling anomalies to numerically identify topologically nontrivial
0D defect- and flux-state responses in insulating crystals with I or I
and T symmetries.

To understand the pattern of dislocation responses for the
Chern insulators in Fig. 2d, f, we next form a new insulator that is
equivalent to a weak, y-directed array of x-directed, I -symmetric

Fig. 1 | Spin-charge-separated Kramers pairs of defect or flux states. a–d An
inversion- (I -) related pair of Kramers pairs of 0D defect or flux states in a spinful,
time-reversal- (T -) symmetric insulator (where the I center is represented with a
red × symbol in a–d). b, c When the Fermi level lies at charge neutrality, each
Kramers pair is filled by only a single electron and therefore carries an excess
chargeless spin-1/2 moment (Q =0, S = 1/2). Hence at half filling, and taking the
spins of the electrons occupying each pair of states to point in opposite directions,
I (which relates the positions of the Kramers pairs) and T symmetries are "softly''
broken17,34,39,59, and each half-filled Kramers pair of states forms an effective spinon
quasiparticle with a free-angle spin-1/2 moment (depicted in b, c in configurations
that preserve I × T symmetry). By a removing or d adding two electrons to the
system (one electron per Kramers pair), we may realize a system configuration in
which eachKramers pair respectively carries a net charge of ± e (taking electrons to
carry a charge −e), but carries a net-zero spin (Q = ± e, S =0). Hence, each Kramers
pair of states either carries chargeless spinor spinless charge and therefore exhibits
the same reversed spin-charge relations as the solitons in polyacetylene60.
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Su–Schrieffer–Heeger (SSH) chains60 (Fig. 2c, g); we observe that B= ŷ
dislocations in this Wannierizable18,19 (C =0) insulator also bind ± e/2
charges. By analogy to the weak TI discussion in ref. 24, the center red
line in the weak SSH array in Fig. 2c represents a "leftover” SSH chain
that may be adiabatically decoupled from the bulk crystal and
binds ± e/2 charges on its ends, the dislocations. The results of
Fig. 2d–h can be summarized by defining a weak polarization invariant
MSSH

ν =πðnXM ,nYMÞ, where nab is the Z2 SSH polarization invariant of
the occupied bands along the BZ-edge line ab, such that for example,
the index nXM is nontrivial for y-directed SSH chains (see SN 3A).
Analogously to the weak-index vectors of T -symmetric 3D insulators4,
MSSH

ν can only realize values equal to half-integer linear combinations
of 2D reciprocal lattice vectors. For the insulators in Fig. 2d, f, g,
MSSH

ν = ð0,0Þ, (0,π), and (0,π), respectively. Hence, for magnetic 2D
insulators with I symmetry and integer Burgers vectors B, we con-
clude that dislocations bind anomalous ±e/2 charges if and only if:

B �MSSH
ν mod 2π =π, ð2Þ

in direct analogy to Eq. (1).
In SN 3A, we additionally extend Eq. (2) to I - and T -symmetric 2D

insulators by instead computing the BZ-boundary weak time-reversal
(partial) polarization indices, which reduce to the polarization per spin
sector in the limit of sz-spin conservation symmetry61. For I - and
T -symmetric 2D insulators with nontrivial MSSH

ν vectors, we show in
SN 3A and 4B1 that dislocations satisfying Eq. (2) bind spin-charge-
separated 0D solitons, rather than ±e/2 charges.

To further confirm Eq. (2) and its T -invariant extension, we have
performed first-principles calculations of the electronic structure of a

PbTe monolayer40,41 (layer group p4=mmm10) [Fig. 3a]. The lattice
vectors of a PbTe monolayer are given by

a1 = ð1=2,� 1=2Þ,a2 = ð1=2,1=2Þ, ð3Þ

and the reciprocal lattice vectors are given by:

b1 = 2πð1,� 1Þ,b2 = 2πð1, 1Þ: ð4Þ

Previous works40,41 have demonstrated that PbTe monolayers are
mirror-ChernCMz

=2 TCIs driven by band inversions at the X [kX = b1/2]
and X 0 [kX 0 =b2=2] TRIM points [Fig. 3b]. Computing the weak partial
polarization indices along XM and X 0M, we determine that PbTe
monolayers carry a nontrivial dislocation response vector:

MSSH
ν = ðb1 +b2Þ=2, ð5Þ

where the details of our calculation are provided in SN 6A.
To probe the dislocation response, we next construct aWannier-

based tight-binding model of a PbTe monolayer and insert an
I -related pair of B = a1 point dislocations, as shown in Fig. 3c. In the
dislocation geometry with PBC, the energy spectrum is filling-
anomalous (Fig. 3d), with each dislocation binding a Kramers pair of
states (Fig. 3e) where, at half filling, each pair carries a net-zero
charge and a free-angle ∣S∣ = 1/2 spin moment (i.e. a spinon). Hence,
the Kramers pairs of dislocation bound states in PbTemonolayers are
equivalent to the spin-charge-separated end states of a spinful SSH
chain60,61. In summary, the appearance of filling-anomalous disloca-
tion bound states in an I -symmetric defect geometry in a PbTe

Fig. 2 | First-order 0D dislocation states in 2D crystals from 1D polarization
topology. a The bulk Brillouin zone (BZ) of a 2D rectangular magnetic crystal with
only I symmetry.bAn I -relatedpair of 0Ddislocations with Burgers vectorB= ŷ in
an I -symmetric crystal, where the global I center is represented with a red ×
symbol. d–h Bulk parity (I) eigenvalues and periodic-boundary-condition (PBC)
energy spectra for the defect in b when the bulk is equivalent to d a ∣C∣ = 1 Chern
insulatorwith band inversionatΓ, f a ∣C∣ = 1Chern insulatorwith band inversion atY,
g a weak y-directed array c of x-directed Su–Schrieffer–Heeger (SSH) chains60.
Anomalous 0D defect states h with charge ± e/2 are present in cases f, g, but not
d, which instead exhibits the trivial PBC spectrum in e [Eq. (2)]. Specifically, the
spectrum in e may be deformed to that of a trivial insulator (i.e. a finite-sized

insulatorwithoutmidgap0Dstates orwithout an imbalance in the numberof states
above or below the gap) without breaking I symmetry or closing the bulk gap,
whereas the spectrum in h cannot. Hence, as defined in refs. 17, 39, 47, the midgap
dislocation states in h are filling-anomalous. Next, by considering the limit in c in
which thebulk is equivalent to adecoupled array of SSH chains, wefind that the two
dislocations correspond to the ends of a "leftover'' SSH chain that is decoupled
from the bulk. This implies that the ± e/2-chargeddefect states are equivalent to the
end states of an I -symmetric SSH chain60 (red line in b), and thus persist under the
relaxation of particle-hole symmetry17,34,39,59. The explicit details of the numerical
calculations shown in this figure are provided in SN 4A1.
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monolayer provides further evidence for a first-order dislocation
response in 2D insulators whose pristine electronic structure and
dislocation Burgers vectors satisfy Eq. (2).

Defect response from momentum-space band topology
We will next describe proofs—summarized in the Methods section
and provided in complete detail in SN 2A1, 2A2, 2B1, and 2B3—
explicitly linking the topology of pristine, insulating crystals to the
electronic states bound to dislocations. In this work, we specifically
show that dislocations with integer Burgers vectors1 bind edge and
corner modes deriving from the momentum-space topology of
lower-dimensional surfaces of the BZs of pristine crystals. In the 3D
case—which is most relevant to solid-state materials—we use this
mapping to analytically demonstrate that the corners and ends of
1D edge and screw dislocations in 3D insulators can bind anomalous
0D HEND states as an intrinsic consequence of nontrivial bulk
topology.

A central result of this work is the recognition that Eqs. (1) and (2)
represent specific cases of a more general statement, which we will
summarize below. First, for a d-D crystal hosting (d−2)-D dislocations
with integer-valued Burgers vectors25, the exact location of the real-
space (d−1)-D surface spanning the dislocations is a gauge-dependent
quantity1 (it can be moved at zero energy cost and changed by rede-
finition), while the locations of the (d−2)-D dislocations are gauge-
invariant, as they carry quantized and measurable Burgers vectors.
Specifically, B is defined by measuring the total displacement along a
loop around a dislocation; though the amount of displacement
assigned to a given (d−1)-D surface between a pair of dislocations
represents a numerical choice of gauge, the location of each disloca-
tion and the value of the total displacement B are conversely gauge-
independent. In the momentum-space d-D Hamiltonians of pristine
insulators with the same bulk topology as the crystal with dislocations,
we next consider the topology in the (d−1)-D BZ-boundary surface
defined by the normal momentum vectorM [e.g., in the kx =π plane of

Fig. 3 | First-order dislocation states in 2D PbTe monolayers. a The crystal
structure ofmonolayer PbTe and the bulk BZ. The yellowdiamond in a indicate the
primitive cell. A PbTe monolayer40,41 has fourfold rotation, I , and mirror symme-
tries (layer group p4=mmm1039). b Band structure of a PbTe monolayer along the
high-symmetry lines of the 2D BZ in a. The size of the circle at each plotted point in
b indicates the spectralweight on theTe (left panel) and Pb (right panel) atoms, and
the color bars indicate the orbital character of each Bloch state on a scale of pz or
px,yorbitals.Wehave additionally labeled the irreducible small corepresentations at
the symmetry-independent TRIM points in the BZ in a (see SN 6A for details). The
bands in b are inverted at X and X 0, driving the bulk into a 2D mirror TCI phase40,41

with mirror Chern number CMz
= 2 and nontrivial weak (partial) SSH indices

MSSH
ν = ðb1 +b2Þ=2 (see SN 3A and 6A). c Schematic of our real-space

implementation of an I -related pair of B =a1 point dislocations in aWannier-based
tight-binding model of a PbTe monolayer obtained from first-principles calcula-
tions (details provided in SN 6A), where the I center is marked with a black ×
symbol. In c, the sites enclosed within the black line have been removed to
implement the pair of point dislocations. d PBC energy spectrum of a tight-binding
model of PbTe with the I -related pair of B =a1 point dislocations shown in c; there
are four midgap, filling-anomalous17,23,39,47 dislocation states, consistent with Eq. (2)
[B �MSSH

ν mod 2π =π]. e The real-space localization of the four midgap states in
d, which subdivide into two I -related Kramers pairs. One Kramers pair of states is
localized on eachdislocation core and correspondswhen half-filled to a chargeless,
spin-1/2 quasiparticle (i.e. a spinon) that is equivalent to the end state of a spinful
SSH chain.
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a 3D insulator, M = (π, 0, 0)]. In this work, we find that the (d−1)-D
position-space surface spanning a pair or closed loop of dislocations –
regardless of its gauge-dependent shape—hosts the same topological
boundary states as a (d − 1)-D crystalwhose bulk topology is equivalent
to that of the (d−1)-D BZ-boundary surface defined byM, provided that
two conditions are satisfied:
1. B �Mmod 2π =π.
2. The position-space system with dislocations preserves the same

symmetries that enforce the momentum-space bulk (d−1)-D
topology in the (d−1)-D BZ surface defined by M.

In a weak TI4,24, the necessary symmetry is T ; however as shown in
this work, the required symmetry may also be spatial (e.g. I).

To reconcile our results with previous works, we have formulated
two alternative and equivalent sets of proofs demonstrating the
aforementioned dislocation topological mapping from momentum
space to position space. Our proofs reproduce the results of all pre-
vious studies of crystal dislocation bound states with integer B24–29.
First, building upon the "cutting” and "gluing” construction of topo-
logical defect states developed in ref. 24 to predict helical dislocation
modes in weak TIs4, we have employed k ⋅ p theory to predict HEND
states in 3D crystals (see SN 2A1 and 2A2). Next, we use more general
arguments to demonstrate that (d−2)-Ddislocations ind-D crystals can
map (d−1)-D BZ surfaces to (d−1)-D real-space surfaces, leading in 3D
crystals to the presence of 1D and 0D topological defect states (see
SN 2B1 and 2B3).

Through both sets of proofs, we deduce that given an I -sym-
metric, T -broken 3D insulator with vanishing weak Chern
numbers19,25,26,57, I -symmetric dislocations with Burgers vector B will
bind anomalous 0D states at I -related locations along the set of dis-
locations if and only if:

B �MF
ν mod2π =π, ð6Þ

where MF
ν =πðνFx ,νFy ,νFz Þ is a new weak index vector characterizing

which of the BZ-boundary planes host Hamiltonians that are
topologically equivalent to the I -symmetric 2D FTI introduced in refs.
17, 23, or the OAL that results from adding trivial bands without
anomalous corner charges to the I -symmetric 2D FTI. Like the weak-
index vectors of T -symmetric 3D insulators4, MF

ν can only realize
values equal to half-integer linear combinations of 3D reciprocal lattice
vectors. In SN 3B, we rigorously define MF

ν using elementary band
representations18,19. Heuristically, νFi is nontrivial when theHamiltonian
in the ki =π BZ boundary plane differs by 2 + 4n band inversions from
an I -symmetric 2D trivial atomic limit (counting each state individu-
ally, as opposed to Kramers pairs of states).

Analogously to MSSH
ν [defined in the text preceding Eq. (2)], MF

ν

can also be adapted to I - and T -symmetric 3D systems by analyzing
nonmagnetic insulators with four band inversions (two Kramers pairs)
in a BZ boundary plane. In SN 3B2 and 3B3, we respectively define the
T -symmetric invariantMF

ν , using elementaryband representations and
by introducing a nested Wilson loop formulation15–17,23,39,46 of partial
nested Berry phase (which reduces to the nested Berry phase per spin
sector in the limit of sz-spin conservation symmetry). As with the
T -symmetric generalization ofMSSH

ν discussed earlier in the context of
PbTe monolayers [see Eq. (5) and the surrounding text], for I - and
T -symmetric 3D insulators with nontrivial MF

ν vectors, the corners of
edge dislocations and the ends of screw dislocations satisfying Eq. (6)
bind spin-charge-separated 0D solitons, rather than ± e/2 charges.

Topological 0D defect states in 3D insulators
Having analytically established the existence of a new weak index for
2D fragile (andOAL) topology in 3D crystals with I symmetry—MF

ν—we
will now numerically confirm the presence of anomalous HEND dis-
location states in 3D insulators with B and MF

ν vectors that satisfy

Eq. (6). We begin by considering a magnetic 3D insulator with only
orthorhombic lattice translations Tx,y,z and I symmetry, such that the
system respects the symmetries of magnetic space group (SG) 2.4 P�119

(Fig. 4, numerical details provided in SN 4A2). We take the pristine
crystal to initially be furnishedwith two occupied, uncoupled, spinful s
orbitals and two unoccupied, uncoupled, spinful p orbitals—all at the
origin of each unit cell. This implies that initially, the electronic
structure at each TRIM point consists of two occupied states with
positive parity eigenvalues and two unoccupied states with negative
parity eigenvalues18,19.

Next, by tuning model parameters to drive double band inver-
sions at different TRIMpoints23,43,48, wemay realize several different 3D
insulating phases, including chiral HOTIs (AXIs) and weak stacks of 2D
FTIs. Specifically, if there is an odd total number of double band
inversions (recalling that single band inversions give rise to Weyl
semimetal phases19), and if the bulk is gapped and all weak Chern
numbers vanish, then the system is an I -symmetry-indicated
AXI15–17,19,23,35,37,57. In an AXI phase, the bulk topology can generically be
expressed as a pumping cycle of a 2D FTI or OALwith ±e/2-charged 0D
corner modes, where the 3D spectral flow of each 0D corner mode
manifests as a 1D chiral hinge state17,23. Hence, in an AXI, the weak
fragile index MF

ν indicates whether the 2D BZ planes in which the
Hamiltonians characterize 2D FTIs and OALs with anomalous corner
modes lie in the BZ boundary.

We next insert two B= ẑ screw dislocations of opposite chiralities
(SN 2A2) at I -related positions into the four-band model taken with
hollow-doughnut boundary conditions (HDBC, see Fig. 4h, i) for each of
the occupied parity eigenvalue configurations in Fig. 4c–e. The HDBC
geometry is closely related to the "Corbino doughnut” employed in ref.
4 to characterize 3D TIs; however, in this work, we will introduce screw
dislocations (and later flux tubes) in a different arrangement than in ref.
4. In Fig. 4f, g, we plot the HDBC spectra of the three insulators with the
parity eigenvalues listed in Fig. 4c–e, which respectively are an AXI with
MF

ν =0, an AXI with MF
ν =πẑ, and a weak z-directed stack45 of an

I -symmetric 2D FTI, where the weak FTI stack also exhibitsMF
ν =πẑ. To

draw connection with previous works, we note that the I -symmetric
weak FTI in Fig. 4e, when cut into a rod geometry, exhibits the sameflat-
band-like floating hinge states (per spin) as a spinless (spin-doubled)
I × T -symmetric 3D Stiefel-Whitney insulator43. In Fig. 4d, e, but not
Fig. 4c, alternating ends of the screw dislocations bind filling-anom-
alous, ±e/2-charged 0D HEND states (Fig. 4i).

This result can be understood by focusing on the weak FTI stack
whose occupied parity eigenvalues are shown in Fig. 4e. In the limit in
which the weak FTI is adiabatically deformed into decoupled layers of
2D FTIs and the screw dislocations replaced with edge dislocations
(see SN 2A1, 2B1, and 4A2c), the plane between the dislocations
represents a "leftover” FTI that may be adiabatically decoupled from
the bulk crystal (Fig. 4h, i), analogous to the previous "leftover” SSH
chain in Fig. 2c. Hence, the HEND states in Fig. 4 are equivalent to the
corner charges of the 2D FTI that comprises each layer of the weak
stack. Furthermore, because the gapped 1D edges of 2D I -symmetric
FTIs carry anomalous halves of the e/2 polarization of an isolated SSH
chain when global I symmetry is enforced17,23, then each of the screw
dislocations in Fig. 4i carries only half of the fractionally charged end
states of an isolated SSH chain.

To provide further support for the HEND-state response intro-
duced in this work [Eq. (6)], we will next demonstrate the presence of
anomalous HEND states on the corners of edge dislocations with the
shortest possible integer Burgers vectors in 3D SnTe crystals. Through
first-principles calculations detailed in theMethods section and SN 6B,
we find in this work that 3D SnTe—a well-established fourfold rotation-
anomaly TCI with helical hinge states8,11,16,21—exhibits a nontrivial
HEND-state response vector. SnTe crystals respect the symmetries of
the face-centered-cubic space group (SG) 225 Fm�3m10. We begin by,
for geometric simplicity, artificially enlarging the unit cell of SnTe into
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a tetragonal supercell in SG 123 P4=mmm10 [Fig. 5a]with lattice vectors
given by

a1 = ð1=2,� 1=2, 0Þ,a2 = ð1=2, 1=2, 0Þ,a3 = ð0,0, 1Þ, ð7Þ

in units in which the lattice spacing a = 1, and reciprocal lattice vectors
given by

b1 = 2πð1,� 1, 0Þ,b2 = 2πð1, 1,0Þ,b3 = 2πð0, 0, 1Þ: ð8Þ

In SN 6B1, we show that 3D SnTe differs from an unobstructed
atomic limit without corner or hinge states [i.e. 3D PbTe, see ref. 8 and
SN 6A] by double band inversions at the R point [kR =b1/2] and at the
symmetry-related point R0 [kR0 =b2=2] between two pairs of Kramers
pairs of states with opposite parity eigenvalues [four valence bands
and four conduction bands become inverted at R and at R0, see Fig. 5b,
c]. The four Kramers pairs of band inversions drive SnTe into a fourfold
rotation-anomaly TCI phase with a nontrivial weak (partial) fragile
index vector [see SN 3B and 6B1 and the text surrounding Eq. (6)]:

MF
ν = ðb1 +b2Þ=2, ð9Þ

given in terms of the tetragonal supercell reciprocal lattice vectors in
Eq. (8).

To probe the HEND-state dislocation response of SnTe, we begin
with the tight-binding model introduced in ref. 8, and then insert an
I -related pair of B = a1 internal edge dislocations, as shown in Fig. 6a.
Notably, a1 is also a primitive lattice vector in the face-centered-cubic
cell of 3D SnTe in SG 225 Fm�3m10 (see Fig. 5a). Because the Frank
energy criterion62 for dislocation formation indicates that dislocations
with larger values of ∣B∣ are energetically unfavorable, then

dislocations with the smallest possible integer Burgers vectors—such
as the B =a1 dislocations in our calculations – may be energetically
favorable and present in SnTe samples. In the dislocation geometry
with PBC, the energy spectrum is filling-anomalous (Fig. 6b), with
alternating dislocation corners binding Kramers pairs of spin-charge-
separated HEND states (Fig. 6c, see SN 6B2 for calculation details). As
discussed earlier and in SN 2A, the Kramers pairs of dislocation bound
states in Fig. 6c are equivalent to the corner states of an I - and
T -symmetric 2D FTI17,23, which are themselves equivalent to the end
states of anI - and T -symmetric spinful SSH chain60. The appearanceof
filling-anomalous dislocation bound states in an I -symmetric defect
geometry in 3D SnTe provides further evidence for a HEND-state dis-
location response in 3D insulators whose pristine electronic structure
and dislocation Burgers vectors satisfy Eq. (6).

Lastly, as shown in Fig. 6d, the HEND states in SnTe can be
understood as the result of stacking andpairwise couplingmonolayers
of 2D PbTe (Fig. 3), where each layer is shifted by (a1 +a2)/2 with
respect to the layer underneath and contains 0Ddislocationswithfirst-
order dislocation bound states at the same in-plane position. In an
I -symmetric stack, the0Ddislocations evolve into 1Ddislocations, and
neighboring 0D states pairwise annihilate in an I -symmetric fashion,
leaving two filling-anomalous HEND states. We choose 2D PbTe for the
monolayers—rather than SnTe—because the interlayer coupling in
realistic 3D PbTe drives additional band inversions, whereas a tetra-
gonal supercell of 3D SnTe has the same x, y components of the MF

ν

vector as a decoupled stack of PbTe monolayers [Eqs. (5) and (9), see
SN 6 for further details]. Hence, in the same sense that a helical HOTI is
equivalent to anI -symmetric stackof 2DTIs (with anodd total number
of layers)16,19,21,23,48, HEND dislocation states can be considered the
result of stacking and symmetrically coupling an odd number of 2D
monolayers that each contain first-order dislocation bound states.
Furthermore, if an additional layer were added to the top of Fig. 6d,

Fig. 4 | Higher-order end dislocation states in 3D crystals from 2D fragile
topology. a The bulk BZ of a 3D orthorhombic magnetic crystal with only I sym-
metry. b A screw dislocation in an I -symmetric crystal with Burgers vectors B= ẑ.
c–g Bulk parity (I ) eigenvalues and hollow-doughnut-boundary-condition (HDBC)
energy spectra for the defects in b, hwhen the bulk is topologically equivalent to c
an I -symmetric axion insulator (AXI)15 -- 17,19,23,35,37 with double band inversion at Γ,
d an AXI with double band inversion at Z, and e a weak stack of I -symmetric 2D
fragile TIs (FTIs) with ± e/2 corner charges17,23.h, iTheHDBCgeometry is defined by
imposing periodic boundary conditions in two directions (here x and y), and open
boundary conditions in the remaining direction (here z). The screw dislocations in
h, i are related by global I symmetry (red × symbol in h, i). Filling-anomalous

higher-order end (HEND) states with charge ± e/2 (the midgap states in g) are
present at two of the four I -related ends of the two screw dislocations in d and
e (the top end of screw 1 and the bottom end of screw 2 in i), but are absent in
c [Eq. (6)], which instead displays the trivial HDBC spectrum in f (see SN 4A2 for
calculation details). The ±e/2-charged HEND states of the insulators in d, e are
equivalent to the corner modes of the 2D FTI stacked to form e, and thus persist
under the relaxation of particle-hole symmetry17,23,39 (see SN 2A2, 2B3, and 4A2c).
Each gapped dislocation, therefore, carries an anomalous half of the e/2 polariza-
tion of an isolated SSH chain in the case in which global I symmetry is enforced, as
it is in our numerics for the purpose of detecting filling anomalies.
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global I symmetrywould be relaxed, but each surface would still carry
only one HEND state. Hence in more realistic material geometries
without global I symmetry, we more generally expect a 3D insulator
withMF

ν ≠0 to exhibit a randomconfiguration ofHEND states inwhich,
on the average, everyother end or corner of a dislocation satisfying Eq.
(6) carries a spin-charge-separatedHEND state. This is analogous to the
helical hingemodes in the HOTI bismuth, which appear in STMprobes
on every other surface step edge, despite the absenceof perfect global
point group symmetries48.

0D Flux states in 3D insulators
We now shift focus to the closely related problem of static π-flux
bound states in crystals with nontrivial band topology. As shown in

several previous works6,27,31–33, π-flux cores can bind anomalous 0D
solitons with the same fractional charge or spin-charge separation as
the 0D HEND dislocation states introduced earlier in this work. Spe-
cifically, π-fluxes in Chern insulators (2D TIs) bind solitons with ± e/2
charge (spin-charge separation). We have numerically confirmed the
static π-flux responses of 2D Chern insulators and TIs in SN 5A1 and
5B1, respectively.

As previously for dislocation bound states, in this work, we
recognize that the anomalous 0D π-flux bound states in Chern insu-
lators and 2D TIs represent specific cases of a more general phenom-
enon. Rather than probing the BZ-boundary topology, as is done by
dislocations (see the text above, as well as SN 2A1, 2A2, 2B1, and 2B3),
we find that fluxes in 2D [3D] insulators bind anomalous states deriving

Fig. 5 | Nontrivial weak partial fragile indices in 3D SnTe. a Crystal structure of
3D SnTe8,16 in a tetragonal supercell that contains four atoms and respects the
symmetries of space group 123 P4=mmm10. b The BZ of the tetragonal supercell in
the left panel of (a). cThe first-principles electronic structure of SnTe plotted along
the path indicated in b with a green line (see SN 6B1 for calculation details). The
bands in c exhibit a fourfold degeneracy at all k points due to the combined effects
of spinful I × T symmetry and supercell BZ folding. We have specifically employed
a supercell geometry that preserves the primitive lattice translation symmetries of
SnTe in order to simplify the system geometry when dislocations are inserted.
Bands in the kz =π plane are hence fourfold degenerate due to band backfolding
and I × T symmetry. However, the tetragonal supercell only represents a choice of

convention and does not affect the generalization of our results to real SnTe
crystals, which are face-centered cubic8,16. The ± signs in c denote the parity
eigenvalues per Kramers pair of the Bloch states at the TRIM point R [kR =b1/2, see
Eq. (8) for the definitions of b1,2,3]. The band structure in c indicates that SnTe
differs from an unobstructed atomic limit [that is topologically equivalent to 3D
PbTe, see ref. 8 and SN 6A] by double band inversions at the R and R0 points
[kR0 =b2=2] in the tetragonal supercell between twopairs of Kramers pairs of states
with opposite parity eigenvalues [four valence bands and four conduction bands
become inverted at both R and R0]. The four band inversions drive the bulk into a
fourfold "rotation-anomaly'' TCI phase11,16,21 with a nontrivial weak (partial) fragile
index vectorMF

ν = ðb1 +b2Þ=2 [see SN 3B and 6B1 and the text surrounding Eq. (6)].
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from the summed topologies of all BZ lines [planes]. The topological
boundary states of the summed topological phase correspondingly
appear at the boundary of the real-space line [plane] connecting two
flux tubes. More succinctly, whereas crystal defects are sensitive to
weak indices, we find that the π-flux response of an insulator is only
sensitive to strong topological indices, in agreementwith the results of
previous works25–27,31,32,63. Crucially, although the location of the
position-space line [plane] between theflux cores [tubes] is sensitive to
the gauge of the electromagnetic vector potential, the locations of the
anomalous states on its boundaries—the flux cores [tubes]—are gauge-
independent, as the flux cores [tubes] contribute a measurable
Aharonov–Bohm phase shift. Our recognition that magnetic fluxes
probe bulk stable topology is supported by extensive numerical cal-
culations (SN 5), as well as rigorous analytic proofs, which are

summarized in the Methods section, and provided in complete detail
in SN 2A3 and 2B2.

Our analytic calculations suggest that in 3DAXIs andHOTIs, which
can respectively be represented as pumping cycles of T -broken and
T -symmetric 2D FTIs with anomalous 0D corner states17,23,π-flux tubes
will bind anomalous 0D HEND states. To confirm this result, we have
respectively in SN 5A2 and 5B2 numerically computed the π-flux-tube
responses of I -symmetric AXIs and I - and T -symmetric helical HOTIs.

In the case of an AXI, our numerical calculations reproduce the
established result that a pair of parallel π-flux tubes in an AXI carries a
total bulk e/2 polarization density along the direction of the tubes33.
This represents a signature that the bulk is a TCI with a nontrivial axion
angle (magnetoelectric polarizability) θ =π, where θ is the coefficient
of the magnetoelectric response Ee ⋅Be. Specifically, the nontrivial

Fig. 6 | 0D dislocation states in 3D SnTe crystals. a Defect geometry for an
I -related pair of internal edge dislocations with B =a1 in 3D SnTe, where the I
center is marked with a red × symbol. In a, the sites enclosed within the black line
have been removed in a finite number of layers in the tight-binding calculation to
implement the pair of edge dislocations. b The PBC dislocation spectrum of SnTe
using the edge dislocation geometry in a exhibits four filling-anomalous states (two
Kramers pairs), consistent with Eq. (6) [see SN 6B2 for calculation details]. c The
real-space profile of the four anomalous states in b. In c, two total Kramers pairs of
states are localized on I -related dislocation corners (one Kramers pair of states is
bound to every other corner). When the HEND states in c are half-filled, each
Kramers pair corresponds to a chargeless, spin-1/2 quasiparticle (i.e. a spinon) that
is equivalent to the corner state of an I - and T -symmetric 2D FTI (see SN 4B2 and

refs. 17, 23). d The SnTe defect plane, for which a cross-sectional cut is enclosed by
the black lines in a, schematically depicted as a stack of PbTe monolayer defect
lines (Fig. 3c, e). Ind, eachdefect line has two0Ddislocations on its end,whicheach
bind first-order 0D topological dislocation states. We choose PbTe for the mono-
layers—rather than SnTe— because a decoupled stack of PbTe monolayers has the
same x, y components of the MF

ν vector as a tetragonal supercell of 3D SnTe,
whereas the interlayer coupling in realistic 3D PbTe drives additional band inver-
sions [Eqs. (5) and (9), see Fig. 3 and SN 6 for further details]. Hence, HEND dis-
location states can be considered the result of stacking and symmetrically coupling
(gray arrows in d) an odd number of 2D monolayers that each contain first-order
dislocation bound states.
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axion angle θ =π indicates that as a flux quantum ϕ is adiabatically
threaded from ϕ = 0 to 2π into an AXI cut into a cylindrical geometry
(where the flux tube is aligned with the cylinder axis and open
boundary conditions are taken in all directions), a charge ∣e∣ is pumped
from the flux tube (r =0 in cylinder coordinates) to the boundary
(r =R) of the top and bottom surfaces in a manifestation of the bulk
topological magnetoelectric effect6. This observation is consistent
with the appearance in our analytic and numerical calculations of an
∣e∣/2-charged, anomalous midgap state bound to the end of the flux
tube at the midpoint of the pumping cycle ϕ =π6,36. Specifically, on
both the top and bottom surfaces of the cylinder (which are related by
I symmetry), a charge ∣e∣/2 is pumped from the flux tube to the
boundary, consistent with the anomalous σxy = e2/(2h) Hall con-
ductivity of gapped AXI surfaces.

Returning to the HDBC geometry employed in this work, in which
there are (untwisted) PBC in the directions perpendicular to the
threadedmagnetic flux (Fig. 7f), we note that a lattice model cannot be
constructed with a ϕ-flux tube unless a second tube with a flux −ϕ is
inserted elsewhere into the system. Hence, in the case numerically
investigated in this work of an AXI with two threaded flux tubes and
HDBC, a charge ∣e∣ is instead pumped fromone flux tube to the other as
ϕ is advanced from 0 to 2π. Lastly, we note that because there are two
flux tubeswith oppositefluxes ±ϕ, then, even if the locations of the flux
tubes are related by a global I center, neither flux tube lies exactly on
theglobalI center, as thiswould require theflux tubes to lie at the same
position. Hence, theHDBC flux-tube geometry itself generically violates
I symmetry, except at the I - and T -invariant flux values ϕ =0,π.

Unlike AXIs5,6,34,36–38,64, I - and T -symmetric helical HOTIs exhibit
trivial axion angles θmod 2π =0, and it is currently unknown—and of
great theoretical and experimental interest—whether there exist 3D
bulk or 2D surface quantized response effects that distinguish trivial
insulators from T -symmetric HOTIs. In this work, we discover for the
first time that π-flux tubes in I - and T -symmetric 3D HOTIs bind
Kramers pairs of spin-charge-separated HEND states on only one end
(Fig. 7g). Specifically, on a lattice terminated in the hingeless,
I -symmetric HDBC geometry in Fig. 7f, both helical HOTIs and trivial
insulators (FTIs) exhibit fully gapped spectra. However, when we
pierce a hollow doughnut of the topologically distinct insulators with
π-flux tubes that preserves an I center (red × symbol in Fig. 7f, g), the
HOTI exhibits a filling-anomalous17,23,39,47 HDBC spectrum (Fig. 7e),
whereas the trivial insulator (FTI) does not (Fig. 7d). Crucially,
because two π-flux cores threaded into an isolated 2D TI each bind a
Kramers pair of states corresponding to a spin-charge-separated
soliton25–27,31,32,63, then relaxing global I symmetry by "gluing” addi-
tional 2D TIs onto the surface does not change the number of free-
angle surface spinons modulo 2 (in the case in which the system
remains half-filled). Hence on each 2D surface, pairs of π-flux tubes
bind only a single spin-charge-separated soliton between them,
indicating that each gapped surface carries an anomalous "half” of
the static π-flux response of a 2D TI. This implies that even without
global I symmetry, each surface of an I - and T -symmetric 3DHOTI is
topologically equivalent to "half” of a quantum spin Hall insulator—
i.e. two T -reversed copies of the anomalous half-integer quantum
Hall state of a gapped AXI surface4–6,10,17,35–37.

Fig. 7 | π-flux signatures of helical higher-order topological insulators. a–c Bulk
parity eigenvalues per Kramers pair of I - and T -symmetric 3D insulators with four
occupied bands. a, b The occupied parity eigenvalues of helical HOTIs formed
from double band inversion23,43 about Γ and Z, respectively. c A weak stack of the
I - and T -symmetric 2D FTI from ref. 23, which is equivalent to two superposed,
T -reversed copies of themagnetic 2D FTI introduced in refs. 17, 23. fWeplace the
insulators in a–c in the hingeless HDBC geometry detailed in Fig. 4 and the sur-
rounding text, and then pierce the doughnut with magnetic flux ϕ, creating g a
pair of flux tubes related by global I symmetry (red × symbol in f, g). Plotting the
HDBC spectra of the insulators in a–c for ϕ = π flux tubes, we observe a filling
anomaly17,23,39,47 e for the helical HOTIs in cases a, b and a trivial spectrum d for the
3D weak FTI in case c. For the helical HOTIs in a, b with threaded π-flux tubes,

g only one end of each π-flux tube binds a Kramers pair of spin-charge separated
HEND states, such that each surface carries only a single Kramers pair. Per sur-
face, this represents half of the π-flux response of an isolated 2D TI (see
refs.25–27, 31, 32, 63 and SN 2A3), implying that gapped helical HOTI surfaces
carry anomalous "half'' quantum spin Hall states. Furthermore, because each flux
tube is equivalent to the gapped 1D edge of an I - and T -symmetric 2D FTI23, then
the flux tubes each carry an anomalous half of the nontrivial partial (time-rever-
sal) polarization of a spinful SSH chain61 in the case in which global I symmetry is
enforced, as it is in our numerics for the purpose of detecting filling anomalies.
This suggests that helical HOTIs carry a novel bulk response that represents the
3D generalization of 1D time-reversal polarization.

Article https://doi.org/10.1038/s41467-022-33471-x

Nature Communications |         (2022) 13:5791 10



To understand this result, we first recognize that the surfaces of
HOTIs derive from unpaired fourfold Dirac fermions23, which cannot
be stabilized in isolated T -symmetric 2D semimetals, as discussed in
SN 2A3 and ref. 10. Because each fourfold Dirac fermion in 2D, when
gapped without breaking T symmetry, provides half of the contribu-
tion towards the bulk being a 2D TI or trivial insulator (i.e. a half unit of
spin Hall conductivity in the limit of sz-spin symmetry)2,3,65, then the
gapped 2D surface states of I - and T -symmetric HOTIs cannot be
either 2D TIs or trivial insulators, and must instead be anomalous
"halves” of a quantum spin Hall insulator. We refer to the anomalous
2D surface phase as a half-integer quantum spin Hall insulator, as
opposed to half of a 2D TI (which is a more precise designation,
because sz spin is not generically a conserved quantity in solid-state
materials with spin-orbit coupling [SOC]2,3,61), to draw connection
with the more familiar half-integer quantum Hall insulators present
on gapped AXI surfaces4–6,17,35–37, as well as with earlier works66. Speci-
fically, the half-integer quantum spin Hall state was previously pre-
dicted to appear on the top surfaces of weak TIs66; however, in this
work, we recognize the anomalous half-integer quantum spin Hall
state to more generally manifest on all gapped surfaces of I - and
T -symmetric HOTIs.

Unlike the surfaces of AXIs—which are physically distinguishable
by their anomalous Hall conductivities36,37 ± e2/2h – it is currently
unknown whether HOTI surfaces with anomalous halves of a quantum
spin Hall state can similarly be distinguished in a gauge-invariant
manner in the absence of sz-spin-conservation symmetry, both from
eachother and from2D trivial insulators. However, in the artificial limit
of sz-spin conservation symmetry, half-integer quantum spin Hall
phases may straightforwardly be differentiated by the signs of their
spin Hall conductivities65,67. Additionally, because the surface states of
weak TIs and non-axionic TCIs with 2 + 4n twofold surface Dirac cones
are equivalent to 1 + 2n (massive or massless) anomalous fourfold
Dirac fermions upon BZ folding10,11,21–23, then our observation of a sur-
face half quantum spin Hall state suggests that previous studies of
Anderson localization and topological order on interacting weak TI
and TCI surfaces63,68 should be revisited in the context of higher-order
topology and crystal-symmetry-enhanced fermion doubling. Specifi-
cally, our observation of an anomalous π-flux response on helical HOTI
surfaces implies that when the surface Dirac fermions of a TCI phase
are gapped by breaking a crystal symmetry while preserving T , the
resulting gapped surface, despite its vanishing Hall conductivity, is not
necessarily featureless, as assumed in some of the earlier literature.
Lastly, because previous constructions of strongly-interacting topo-
logical phases have exploited the half-quantized surface quantumHall
effect of 3D TIs69, then our identification of a half-quantized surface
quantum spinHall effect inHOTIsmayalsoprovide further insight into
the theoretical construction of T -symmetric fractional TIs and other
phases with anomalous topological order70.

The presence of HEND states bound to π-flux tubes in a helical
HOTI—but not in a trivial insulator (see Fig. 7 and SN 5B2)—additionally
provides the first example of a bulk response effect that distinguishes
helical HOTIs from trivial insulators. Specifically, because each flux
tube in Fig. 7f, g is equivalent to the gapped 1D edge of an I - and
T -symmetric 2D FTI23, then, in the presence of global I symmetry, the
flux tubes each carry an anomalous half of the time-reversal polariza-
tion of an isolated spinful SSH chain (SN 3B3 and ref. 61), in that each
flux tube binds a spin-charge-separated Kramers pair on only one end.
This implies that the bulk exhibits a novel form of quantized nontrivial
MSP—a spin-charge-separated generalization of the magnetoelectric
polarizability of AXIs5,6,34,36–38,64.

We may further understand the MSP by recognizing that an
I -symmetric, finite-sized sample of an I - and T -symmetric helical
HOTI is equivalent to a stack (layer construction) of 2D TIs in which
the edge states have been pairwise gapped, leaving behind sample-
encircling helical hinge modes19–22. In the limit of sz-spin conservation,

it has previously been established that 2D TIs in a Corbino disc geo-
metry with adiabatically threaded magnetic flux pass a quantized spin
current from the inner region to the outer region in amanifestation of
thequantumspinHall effect2,65,67. Hence,we canconclude that in the sz-
conserving limit, adiabatically threading a single magnetic flux from
ϕ =0 to 2π through an I - and T -symmetric helical HOTI in a finite
cylindrical geometry can transport a quantized amount of spin from
the flux tube (r =0 in cylinder coordinates) to the boundary (r =R) of
the top and bottom surfaces, representing a higher-order general-
ization of the quantum spin Hall effect. This is consistent with the
appearance in our numerical calculations of spin-charge-separated
HEND states bound to one end of each flux tube at the midpoint
of the pumping cycle ϕ =π (see Fig. 7f, g). It is important to note
that in the absence of sz-spin conservation symmetry, there is no
guarantee that the MSP implies a magnetic field-dependent quantized
spin accumulation. We leave the exciting questions of a Berry-
connection formulation of the MSP, the θ-like topological field the-
ory for the MSP, and whether the MSP can be computed ab initio for
future works.

Identical π-flux states in topologically distinct insulators
Lastly, we will briefly discuss the limitations of static π-flux insertion as
a complete diagnostic of bulk topology, suggesting interesting direc-
tions for future study. We begin by considering a 2D graphene-like
topological semimetal with two fourfold Dirac cones protected locally
by I , T , and SU(2) spin-rotation symmetry71 (Fig. 8a, top). The bulk
may either be gapped by I -symmetric orbital (Haldane) magnetism
into a ∣C∣ = 2 spin-degenerate Chern insulator with I and SU(2)
symmetries72 (Fig. 8a, bottom left), or by I -symmetric SOC into a 2D TI
with I and T symmetries2,3 (Fig. 8a, bottom right). However, from our
earlier discussions and the numerical calculations performed in SN 5A1
and 5B1, we deduce that ∣C∣ = 2 spin-degenerate Chern insulators and
2D TIs exhibit the same π-flux response, despite being topologically
distinct phases of matter. Specifically, when π-flux is threaded into
∣C∣ = 2 spin-doubled Chern insulators and 2DTIs, each flux core binds a
twofold-degenerate, spin-charge-separated 0D soliton, where the
twofold flux-state degeneracy in the Chern insulator [2D TI] is pro-
tected by SU(2) [T ] symmetry (Fig. 8a, center right). Nevertheless,
∣C∣ = 2 spin-degenerate Chern insulators and 2D TIs are still physically
distinguishable by their Z-valued Hall conductivities, where the Hall
conductivity of the Chern insulator [2D TI] is given by σH = 2e2/h
[σH = 0]2,3,6.

In this work, we discover a similar pattern of identical static π-flux
responses in two topologically distinct non-axionic 3D HOTIs that
originate from the same semimetallic quantum critical point.We begin
our analysis of 3D HOTIs by considering a 3D topological semimetal
with a time-reversed pair of nodal lines at the Fermi level, where each
nodal line is locally protected by I , T , and SU(2) symmetries71, and
carries a nontrivial Z2 monopole charge23,43 (Fig. 8b, top). Monopole
nodal-line semimetals (MNLSMs) represent the 3D, higher-order-
topological39 generalizations of graphene, and MNLSM phases have
been demonstrated to occur in 3D graphdiyne43,73 and β-MoTe2

23 when
the effects of SOC areneglected. Like graphene, 3DMNLSMs represent
the quantum critical points between topologically distinct insulating
phases23. A 3D MNLSM may be gapped by I -symmetric orbital mag-
netism into an I - and SU(2)-symmetric spin-doubled (spinless) AXI
with two co-propagating chiral hinge modes and gapped 2D surfaces
with anomalous SU(2)-symmetric ∣C∣ = 1 Chern insulating phases
[where each spin sector contributes an anomalous half-integer surface
Hall conductivity of σH = e2/(2h)]19,23,43 (Fig. 8b, bottom left). Alter-
natively, a 3D MNLSM may be gapped by I -symmetric SOC into an I -
and T -symmetric helical HOTI23 with helical hinge modes and gapped
2D surfaceswith anomalous T -invariant halves of 2DTI phases (Fig. 8b,
bottom left), as demonstrated in this work (see Fig. 7e,g). However,
from our discussions above and the numerical calculations performed
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in SN 5A2 and 5B2, we deduce that like the ∣C∣ = 2 spin-doubled Chern
insulator and 2D TI in Fig. 8a, I - and SU(2)-symmetric spin-doubled
AXIs and I - and T -symmetric helical HOTIs exhibit the same π-flux
response, despite being topologically distinct phases of matter. Spe-
cifically, when π-flux tubes are threaded into spin-doubled AXIs and
helical HOTIs, each flux tube binds a twofold-degenerate, spin-charge-
separated 0D soliton on only one end, where the twofold surface flux-
state degeneracy in the spin-doubledAXI [helicalHOTI] is protectedby
SU(2) [T ] symmetry (Fig. 8b, center right). Distinctly unlike the ∣C∣ = 2
spin-doubled Chern insulator and 2D TI in Fig. 8a, spin-doubled AXIs
and helical HOTIs both exhibit trivial Z2-valued axion angles
θmod 2π =0, and are therefore non-axionic.

It remains an open and urgent theoretical question whether there
exists a quantized response effect beyond the axionicmagnetoelectric
effect and static π-flux insertion that can distinguish between spin-
doubled AXIs and helical HOTIs. While it is clear that adiabatically
threading afluxquantumcanpumpa charge ∣2e∣ [quantized spin] from
the bulk of a flux tube to the boundary of a spin-doubled AXI [helical
HOTI in the sz-conserving limit], neither effect is characterized by a
well-established quantized response theory in noninteracting spinful
topological (crystalline) insulators, such as the magnetoelectric effect.
Specifically, theZ2-valued, axionic magnetoelectric response can only
distinguish between pumping cycles that pass even and odd numbers
of electron charges ∣e∣ per threaded flux quantum6,36, and therefore
cannot distinguish between spin-doubled AXIs, helical HOTIs, and
trivial insulators.

Discussion
The HEND states proposed in this work may be observable through
STM probes of the corners of edge dislocations and the surface ter-
minations of screw dislocations and flux tubes (solenoids) in 3D insu-
lators that, respectively, satisfy Eq. (6) or exhibit stable higher-order
topology. For the case of flux-induced HEND states, it is important to
note that formost solid-state topological materials74, an unrealistically
strong magnetic field would be required to generate one π-flux per
unit cell. However, because a 3Dhelical HOTI phasecanbeconstructed
by layering 2D TI states21, then by layering and twisting 2D TI layers to
generate a Moiré potential, one could construct a HOTI with a much

larger unit cell in which a proportionately smaller magnetic field is
required to produce a π-flux. Twisted transition metal dichalcogenide
few-layers have been theoretically predicted to host quantum spinHall
states75, and may hence represent a promising platform for probing
the flux-inducedHEND states andMSPHOTI response identified in this
work. Additionally, in AXIs, the bulk magnetoelectric and anomalous
surface Hall responses can be probed in optical experiments per-
formed under applied magnetic fields significantly weaker than one π-
flux per unit cell6,64. There may also exist analogous optical signatures
of the anomalous surface half quantum spinHall states inhelicalHOTIs
predicted in this work, which we leave as an exciting direction for
future investigations.

The recent theoretical and experimental identification of HOTI
phases in materials including bismuth48, the transition metal dichal-
cogenides MoTe2 and WTe2

23,50–52, BiBr12,13,53,54, the Ba3Cd2As4 family14,
the Sr3PbO family of perovskites76, as well as in recently established
vast databases of topological materials49,74,77 indicates particular pro-
mise for future experimental investigations of flux and defect HEND
states. Spin-charge-separated HEND dislocation states may also be
observable in weak FTI phases, for which several material candidates74

were recently discovered through the symmetry-based indicators of
fragile topology introduced in refs. 44, 45. 3D OAL phases have
recently been identified in electrides78 and other stoichiometric
insulators79, and may also exhibit nontrivial HEND-state dislocation
responses. For HEND states that carry chargeless spin, the spinon
excitations may be detectable through nonlinear spectroscopy80,81.
Additionally, recent investigations have revealed that T -symmetric
topological semimetals gapped with charge-density waves exhibit the
same low-energy theory as helical HOTIs57,82, suggesting an intriguing
future venue for investigating the spin-charge-separated defect and
flux response effects introduced in this work. Furthermore, though we
have focused on solid-state materials, metamaterials can also exhibit
nontrivial defect and flux responses83,84, and may therefore provide an
additional platform for realizing HEND states. Lastly, it was recently
demonstrated that dislocations ind-Dcrystals can alsomap interacting
(d−1)-D topological phases to real space85, suggesting that the interplay
of crystal defects and topological order is a promising direction for
future study.

Fig. 8 | Patterns of identical static π-flux response in topologically distinct
insulators. a (Top) A 2D graphene-like topological semimetal with two fourfold
Dirac cones protected by I , T , and SU(2)-spin-rotation symmetries71 can gap into
two topologically distinct insulators. (Bottom, left) Applying I -symmetric orbital
(Haldane) magnetism gaps the Dirac semimetal in a into a ∣C∣ = 2 spin-degenerate
Chern insulator with I and SU(2) symmetries72. (Bottom, right) Conversely,
I -symmetric spin-orbit coupling (SOC) gaps the Dirac semimetal in a into a 2D TI
with I and T symmetries2,3. (Right) However, ∣C∣ = 2 spin-degenerate Chern insu-
lators and 2D TIs exhibit the same π-flux response. In both 2D insulators, π-flux
cores each bind a twofold-degenerate, spin-charge-separated 0Dsoliton,where the
twofold flux-state degeneracy in the Chern insulator [2D TI] is protected by SU(2)
[T ] symmetry (see SN 5A1 and 5B1). Nevertheless, ∣C∣ = 2 spin-degenerate Chern
insulators and 2D TIs are still physically distinguishable by their Z-valued Hall

conductivities, where theHall conductivity of theChern insulator [2DTI] is givenby
σH = 2e2/h [σH =0]2,3,6. b (Top) A 3D monopole-charged nodal-line semimetal
(MNLSM) with a T -reversed pair of nodal lines (red ellipses) that are locally pro-
tected by I , T , and SU(2) symmetries71 and carry nontrivial Z2 monopole
charges23,43. (Bottom, left) Applying I -symmetric orbital magnetism gaps the
MNLSM in b into a θmod 2π =0 spin-doubledAXIwith I and SU(2) symmetries23,43.
(Bottom, right) Conversely, I -symmetric SOC gaps the MNLSM in b into a
θmod 2π =0 helical HOTI with I and T symmetries23. (Right) However, like the
∣C∣ = 2 spin-doubledChern insulator and 2DTI in a, the spin-doubled AXI and helical
HOTI in b exhibit the same π-flux response. In both 3D non-axionic HOTIs, π-flux
tubes each bind a twofold-degenerate, spin-charge-separated 0D soliton on only
one end, where the twofold surface flux-state degeneracy in the spin-doubled AXI
[helical HOTI] is protected by SU(2) [T ] symmetry (see SN 5A2 and 5B2).
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Methods
We will here summarize our analytic proofs of the criteria for gen-
erating 0D dislocation and flux HEND states in 3D insulators (see
Table 1). Our proofs are supported by extensive numerical calculations
of 0Ddislocation and flux bound states, whichwe respectively detail in
SN 4 and 5. We will then detail our first principles and tight-binding
calculations demonstrating a nontrivial first-order dislocation
response in 2D PbTe monolayers and a nontrivial HEND-state dis-
location response in 3D SnTe.

Summary of analytic HEND dislocation state proofs
In this work, we have formulated two alternative and equivalent sets of
proofs demonstrating that integer dislocations map lower-
dimensional topology from momentum space to position space. We
have crucially demonstrated that dislocations can map not just stable
topological phases with 1D edge modes, but also FTIs and OALs with
anomalous 0D corner states. Our proofs further reproduce the results
of all previous studies of crystal dislocation bound states with integer
B24–29. First, building upon the "cutting” and "gluing” construction of
topological defect states developed in ref. 24 to predict helical dis-
location modes in weak TIs4, we have employed k ⋅ p theory to predict
0DHEND states in 3D crystals (see SN2A1 and 2A2). Next, in SN2B1 and
2B3, we use more general arguments based on second-quantized
expressions for noninteracting (topological) ground states to
demonstrate that (d−2)-D dislocations in d-D crystals can map (d−1)-D
BZ surfaces to (d−1)-D real-space surfaces, leading in 3D crystals to the
presence of 1D and 0D topological defect states. Below, we will outline
the k ⋅ p-level proof, leaving the more general case for SN 2B1 and 2B3.

For simplicity and without loss of generality, wewill focus here on
I -symmetric, T -broken insulators with edge dislocations. Because an
I - and T -symmetric HOTI can be formed by superposing a time-
reversed pair of I -symmetric AXIs, the results derived here for mag-
netic AXIs (and I -symmetric, T -broken FTIs) can also be straightfor-
wardly extended to helical HOTIs (and I - and T -symmetric FTIs), as
shown in SN 2A1 and 2A2. To begin the summary of our k ⋅ p derivation
of anomalous HEND-state dislocation response, the low-energy k ⋅ p
Bloch Hamiltonian of an I -symmetric insulator can be expressed as:

HðqÞ=
M

a

HaðqÞ, ð10Þ

where a runs over the TRIM points kD,a whose bands are inverted
relative to those of the atomic insulator formed from the occupied
atomic orbitals when all hoppings are taken to vanish18, and where
q = k−kD,a. We next take the simplifying assumption that the k ⋅ p
Hamiltonian at each TRIM point kD,a has the form of the low-energy
theory of the Bernevig–Hughes–Zhang model of a 3D TI2,5,6:

HaðqÞ=maτ
z +

X

i= x,y,z

viqiτ
xσi, ð11Þ

where τx,y,z and σx,y,z are Pauli matrices, and where we have employed
the shorthand notation τi⊗ σ j ≡ τ iσ j. We emphasize that in a four-band
model with singly degenerate bands (such as a model with only I
symmetry), we must invert two bands in order to ensure a band gap
throughout the BZ: a single band inversion about a TRIM point instead
gives rise to a Weyl semimetal phase19. As we are in this work focusing
on gapped topological phases, the minimal realization of Eq. (11)
relevant to the dislocation responses analyzed in this work hence
involves a 4 × 4 k ⋅ p Hamiltonian.

Next, we construct a long-wavelength description of a pair of
edge dislocations whose Burgers vectors lie along a crystallographic
axis. As prescribed in ref. 24, we model an internal loop of edge
dislocations by cutting the insulator described byHðqÞ [Eq. (10)] into
two pieces with ± ẑ-normal (top and bottom) surfaces, and then

"gluing” the two pieces back together with ∣B∣/c extra rows of unit
cells in the region between the edge dislocations, where c is the
lattice spacing in the z-direction. We initially implemented the gluing
with I - and T -symmetric coupling between the top and bottom
surfaces, and then later relax T symmetry. At each TRIM point in the
bulk at which bands are inverted, the top and bottom surfaces each
contribute a twofold Dirac-cone surface state to the interface. This
implies that the combined top and bottom surfaces carry one
effective fourfold Dirac fermion in 2D for each band inversion in the
bulk, where each fourfold Dirac fermion admits a single, T -sym-
metric mass term10. To account for the presence or absence of
nonzero B, we derive in SN 2A1 a consistent, intrinsic phase for the
coupling mass at each band-inverted TRIM point, finding in parti-
cular that the relative sign across the dislocation of the mass of the
fourfold Dirac cone induced from the TRIM a is proportional to
cosðkD,a � BÞ. Hence, the edge dislocation loop effectively realizes an
interface between two gapped fourfold Dirac cones, where the rela-
tive sign of the gap is given by cosðkD,a � BÞ. If the relative sign is
negative, then theDiracmass switches sign, and the resulting domain
wall binds a helical pair of defect-localized states39,58. This implies
that for each band-inverted bulk TRIM point kD,a will only contribute
helical modes to an edge dislocation if kD,a ⋅B is an oddmultiple of π.
Lastly, we relax T symmetry while preserving I symmetry. From the
analysis of I -symmetric 2D insulators with anomalous corner modes
in refs. 17, 23, we can immediately deduce that each of the bulk TRIM
points that previously contributed a pair of helical modes at the edge
dislocation will necessarily now contribute an anomalous number of
0D ± e/2-charged (anti)solitons under the introduction of I -sym-
metric magnetism. As discussed in refs. 17, 23, 39, 47, this conclusion
is crucially not reliant on particle–hole symmetry, which is not pre-
sent in real materials74.

Summary of analytic HEND flux state proofs
In this work, we have also formulated two alternative and equivalent sets
of proofs demonstrating that π-flux tubes in 3D insulators bind anom-
alous 1D and 0D states, including HEND states, if and only if the bulk is a
stable TI or TCI. Our proofs reproduce the results of refs. 6, 27, 31–33, as
well as suggest the presence of a novel quantized π-flux response in I -
and T -symmetric helical (non-axionic) HOTIs. As previously for integer
dislocation bound states, our flux-state proofs were performed both
within the k ⋅p approximation for 3D insulators (SN 2A3) and usingmore
general arguments based on second-quantized expressions for the
noninteracting (topological) ground states of d-D insulating crystals
(SN 2B2). Below, we will detail the k ⋅p-level proof, leaving the more
general case for SN 2B2.

We will again here focus on the response of I -symmetric,
T -broken 3D insulators. Because an I - and T -symmetric helical HOTI
can be formed by superposing a time-reversed pair of I -symmetric
AXIs23, then the π-flux-tube response derived here for magnetic AXIs
can straightforwardly be extended to helical HOTIs, as detailed and
performed in SN 2A3. We begin the summary of our k ⋅ p derivation of
anomalous HEND-state π-flux response by again considering a 3D
insulator with (initially) I and T symmetries. We take the 3D insulator
to differ from a trivial atomic insulator by a series of band inversions at
a set of TRIM points {kD,a} between Kramers pairs of states with
opposite parity eigenvalues. The low-energy Hamiltonian of the insu-
lator in the absence of threaded magnetic flux is hence again given by
Eqs. (10) and (11).

Next, we construct a long-wavelength description of magnetic
flux threaded into the 3D insulator through two parallel 1D tubes with
opposite field strengths ±ϕ located at I -related positions. To imple-
ment the pair of flux tubes, we cut the insulator described byHðqÞ [Eq.
(10)] into two pieces with ± x̂?-normal surfaces, and again glue the
pieces back together. In the region between the flux tubes, wemultiply
all couplings between the top and bottom surface states by eiϕ.
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We emphasize that the effective ±ϕ/2 phase rotation per surface only
represents a local gauge transformation on each surface in the limit in
which the surfaces are considered separately—however when the two
surfaces are coupled, the ϕ phase difference between the surfaces
corresponds to the gauge-invariant insertion of ±ϕ-fluxes along the
boundaries of the region between the flux tubes.

As previously for integer dislocations, the interface between the
top and bottom surfaces contains an effective fourfold Dirac cone
from the two twofold surface Dirac cones contributed by each bulk
band inversion at kD,a (one twofold Dirac cone from each of the top
and bottom surfaces). However, unlike for integer dislocations, the
T -symmetricmass of the fourfoldDirac cone carries a relative phase of
eiϕ between the regions inside and outside of the pair of flux tubes.
Hence crucially, and unlike in the previous case of edge and screw
dislocations, the relative sign of the fourfold Dirac mass for π-flux
tubes is independent of kD,a. This implies that whenϕ =π, the two flux
tubes bind an odd (anomalous) number of helical pairs of modes if the
bulk contains an odd total number of band inversions between Kra-
mers pairs of states at TRIM points such that—through the Fu–Kane
parity criterion—the bulk is a 3D TI4. Alternatively, this result may be
summarized through the statement that π-flux tubes bind anomalous
helical modes in an I - and T -symmetric 3D insulator if the 2D
momentum-space Hamiltonian in only one of the kx?

=0,π BZ planes
is equivalent to a 2D TI, because a 3D TI can be expressed as a helical
pumpof a 2DTI4,6. As shown in SN 2A3 and 2B2, we findmore generally
that a parallel pair of x∥2-directed π-flux tubes separated by a distance
along x∥1 sums the 2D topology of all of the momentum-space
Hamiltonians in the kx?

-indexed BZ planes of the pristine insulating
crystal [see Eq. (10), and note that x∥1,2 span the plane perpendicular to
x⊥]. The summed 2D momentum-space topology is then projected
onto the real-space surface spanning the flux tubes.

From this result, it is straightforward to derive the π-flux response
of I -symmetric AXIs. Numerous previous works4–6,17,35–37 have shown
that an I -symmetric 3D strong TI gaps into an AXI under the intro-
duction of I -symmetric magnetism. Furthermore, it was shown in
recent works17,23 that, because an I -symmetric 2D TI gaps into a 2D FTI
with anomalous ±e/2-charged corner modes, then an AXI is equivalent
to anodd, chiral pumping cycleof anI -symmetric2DFTI.Hence,when
T symmetry is relaxed in an I -symmetric 3D TI with two π-flux tubes,
the Dirac-cone surface states, and helical flux states become gapped,
but there remain an anomalous number of ±e/2-charged 0D states
bound to the loop formed from the two flux tubes and the crystal
surfaces. Hence, π-flux tubes in an AXI necessarily bind anomalous ±e/
2-charged 0DHEND states, which appear in our numerical calculations
on I -related flux tube ends (see SN 5A2 and 5B2).

Because an I - and T -symmetric helical HOTI is equivalent to the
superposition of a time-reversed pair of I -symmetric AXIs23, then the
previous derivation of flux-tubeHEND states in AXIs also implies the π-
flux response of helical HOTIs. Specifically, as detailed in SN 2A3, we
discover in this work thatπ-flux tubes threaded into helical HOTIs bind
Kramers pairs of spin-charge-separated 0D HEND states, rather than
±e/2 end charges.

First principles and tight-binding calculation details for PbTe
monolayers
We will here detail our first principles and tight-binding calculations
for 2D PbTe monolayers (see SN 6A for complete calculation details).
To obtain the crystal structure of a single, pristine monolayer of PbTe,
we start with a 3D crystal of rock-salt-structure PbTe [SG 225 Fm�3m10,
Inorganic Crystal Structure Database (ICSD)86 No. 194220, further
details available at https://topologicalquantumchemistry.com/#/
detail/19422018,74,87–89], increase the lattice spacing in the z (c-axis)
direction to isolate a single plane of Pb and Te atoms, and then restrict
the system symmetry to layer group (LG)10,39,90–94p4=mmm10. We next
perform fully relativistic DFT calculations of the electronic structure

using the Vienna Ab initio Simulation Package (VASP)95,96 employing
the projector-augmented wave (PAW) method97,98 and the Perdew,
Burke, andErnzerhof generalized-gradient approximation (GGA-PBE)99

for the exchange-correlation functional. In our first-principles calcu-
lations, we have used the primitive unit cell shown in Fig. 3a, which
contains one Pb atom at (x, y) = (0, 0) and one Te atom at (1/2, 0). The
lattice vectors of the primitive cell (see Fig. 3a) are given by

a1 = ð1=2,� 1=2Þ,a2 = ð1=2, 1=2Þ, ð12Þ

and the reciprocal lattice vectors are given by

b1 = 2πð1,� 1Þ,b2 = 2πð1, 1Þ: ð13Þ

Lastly, we have allowed the in-plane lattice spacing a1 = a2 = a to
relax from its experimental value to an equilibrium length of
a = 4.483Å.

To determine the topological indices of the PbTe monolayer, we
use the IrRep program100 to first deduce the small corepresentations
(coreps) of the six highest valence and the two lowest conduction
bands, which are shown in Fig. 3c, d and labeled employing the con-
vention of the REPRESENTATIONS DSG tool on the BCS18,101 for the
kz =0 plane of SG 123 P4=mmm10, the index-2 supergroup of LG
p4=mmm10 generated by adding lattice translations in the z-direction.

Next, to determine the dislocation response of PbTemonolayers,
we calculate the weak (partial) SSH invariant vector MSSH

ν , which is
defined in the text surrounding Eq. (2). MSSH

ν can be obtained by
counting the number of parity-eigenvalue-exchanging band inversions
by which a set of bands differs from an unobstructed (trivial) atomic
limit with a trivial dislocation response. As shown in Fig. 3c, d, PbTe
monolayers differ from an unobstructed atomic limit through band
inversion at the X point [kX =b1/2 = (π, −π)] between bands labeled by
the small coreps �X5,6 of the little group at X. The small coreps �X 5,6

correspond to doubly degenerate pairs of states with the same parity
(I) eigenvalues within each pair, such that:

χ �X5
ðI Þ=2, χ �X6

ðI Þ= � 2, ð14Þ

where χρ(h) is the character of the unitary symmetry h in the corep ρ,
and is equal to the sum of the eigenvalues of h in ρ. Because the X and
symmetry-equivalent X 0 [kX 0 =C4zkX modb1 modb2 =b2=2 = ðπ,πÞ]
points lie along the BZ-edge XM and X 0M lines, then we conclude that
PbTe monolayers exhibit a nontrivial weak partial (time-reversal) SSH
invariant vector:

MSSH
ν =

1
2
ðb1 +b2Þ= ð2π, 0Þ: ð15Þ

We emphasize that, despite νSSHx mod 2π = νSSHy mod 2π =0 in
Eq. (15), MSSH

ν is still nontrivial, because (2π, 0) and (0, 2π) are not
reciprocal lattice vectors [Eq. (13)] in the rotated coordinates
employed in our calculations.

To confirm the nontrivial dislocation response of a PbTe mono-
layer, we next insert a pair of 0D dislocations into an eight-band tight-
bindingmodel obtained frommaximally-localized, symmetricWannier
functions through WANNIER90102,103. In practice, when mapping a DFT
calculation to a tight-bindingmodel, onemust choose a cutoff distance
for hopping interactions. Surprisingly, even though the band inversion
in PbTemonolayers is relatively strong (the negative band gap at the X
and X 0 points is roughly ~ 260meV)40,41,104, we find that the strong and
weak partial-polarization topology of a PbTe monolayer is only repro-
duced in a tight-bindingmodel that is truncated to aminimum range of
sixth-nearest-neighbor hopping. As detailed in SN 6A and shown in
Fig. 3d, e, computing the PBC spectrum of our Wannier-based tight-
bindingmodel with a pair ofB =a1 dislocations, we observe four filling-
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anomalous dislocations bound states, confirming the nontrivial first-
order dislocation response of PbTe monolayers.

First-principles and tight-binding calculation details for 3D SnTe
We will next detail our first principles and tight-binding calculations
demonstrating a nontrivial HEND-state dislocation response in 3D
SnTe crystals (see SN 6B for complete calculation details). To draw a
comparisonwith SnTe,we have alsoperformed analogous calculations
on the isostructural compound PbTe, which we find to exhibit a trivial
dislocation response. We begin by performing fully-relativistic DFT
calculations of the electronic structure of 3D SnTe and PbTe using
VASP95,96 employing the PAW method97,98 and GGA-PBE99 for the
exchange-correlation functional. The lattice parameters of the rock-
salt structure [SG 225 Fm�3m10] were fixed to their experimental
values105a = 6.32Å for SnTe and a = 6.46Å for PbTe.

Below, we will specifically compute the dislocation response for
the shortest possible dislocation Burgers vectors —i.e. dislocations for
which the Burgers vector B is equal to one of the primitive, face-
centered-cubic lattice vectors of SnTe or PbTe. For geometric simpli-
city and because 3D SnTe and PbTe are cubic, we without loss of
generality form a tetragonal supercell in which the a1 and a2 primitive
lattice vectors are also lattice vectors in the face-centered cubic cell,
but in which a3 is

ffiffiffi
2

p
times the length of a face-centered-cubic pri-

mitive lattice vector (see Fig. 5a). The tetragonal cell specifically con-
tains twoSn/Pb atoms at (x, y, z) = (0, 0, 0) and (1/2, 1/2, 1/2) and twoTe
atoms at (0, 0, 1/2) and (1/2, 1/2, 0), and respects the symmetries of SG
123 P4=mmm10. The lattice and reciprocal lattice vectors of the tetra-
gonal supercell are shown in Fig. 5a and detailed in Eq. (8) and the
surrounding text. In our first-principles calculations, we only incor-
porate valence-shell states – hence, our calculations only include the
5p orbitals of Te and 5p (6p) orbitals of Sn (Pb), as well as twelve total
empty conduction bands from higher-shell (empty) valence orbitals.
Therefore, at each TRIM point in Fig. 5c, the lower twelve (upper
twelve) bands are occupied (unoccupied) [the bands in Fig. 5c are
fourfold degenerate due to the combined effects of spinful I × T
symmetry and supercell BZ folding].

MF
ν can be obtained by counting the number of parity-eigenvalue-

exchanging band inversions by which a set of bands differs from an
unobstructed atomic limit with a trivial dislocation response. We first
establish, in agreement with previous works8, that 3D PbTe realizes an
unobstructed atomic limit in which three Kramers pairs of states are
located on each of the four Te atoms in the tetragonal supercell. Our
calculations indicate that 3D SnTe differs from 3D PbTe by double
band inversions at the R point [kR = b1] and at the symmetry-related
point R0 [kR0 =C4zkR mod b1 mod b2 =b2=2] between two pairs of
Kramers pairs of states with opposite parity eigenvalues [four valence
states become inverted with four conduction states at R and at R0].

To determine the dislocation response of SnTe, we first establish
that MF

ν =0 in PbTe, because PbTe is an unobstructed atomic limit.
Hence, because SnTe differs from PbTe by double band inversions at
the R and R0 points in the tetragonal supercell (see Fig. 5), the HEND-
state response of SnTe is nontrivial:

MF
ν = ðb1 +b2Þ=2 = ð2π, 0, 0Þ: ð16Þ

We emphasize that, despite νFx mod 2π = νFy mod 2π =0 in Eq. (16),MF
ν

is still nontrivial, because (2π, 0, 0) and (0, 2π, 0) are not reciprocal
lattice vectors in the tetragonal supercell of SnTe [Eq. (8)].

We next explicitly confirm the nontrivial defect response of 3D
SnTe. To model an edge dislocation in SnTe, we use the tight-binding
model from ref. 8, with the parameters listed in ref. 106. We first
enlarge themodel unit cell to obtain the tetragonal supercell shown in
Fig. 5a. We then determine the locations of the I centers in the
supercell from themirror symmetry representations given in ref. 106—
in real space, the Sn and Te atoms in the model in ref. 8 occupy

inversion centers that coincide with lines of C4z (fourfold rotation)
symmetry in the tetragonal supercell (Fig. 5a). Next, we implement an
internal edge dislocationwithB =a1, as shown in Fig. 6a anddetailed in
SN 6B2. Importantly, in order to use filling anomalies to diagnose the
nontrivial HEND-state dislocation response, we must implement the
defect plane in an I -symmetric manner, which we accomplishwith the
alternating pattern of site removal depicted in Fig. 6a.

To provide a reference for our numerical analysis of the defect
response in 3D SnTe, we have also implemented a B = a1 pair of edge
dislocations in a tight-binding model of 3D PbTe. To construct the
tight-binding model, we have increased the on-site energy difference
between the two inequivalent atoms in the primitive unit cell [speci-
fically, in the notation of ref. 106, we have changed the parameter m
from 1.65 to 3 in Eq. (16) in ref. 106]. Increasing the on-site energies
reverses the pair of doubleband inversions atR andR0, and reproduces
the first-principles-derived parity eigenvalues and electronic structure
of PbTe. The on-site potential can also be understood as a chemical
potential that localizes all of the electrons on the Te atoms of PbTe.
Because PbTe is isostructural to SnTe, then the real-space defect
geometry for our tight-bindingmodel of PbTe is identical to the defect
geometry previously employed in SnTe (depicted in Fig. 6a).

In Fig. 6b, we plot the PBC defect spectrum for SnTe, and in
SN 6B2, we plot the analogous defect spectrum for PbTe. The dis-
location spectrum of PbTe exhibits a large gap and is trivial, whereas
the defect spectrum of SnTe is conversely filling-anomalous, specifi-
cally exhibiting four midgap states (two Kramers pairs corresponding
to the circled states in Fig. 6c). This result validates our first-principles
bulk identification of a nontrivial HEND-state dislocation response
vector in 3D SnTe, and a trivial HEND-state response vector in 3D PbTe.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon reasonable request.
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