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� Discover 55 cell types and their
specific markers in the first single-cell
atlas of cattle;

� Identify and verify 3 epithelial
progenitor-like cell subtypes in the
forestomach

� Reveal vital but nonimmune
functions of neutrophils in the
mammary gland;

� Uncover key cell subtypes with
preferential nutrient uptake;

� Find Th17 cells regulate epithelial
cells responding to nutrient transport
in the forestomach.
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Introduction: Dairy cattle are a vitally important ruminant in meeting the demands for high-quality ani-
mal protein production worldwide. The complicated biological process of converting human indigestible
biomass into highly digestible and nutritious milk is orchestrated by various tissues. However, poorly
understanding of the cellular composition and function of the key metabolic tissues hinders the improve-
ment of health and performance of domestic ruminants.
Objectives: The cellular heterogeneity, metabolic features, interactions across ten tissue types of lactating
dairy cattle were studied at single-cell resolution in the current study.
Methods: Unbiased single-cell RNA-sequencing and analysis were performed on the rumen, reticulum,
omasum, abomasum, ileum, rectum, liver, salivary gland, mammary gland, and peripheral blood of lac-
tating dairy cattle. Immunofluorescences and fluorescence in situ hybridization were performed to verify
cell identity.
Results: In this study, we constructed a single-cell landscape covering 88,013 high-quality
(500 < genes < 4,000, UMI < 50, 000, and mitochondrial gene ratio < 40% or 15%) single cells and identified
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55 major cell types in lactating dairy cattle. Our systematic survey of the gene expression profiles and
metabolic features of epithelial cells related to nutrient transport revealed cell subtypes that have pref-
erential absorption of different nutrients. Importantly, we found that T helper type 17 (Th17) cells (highly
expressing CD4 and IL17A) were specifically enriched in the forestomach tissues and predominantly inter-
acted with the epithelial cell subtypes with high potential uptake capacities of short-chain fatty acids
through IL-17 signaling. Furthermore, the comparison between IL17RAhighIL17RChigh cells (epithelial cells
with IL17RA and IL17RC expression levels both greater than 0.25) and other cells explained the impor-
tance of Th17 cells in regulating the epithelial cellular transcriptional response to nutrient transport in
the forestomach.
Conclusion: The findings enhance our understanding of the cellular biology of ruminants and open new
avenues for improved animal production of dairy cattle.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The combination of the increasing global population and poten-
tially a reduced agricultural productivity due to climate change
represents a major challenge to meeting demand for nutritious
foods for humans [1–2]. Ruminants possessing a four-chambered
stomach (consisting of the rumen, reticulum, omasum, and aboma-
sum) are physically and physiologically different frommonogastric
animals and can convert indigestible and low-quality plant
polysaccharides into absorbable nutrients. Lactating dairy cattle,
economically a highly important livestock species, plays an essen-
tial role by providing high quality proteins via milk to meet the
demand around the world.

A homeostatic orchestration of diverse metabolic tissues is nec-
essary for the maintenance of lactation. The gastrointestinal tract is
the central site of feed digestion, nutrient uptake, and contributes
significantly endocrinologically to the orchestration of metabolism
in the ruminant [3]. Short-chain fatty acids (SCFAs) produced in the
forestomaches are largely absorbed across the epithelium of the
rumen and of the omasum, which ultimately provides up to 70%
of daily energy requirements [4]. Salivary buffer secreted by the
salivary gland transferring into the rumen also significantly affects
the amount of produced SCFAs [5]. SCFAs and other nutrients are
extracted into the blood before being transported to the liver for
various metabolic processes and finally to the mammary gland
[6]. Before the end of the last century, substantial progress was
reached in identifying the molecular function of these key tissues.
The gastrointestinal tract and other key metabolic tissues (liver,
mammary and salivary glands, and peripheral blood) have complex
cellular compositions. However, the underlying cell types and
composition of tissues, and ultimately functions, are not com-
pletely understood. Exploring the cell types/subtypes, their gene
expression profiles and interactions may provide a cellular digital
reference map for ruminant biology and lead to discover new
potential candidate for future increases in animal production. Pre-
vious study has reported the roles of bulk RNA sequencing and
other omics approaches in the identification of potential metabolic
mechanisms across three key metabolic organs (rumen, liver, and
mammary gland) in lactating dairy cows [6]. However, to date,
there is a lack of integrative profiling of transcriptome and meta-
bolic features across multiple metabolic tissues at single-cell
resolution.

Recent advances in single-cell RNA sequencing (scRNA-seq)
enable the identification of cell subtypes and elucidation of
single-cell transcriptomic dynamics [7–9]. Here, we performed
scRNA-seq to construct the single-cell atlases of 10 key metabolic
tissue types, including the rumen, reticulum, omasum, abomasum,
ileum, rectum, liver, salivary gland, mammary gland, and periph-
eral blood of lactating dairy cattle. We identified the major cell
subsets with signature genes and then created a global landscape
of metabolic features of epithelial cell subtypes across tissues. Spe-
2

cial epithelial cell subtypes that preferentially take up SCFAs or
other important nutrients were identified in our study. We
revealed that Th17 cells play a vital role in the regulation of the
forestomach epithelial transcriptional response for nutrient trans-
port. Our study opens potential avenues to further improve the
health and milk production in dairy cattle.
Material and methods

Ethics statement

This study was approved by the Animal Care Committee at Zhe-
jiang University (approval number ZJU202017326). All applicable
institutional and national guidelines for the care and use of ani-
mals were followed.

Sample collection

Ten types of metabolic tissues were freshly sampled from six
Holstein dairy cows (one to three replicates per tissue type in gen-
eral; Fig. S1A) selected from commercial dairy farms under the
same management. All animals were fed the same diet (corn-
based high grain) with a forage-to-concentrate ratio of 45:55
(dry matter basis). Cows were humanely euthanized after undergo-
ing a 12-h fast to collect tissue samples. Clinical information of the
animals is presented in Fig. S1A.

Sample preparation for single-cell sequencing

The rumen, reticulum, omasum, abomasum, ileum, and rectum
tissues isolated from cattle were stripped of the outer muscle lay-
ers and then minced into 10 � 0.5 mm2 pieces on ice with scissors.
The tissues were incubated in a 37 �C water bath with 20 mM EDTA
for 30 min, rinsed with DPBS and chopped into 1-mm pieces. Tis-
sue pieces were transferred to a 15-mL centrifuge tube and resus-
pended in 0.25% trypsin-EDTA (Gibco). After incubation in a 37 �C
water bath for 5 min, the centrifuge tube containing tissues was
inserted into ice for 2 min, and prechilled HBSS was added to stop
the digestion. After centrifugation at 300 � g for 2 min at 4 �C, the
supernatant was discarded, and the samples were washed twice
with cold HBSS and then resuspended in dissociation enzymes.
Samples were treated with different dissociation enzymes for dif-
ferent durations, for example, rumen samples were incubated with
multiple enzymes (1.5 mg/ml collagenase I, 1.5 mg/ml collagenase
IV, and 1.5 mg/ml dispase, 100 U/ml hyaluronidase, and 50 U/ml
DNase I) for 30 min at 37 �C (Fig. S1B and C). In this dissociation
step, more details of other tissues dissociated by specific enzymes
for different times were available in the Fig. S1B. The digestion was
stopped by adding 10% FBS, followed by a filtration step through
70-lm and 30-lm SmartStrainer (Miltenyi Biotec, Bergisch Glad-
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bach, Germany). Samples were centrifuged at 300 � g for 5 min at
4 �C and then resuspended in 2 mL of HBSS. Dissociated cells were
centrifuged at 300 � g for 5 min at 4 �C, washed twice with 1 � PBS
with 0.04% BSA, centrifuged at 300 � g for 5 min at 4 �C, and resus-
pended in 1 � PBS with 0.04% BSA.

For the salivary gland samples, the isolated tissues from the
parotid gland were transferred into cold 1 � PBS, blood and fat
were removed, and samples were chopped into 0.5-mm pieces.
After incubation with dissociation enzymes (Fig. S1B), the samples
were passed through 70-lm and 30-lm SmartStrainers (Miltenyi
Biotec, Bergisch Gladbach, Germany) and then centrifuged at
300 � g for 5 min at 4 �C. Cells were resuspended in 300 lL of RPMI
1640 medium (Gibco), and then 3 mL of Red Blood Cell Lysis Solu-
tion (Miltenyi Biotech, Bergisch Gladbach, Germany) was added for
3 min. The samples were centrifuged at 300 � g for 5 min at 4 �C
and resuspended in 2 mL of RPMI 1640 medium. Cells were
washed twice with 1 � PBS with 0.04% BSA, centrifuged at
300 � g for 5 min at 4 �C, and resuspended in 1 � PBS with
0.04% BSA.

For the liver samples, the isolated tissues were transferred into
cold DPBS, minced into 1-mm pieces, and then incubated with dis-
sociation enzymes (Fig. S1B). The samples were then passed
through 70-lm and 30-lm SmartStrainer (Miltenyi Biotec, Ber-
gisch Gladbach, Germany), centrifuged at 300 � g for 5 min at
4 �C, and resuspended in 2 mL of cold HBSS. Cells were washed
twice with 1 � PBS with 0.04% BSA, centrifuged at 300 � g for
5 min at 4 �C, and resuspended in 1 � PBS with 0.04% BSA.

For the mammary gland samples, the isolated tissues were cut
into 5-mm pieces and washed using 1 � PBS (with 5% FBS) after
removing the adipose tissue. Subsequently, the samples were incu-
bated in a bath with 20 mM EDTA (with 5% FBS) at 100 rpm for
20 min at 37 �C and then incubated with dissociation enzymes
(Fig. S1B). The mixture was passed through 70-lm and 30-lm
SmartStrainers, transferred into a new EP tube, and centrifuged
at 300 � g for 5 min at 25 �C. After removing the supernatant,
the cells were washed with 3 mL of HBSS with 5% FBS and cen-
trifuged at 300 � g for 5 min.

For peripheral blood samples, PBMCs and neutrophils were
enriched by Ficoll (HY2015, TBD) separation.

The MACS Dead Cell Removal Kit (Miltenyi Biotec, Bergisch
Gladbach, Germany) was used to remove dead cells and cellular
debris following the manufacturer’s recommendations. After that,
the cells were counted and checked for viability via trypan blue
using a Countess II Automated Cell Counter. Finally, all the
single-cell suspensions of each sample were free of cell debris
and had high viability (over 85%). The cells were further diluted
to a concentration of 700–1200 cells/lL with 1 � PBS with 0.04%
BSA for 10X Genomics sequencing.

Single-cell capture, library preparation and sequencing

Sorted live cells were captured for library preparation using
Chromium Single Cell 30 Reagent Kits v3 (10X Genomics). The
libraries were checked for quality using the Agilent Bioanalyzer
High Sensitivity chip, and the libraries were sequenced on the
NovaSeq 6000 platform in a 150-bp paired-ended manner.

scRNA-seq computational analysis

Sequencing results were demultiplexed and converted to FASTQ
format using Illumina bcl2fastq software. Sample demultiplexing,
barcode processing and single-cell 30 gene counting were calcu-
lated using CellRanger (version 3.1.0), and scRNA-seq data were
aligned to the ARS-USD1.2 cattle reference genome.

The CellRanger outputs were loaded into Seurat [10] (version
4.0.3) for dimensional reduction, clustering, and analysis of
3

scRNA-seq data. Overall, cells with<500 and more than 4,000
detected genes, UMI counts more than 50,000, and a mitochondrial
gene ratio of more than 40% (15% for the peripheral blood dataset)
were considered low-quality cells and removed from the dataset.
The DoubletFinder [11] package (version 2.0.3) was also used to
remove doublets. To visualize the data, we further reduced the
dimensionality of all high-quality cells using Seurat (version
4.0.3) and used the t-distributed stochastic neighbor embedding
(t-SNE) algorithm to project the cells into two-dimensional space.
We performed batch correction using Harmony [12] (version
0.1.0) for data integration between samples. The analysis was per-
formed using the R package Seurat (version 4.0.3) with the follow-
ing steps: (1) the ‘‘NormalizeData” function was applied to
calculate the expression value of genes; (2) the function
‘‘FindVariableGenes” was performed to select variable genes, and
the expression levels of these genes were scaled using the
‘‘ScaleData” function; (3) PCA (principal component analysis) anal-
ysis was performed in variable gene space using the ‘‘RunPCA”
function, and R package Harmony (version 0.1.0) was used to cor-
rect batch effects; (4) the ‘‘FindClusters” function with an appropri-
ate resolution was used to perform cell clustering; (5) the function
‘‘RunTSNE” was used to visualize cells; (6) the ‘‘FindAllMarkers”
function was used to determine the differentially expressed genes
(DEGs) or marker genes (|‘avg_logFC’| greater than 0.25 and ‘p_-
val_adj’ < 0.05); (7) the AUC value for the marker genes was also
calculated using the function ‘‘FindAllMarkers”. An AUC value of
1 means that the gene is a perfect classifier for a given cluster,
and an AUC value of 0.5 implies that the gene has no predictive
value for cluster identity. The cell cluster identity was assigned
by manual annotation based on the expression and AUC value of
known marker genes (Tables S1 and S2).

To further understand the composition of cell in each tissue
type, we processed the scRNA-seq data for all ten tissue types (ru-
men, reticulum, omasum, abomasum, ileum, rectum, salivary
gland, liver, mammary gland, and peripheral blood) separately fol-
lowing the same analysis pipeline to generate a single-cell atlas for
each tissue type. To more clearly show the workflow of single-cell
RNA-seq analysis, we have added the short schematic diagrams in
the Fig. S2.

Differential expression analysis

Epithelial cells with IL17RA and IL17RC expression levels both
higher than 0.25 were separated into IL17RAhighIL17RChigh cells
and others were separated into other cells (control group) in the
rumen, reticulum, and omasum. Differential gene expression anal-
ysis of epithelial cells between the IL17RAhighIL17RChigh and control
groups was performed using the Wilcoxon rank-sum test as imple-
mented in the ‘‘FindMarkers” function from the Seurat package
(version 4.0.3). Only genes expressed in more than 15% of the cells
in groups were considered. DEGs were identified to generate
upregulated DEG datasets (LogFC greater than 0.25, adjusted p
value < 0.05) for the IL17RAhighL17RChigh group.

Cell cycle analysis

Cell cycle stage annotation of each cell among the MC_1 and
MC_2 of rumen tissue was performed using the
‘‘CellCycleScoring” function in Seurat (version 4.0.3), which assigns
each cell a score based on the expression of marker genes for G2/M
phase and marker genes for S phase.

Enrichment analysis

GO term enrichment analysis was performed using the function
‘‘enrichGO” in the clusterProfiler R package [13] (version 4.0.5)
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based on the dataset ‘org.Bt.eg.db’. The DEGs were mapped to the
‘‘bta” KEGG pathway database using the ‘‘enrichKEGG” function
of the clusterProfiler R package (version 4.0.5). Gene set enrich-
ment analysis (GSEA) was performed using the ‘‘GSEA” function
in the clusterProfiler R package (version 4.0.5) to identify gene sets
that are enriched in cell types, and the results were visualized with

the enrichplot R package (version 1.12.3) (https://github.com/

YuLab-SMU/enrichplot).

Pseudotime analysis

To model differentiation trajectories, we performed trajectory
analysis using Monocle3 [14] (version 1.0.0) for all neutrophils in
peripheral blood and mammary glands, according to the general

pipeline (https://cole-trapnell-lab.github.io/monocle3/).

Metabolic heterogeneity analysis

We performed a computational pipeline according to published

methods [15] (https://github.com/LocasaleLab/Single-Cell-Meta-

bolic-Landscape) with some modifications to study the metabolic
heterogeneity of the epithelial cell types across tissues of dairy cat-
tle at single-cell resolution. In brief, the digital gene expression
matrices with raw counts of epithelial cell types that were selected
from each tissue were merged together. The merged gene expres-
sion matrix and the gene lengths were used as the input. The gene
expression levels between cell types were calculated using the
deconvolution normalization method. The pathway activity was
calculated with default parameters, and the results were visualized
by the pheatmap R package (version 1.0.12).

Ligand-receptor interaction analysis

To investigate cell–cell communications from scRNA-seq data,
we identified the inferred cellular communication patterns using
the CellChat [16] R package (version 0.5.0) with default parame-
ters. We grouped clusters within Th17 subtypes because of their
low degree of heterogeneity based on their expression profiles in
the reticulum or omasum dataset.

Gene set scoring analysis

Genes within the gene sets ‘‘Monocarboxylic acid transport”
and ‘‘Saliva secretion” are listed in Table S3. The ‘‘AddModuleS-
core” function of Seurat R package (version 4.0.3) was used to com-
pute the signature score of the gene set in each cell type. The
differences in the signature scores across cell types were evaluated
by a two-sided Wilcoxon rank sum test. Mean values labeled with-
out a common letter were defined as significantly different (the
order of the letters (from ‘‘a” to ‘‘g”) was sorted according to mean
values from high to low, p. adjusted value < 0.05).

Widely targeted metabolomics analysis

The epithelial tissues of rumen, reticulum, omasum, abomasum,
ileum, and rectum were homogenized with 1,000 ul of ice-cold
methanol/water (70%, v/v) and cold steel balls for 3 min at
30 Hz. After being whirled for 1 min without steel balls and
15 min standing, samples were centrifuged at 4℃, 12,000 rpm for
10 min. The supernatant was collected for LC-MS/MS analysis.
QTRAP� LC-MS/MS System equipped with an ESI Turbo Ion-Spray
interface is operated in positive and negative ion mode and con-
trolled by Analyst software (version 1.6.3). The ESI source opera-
tion parameters were as follows: source temperature 500℃; ion
spray voltage 5500 V (positive), �4500 V (negative); ion source
4

gas I, gas II, curtain gas were set at 50, 50, and 25 psi, respectively;
the collision gas was high. Instrument tuning was performed with
10 lmol/l polypropylene glycol solutions in QQQ modes. Instru-
ment mass calibration was performed with 100 lmol/l polypropy-
lene glycol solutions in LIT modes. A specific set of MRM
transitions were monitored for each period according to the
metabolites eluted within this period. The mass spectrometric data
was analyzed using the Analyst software (version 1.6.3), and in a
qualitative analysis of the metabolites based on the retention time
of the detected substance and secondary spectral data against the
metware database.

Immunofluorescence

Multiplex immunostaining was performed on 5-lm-thick,
formalin-fixed, paraffin-embedded rumen, reticulum, and omasum
tissue slides. Briefly, antigen retrieval was accomplished by
microwaving the sections at 98℃ in 10 mM Tris-EDTA (pH 8.0).
Slides were blocked with 3% methanol-hydrogen peroxide solution
at room temperature for 25 min and then washed three times
(5 min each time) with PBS (pH 7.4). After blocking with 0.5%
BSA for 30 min, the primary antibody was added to the slides for
incubation at 4 �C overnight. After washing with PBS (pH 7.4),
the slides were incubated with polymer horseradish peroxidase
(HRP)-conjugated antibody specific to rabbits. After rinsing, CY3-
TSA or FITC-TSA was added to each slide and incubated at room
temperature. Antigen retrieval was performed on stained slides
to prepare them for staining to detect the next target protein.
Nuclei were counterstained with DAPI. The primary antibodies
used were anti-KRT14 (ET1610-42, HUABIO), anti-MKI67
(ER1706-46, HUABIO), anti-KRT6A (ET1611-70, HUABIO), and
anti-GJA1 (ER1802-88, HUABIO).

Fluorescence in situ hybridization (FISH)

FISH was performed on formalin-fixed, paraffin-embedded tis-
sue slides. In brief, after dewaxing, dehydration, and antigen recov-
ery, proteinase K (20 mg/ml) working solution was added to slices
and incubated at 37 �C for 10 min. After blocking endogenous per-
oxidase with 3% methanol-hydrogen peroxide solution for 15 min
at room temperature, slides were incubated for 1 h at 37 �C with
prehybridization solution (Servicebio, Wuhan, China). The CD4
probe hybridization solution was added to the slices for incubation
in a humidity chamber overnight at 37 �C. After blocking with
rabbit serum for 30 min at room temperature, the slides were incu-
bated with anti-DIG-HRP for 50 min at 37 �C. FITC-TSA or CY3-TSA
was added to slides and incubated at room temperature for 5 min.
After rinsing, the stained slides were prepared for staining to
detect the next target mRNA, IL17A. The RNA probes specific to
bovines used for this study were CD4 (5‘-DIG-GAGGGACTCTC
CAAAGTCAAGGTCAGGC-DIG-30) and IL17A (5‘-DIG-GGAAGTTCTT
GTCCTCAGTAGGTGGGCAGC-DIG-30).

Statistical analysis

For data of metabolites, the differences among groups were per-
formed using ordinary one-way ANOVA test and the correct for
multiple comparisons was using the Tukey method in GraphPad
Prism software (version 8.0). The data in figure are presented as
the means ± SD.

Data availability

The raw and processed sequencing data of the reticulum, oma-
sum, abomasum, ileum, rectum, salivary gland, and liver, mam-
mary gland, and peripheral blood as well as the processed data

https://github.com/YuLab-SMU/enrichplot
https://github.com/YuLab-SMU/enrichplot
https://cole-trapnell-lab.github.io/monocle3/
https://github.com/LocasaleLab/Single-Cell-Metabolic-Landscape
https://github.com/LocasaleLab/Single-Cell-Metabolic-Landscape
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of the rumen generated in this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.-
gov/geo/query/acc.cgi?acc = GSE176512) under accession number
GSE176512, and the secure token ‘‘ejcfqqqghvopbkl” allow review
of record GSE176512. The raw data of the rumen were collected
from our previously published data in the SRA database under
accession number SRP321626 (https://www.ncbi.nlm.nih.gov/sra/
?term = SRP321626). This study did not generate any unique code.
All software is freely or commercially available.
Results

Construction of single-cell atlases by scRNA-seq in dairy cattle

To understand the cell type composition and transcriptional
profiles of various tissues that are vital for the lactation process
in dairy cattle, we generated a single-cell atlas for lactating Hol-
stein cattle covering 10 different tissue types, including the rumen,
reticulum, omasum, abomasum, ileum, rectum, liver, salivary
gland, mammary gland, and peripheral blood. We totally obtained
more than 4,622 million sequencing reads, and on average, more
than 385 million sequencing reads for each tissue sample
(Fig. S3A). After quality control, a total of 88,013 high-quality sin-
gle cells were obtained for downstream analyses. These included
25,828 rumen, 6,257 reticulum, 10,097 omasum, 3,908 abomasum,
9,194 ileum, 5,600 rectum, 7,370 liver, 2,213 salivary gland, 11,436
mammary gland, and 6,110 peripheral blood cells (Fig. S3B). We
combined all 88,013 cells in the cluster analysis across ten tissues
with batch effect correction. We identified 90 clusters that could be
divided into 55 major cell types (Fig. 1A) based on the expression
levels of canonical cell-type-specific markers (Table S1). The dot
plot showed that the representative highly expressed marker
genes (area under the curve (AUC) � 0.75) could successfully clas-
sify cells into these major cell types (Fig. 1B; Table S2).

For each immune cell type, we found that cells from different
tissues clustered together (Fig. 1C and D), which is consistent with
the understanding that circulating immune cells, derived from the
same lineage, are widely distributed within the mammalian body
[17]. Moreover, multiple subtypes were identified for several
immune cell types, such as T cells (highly expressing CD3E and
CD3D), natural killer T cells (highly expressing CD3E, CTSW, and
NKG7), and macrophages (highly expressing CD68), reflecting their
largely heterogeneous transcriptional profiles. The epithelial cells
displayed tissue distributions, except for subtypes of keratinocytes
(rumen, reticulum, and omasum) and intestinal epithelial cell sub-
types (ileum and rectum), reflecting the heterogeneity of epithelial
cells at both the intra- and inter-tissue levels (Fig. 1C and D).
Cellular heterogeneity in dairy cattle tissues

To further systematically investigate single-cell transcriptomic
heterogeneity in individual tissues, we performed t-distributed
stochastic neighbor embedding (t-SNE) and differential gene
expression analysis separately for each tissue type. Previously
unrecognized cell heterogeneity and novel cell subtypes across a
wide range of bovine tissues were discovered. After analyzing the
forestomach tissues, we defined 23, 17, and 18 clusters with highly
expressed genes in the rumen (Fig. 2A; Fig. S4; Table S4), reticulum
(Fig. 2B and C; Fig. S5A; Table S5), and omasum tissues (Fig. 2D and
E; Fig. S5B; Table S6), respectively. These three tissues have
anatomically similarly stratified squamous epithelium [18] con-
sisting of keratinocytes that include basal cells (BC), spinous cells
(SC), and granule cells (GC). Multiple cell subtypes among BC
(highly expressing KRT14) [19–20], SC (highly expressing KRT10,
KRT6A, and S100A8) [20–21], and GC (highly expressing DLK2)
5

[22] were identified in each tissue. We noted that the cluster 6 spi-
nous cell subtype in the reticulum and cluster 15 spinous cell sub-
type in the omasum shared common gene expression signatures
with cluster 10, cluster 14, and cluster 19 spinous cell subtypes
of the rumen, which specifically highly expressed GJA1 (Fig. 2C
and E; Fig. S4A). GJA1 encodes a gap junction protein that is respon-
sible for the transport of nutrients [23]. Immunofluorescence
assays for KRT6A and GJA1 further confirmed the presence of
channel-gap-like spinous cells (cg-like SC) in the reticulum and
omasum tissues (Fig. 2F). Death and renewal of cells occur
continuously in the rumen epithelium; thus, it is believed that
stem cells/progenitors exist in the stratum basale. However, these
cell populations remain largely unknown [24]. Herein, we discov-
ered epithelial progenitor-like subtypes (mitotic cells, MC) in the
rumen based on the expression of the marker genes KRT14 and
MKI67 [21,24] (Fig. S4A), which were further verified by
immunofluorescence staining (Fig. 2G). MCs were also found in
the reticulum and omasum tissues. There were two MC subtypes
named MC_1 and MC_2 in the rumen, in which MC_1 was highly
expressed in cell division-related genes, while DNA replication-
related genes were enriched in MC_2 (Fig. S4E). This indicates that
the major difference between these two MCs was the cell cycle sta-
tus, which was also confirmed by cell cycle analysis (Fig. S4F). We
observed that almost every epithelial cell type in the rumen, retic-
ulum and omasum could be clearly distinguished by its combina-
torial set of transcription factors. We observed that the MCs of
these three tissues all highly expressed the transcription factors
HMGB2, CENPS, and CTCF (Fig. S6).

We also discovered a diversity of cell types in the other tissues
of cattle that have not previously been characterized. We identified
16, 26, 16, 21, and 15 cell subtypes in the abomasum (Fig. 3A and
B; Table S7), ileum (Fig. 3C and D; Table S8), rectum (Fig. S7A and
B; Table S9), liver (Fig. S7C and D; Table S10), and salivary gland
(Fig. S7E and F; Table S11) based on the expression of marker
genes, respectively. We discovered new cell subtypes in these tis-
sues, for example, HES1+ progenitors (high HES1 expression) in
the abomasum (Fig. 3B), CCK+ enterocytes (high FABP1 and CCK
expression) and GUCA2A+ (high FABP2, GUCA2A and GUCA2B
expression) enterocytes in the ileum and rectum of cattle
(Fig. 3D; Fig. S7B). Neutrophil cells can migrate out of the circula-
tion and infiltrate many healthy tissues in which they acquire tran-
scriptional profiles that are unique to the tissue of residence [25].
In this study, we focused on neutrophils (high expression of
TGM3 and CXCR1) in peripheral blood and mammary gland tissues
(Fig. S8; Tables S12 and S13) and identified their changes in func-
tions such as blood vessel development, epithelial tube formation,
and response to steroid hormones during migration from periph-
eral blood to the mammary gland by using pseudotime analysis
(Fig. 3E and F). Our new finding indicates that neutrophils fulfill
vital, nonimmune system-related tasks in the mammary gland.

Metabolic landscape of epithelial cell types in different tissues

As metabolism fuels physiological functions and controls cellu-
lar behavior, we aimed to assess the enrichment of metabolic path-
ways in each epithelial cell subtype in different tissues (excluding
proliferative mitotic cells and stem/progenitor cells in the gastroin-
testinal tract). In general, the metabolic pathways that were signif-
icantly upregulated in the epithelial cell subtype were grouped
into 10 categories based on KEGG classifications that reflect differ-
ent aspects of cellular metabolism, such as amino acid metabolism,
carbohydrate metabolism, and lipid metabolism (Fig. 4A). We
observed that the basal and spinous cell subtypes had most of
the upregulated metabolic pathways, whereas most of the granule
cell subtypes had no significantly upregulated metabolic pathways
compared to other cell types in the forestomach tissues (Fig. 4B). In

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
https://www.ncbi.nlm.nih.gov/sra/?term
https://www.ncbi.nlm.nih.gov/sra/?term
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Fig. 2. Construction of single-cell landscapes of the forestomach tissues. (A, B, D) t-SNE maps of the rumen (A), reticulum (B), and omasum (D) single-cell data. Cells are
colored by cell types. (C, E) Heatmap showing the representative highly expressed marker genes for epithelial cell subtypes in the reticulum (C) and omasum (E). Color scale:
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article.)
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Fig. 3. Cellular heterogeneities in the abomasum, ileum, mammary gland, and peripheral blood. (A, C) The t-SNE maps of the abomasum (A) and ileum (C) single-cell
data. Cells are colored by cell types. (B, D) Dot plots showing the expression of representative marker genes for each cell type in the abomasum (B) and ileum (D). (E)
Pseudotime trajectory analysis corresponding to the differentiation of neutrophils migrating from peripheral blood to the mammary gland. Cells are colored by pseudotime
and tissue types. (F) Gene modules that change as cells progress along the trajectory. The colors from blue to red indicate low to high aggregate module scores. Representative
cell type-specific GO terms are listed on the right. BVEC: blood vascular endothelial cell; cDC1: conventional type 1 dendritic cell; LEC: lymphatic endothelial cell; NKT:
natural killer T cell; TA: transit-amplifying cell; VSMC: vascular smooth muscle cell. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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the ileum and rectum, the Paneth cell types had the largest number
of upregulated metabolic pathways (Fig. 4B). We also noted that
pathways relating to ‘‘xenobiotics biodegradation and metabolism”
and ‘‘glycan biosynthesis and metabolism” were predominantly
enriched in the four-chambered stomach and intestinal cell sub-
types, respectively. Our results suggest that each epithelial cell
subtype could exert unique metabolic functions in cattle.

To further characterize metabolic heterogeneity at the single-
cell level, we investigated metabolic fingerprints of epithelial cell
subtypes across multiple tissues using a computational pipeline
[15] based on scRNA-seq data. Among the 60 identified metabolic
pathways showing high activity (pathway activity score greater
than 1 and permutation test p-value < 0.01) in at least one cell sub-
type compared to other cell subtypes, only 5 covered more than
half of the cell subtypes (Fig. 5A; Table S14), indicating that each
cell subtype undergoes distinct metabolic reprogramming. For
example, the cg-like SC subtypes had high activities of retinol
metabolism in the rumen and reticulum. The arachidonic acid
metabolism pathway, which is involved in maintaining mucosal
integrity [26], was enriched in the pit cell subtypes and neck cell_2
9

in the abomasum (Fig. 5A). The goblet subtypes of the ileum and
rectum both had high activities of mucin type O-glycan biosynthe-
sis, which plays an important role in intestinal homeostasis. The
starch and sucrose metabolism and mannose-type O-glycan
biosynthesis pathways had the highest activities in the KLK1+ duct
and ACHE+ acinar cell types of the salivary gland, respectively
(Fig. 5A). In addition, we also found that some metabolic pathways
with high activities were shared by multiple epithelial cell sub-
types of the gastrointestinal tissues. For example, the ‘‘thiamine
metabolism” pathway had high activities in almost all epithelial
cell subtypes of forestomach tissues, which could also be sup-
ported by high relative concentrations of the L-cysteine in the
rumen, reticulum, and omasum epithelium (Fig. 5B) [27]. The
epithelial cell subtypes of lower gut tissues had high activities of
the ‘‘nicotinate and nicotinamide metabolism” pathway that could
also be supported by high relative concentrations of the maleic
acid (Fig. 5C), L-aspartic acid (Fig. 5D), and 4-aminobutyric acid
(Fig. 5E) in these tissues [28]. Together, these results uncover the
specific cellular metabolic features of each epithelial cell subtype
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that enable them to survive and affect specific tissue
microenvironments.

Cell-type-specific expression of solute carrier genes across tissues

Little is known about the roles of each cell type and their inter-
play in the uptake of nutrients. As SCFAs are the major energy
source for ruminants, we first analyzed the expression of solute
carrier (SLC) genes that were related to SCFA absorption within
hepatocytes and epithelial cell types in our dataset. SLC16A1, hav-
ing a proven role in SCFA uptake [29], was highly expressed in
specific cell types, including cg-like SC_1, cg-like SC_2, BC_2, and
SC_2 in the rumen (Fig. 6A); MC, BC_1, and cg-like SC in the retic-
ulum (Fig. 6B); MC, BC, and SC_1 in the omasum (Fig. 6C); pit cell_1
and pit cell_2 in the abomasum (Fig. 6D); and CCK+ enterocytes in
the ileum and rectum (Fig. 6E and F). Other SLC16A family genes
were also cell-type-specifically expressed, for example, SLC16A11
in the neck cell_2 of the abomasum (Fig. 6D), enteroendocrine cells
of the ileum (Fig. 6E), goblet cells of the rectum (Fig. 6F), cholangio-
cyte of the liver (Fig. 6G), basal and KLK1+ duct cell subtypes of the
salivary gland (Fig. 6H), and luminal cell_1 of the mammary gland
(Fig. 6I); SLC16A9 in the MC_1 of the rumen; and SLC16A7 in the
LYSB+ and CLCA1+ goblet cell subtypes of the ileum.

A second and likely more important mechanism for SCFA
absorption is the exchange of SCFAs for bicarbonate and other ions
via antiporters, although the transporter has not been identified
[30–31]. SLC genes encoding anion exchangers could be considered
candidates for SCFA uptake transporters, including members of the
SLC4A, SLC26A, SLC21A, and SLC22A families. As the disappearance
of chloride from the mucosal side has been reported to correlate
negatively with the uptake of SCFAs [30], we also focused on the
SLC12A family, which is related to the transmembrane transport
of chloride. The genes in these families were highly cell-type-
specific. Interestingly, members of the SLC4A and SLC12 families
were enriched in the cell subtypes with high expression of the
SLC16A family genes mentioned above along the gastrointestinal
tract (Fig. 6A-F). For instance, SLC4A9, encoding the most likely
antiporter [32], and SLC12A7, predicted to be involved in fatty acid
transmembrane transport [33], were both highly expressed in the
cg-like SC_2 of the rumen and the cg-like SC of the reticulum,
and SLC4A4 and SLC12A2 were both highly expressed in SC_1 of
the omasum.

The SLC genes related to sugar transport, such as genes of the
SLC2A and SLC45A families, were not enriched in almost all epithe-
lial cell subtypes of forestomach tissues but were enriched in the
specific cell subtypes of the other tissues in our study (Fig. 6A-F).
This is consistent with the existing knowledge that forestomach
epithelial cells take up only a small amount of glucose, amounting
to<0.1% of the metabolizable energy intake [34]. Glucogenic pre-
cursors, especially propionate, give rise to gluconeogenesis to meet
the needs for hepatic glucose production in dairy cattle [35]. We
found that hepatocytes uniquely highly expressed SLC2A3
(Fig. 6G), indicating that this gene plays a vital role in excreting
glucose from the liver. We also noted that the SLC genes involved
in amino acid transport were differentially expressed along the
mammary gland epithelial cell subtypes. We identified the light
chain amino acid transporter SLC3A2, the neutral amino acid trans-
porter SLC38A2, and the cationic amino acid transporter SLC7A4 to
be expressed in luminal cell_1, luminal cell_2, and luminal cell_3,
respectively (Fig. 6I).

Moreover, corresponding to the gene expression, cell-type-
enriched functions across different tissues were also observed.
For instance, the GSEA showed that cg-like SC_2 of the rumen
(Fig. 7A), the cg-like SC of the reticulum (Fig. 7B), and the SC_1
of the omasum (Fig. 7C) may have a high potential capacity for
SCFA uptake. Gene set score analysis also identified the epithelial
11
cell subtypes that had high monocarboxylic acid transport scores
along the gastrointestinal tract (Figs. S9 and S10). The saliva plays
an important role in conducing to SCFA absorption [31], and the
epithelial cell subtypes of salivary gland showed significantly dif-
ferences in terms of saliva secretion (Fig. 7D). Collectively, we dis-
covered cell subtypes with specific expression of SLC gene-encoded
transporters that are related to the secretory and absorptive capac-
ities of nutrients in each of the examined tissues in dairy cattle
(Fig. 7E).
Relationship between Th17 cells and transport functions of
forestomach epithelial cells

By analyzing the distribution of major immune cell types in var-
ious tissues, we found that Th17 cells (highly expressing CD4 and
IL17A) were rumen-, reticulum-, and omasum-specific cell types
and accounted for the majority of total immune cells in these three
tissues (Fig. 8A; Fig. S11A). Th17 cells were further confirmed by
using fluorescence in situ hybridization (Fig. S11B and C). Depend-
ing on their functional plasticity, Th17 cells are classified as home-
ostatic Th17 cells or inflammatory pathogenic Th17 cells [36].
Homeostatic Th17 cells typically reside on mucosal surfaces to
exert their effects [37], whereas inflammatory, pathogenic Th17
cells are required for the expression of IL23R [36]. Th17 cells rarely
expressed IL23R or proinflammatory genes (Fig. S11D), indicating
that they exist under homeostatic conditions in forestomach tis-
sues. We next constructed intercellular communication networks
using CellChat [16] (version 0.5.0) to uncover the cellular interac-
tions in the rumen, reticulum, and omasum. Interestingly, Th17
cells predominantly interacted with the epithelial cell subtypes
with high potential capacity for SCFA uptake discussed above in
all three forestomach tissues through the IL-17 signaling pathway
(Fig. 8B-D). Notably, among all the known ligand-receptor pairs, IL-
17 signaling in the rumen, reticulum, and omasum was attributed
to IL17F and IL17A ligands and their multimeric IL17RA/IL17RC
receptors (Fig. 8E-G).

Additionally, there is a distinct, tissue-specific pattern of IL-17
signaling-dependent genes that provides the basis for important
physiologic functions [38]. To further investigate the cell response
to IL-17 signaling, we separated epithelial cells with simultane-
ously high expression levels of IL17RA and IL17RC (IL17RA and
IL17RC expression levels both higher than 0.25) into the IL17Rhigh-
IL17RChigh group and the other cells into the control group in each
forestomach tissue (Fig. 9A-C). By comparison, we identified the
upregulated DEGs in the IL17RAhighIL17RChigh group and then
revealed Gene Ontology (GO) terms based on the upregulated
DEGs. Surprisingly, we found that the upregulated DEGs of the
IL17RAhighIL17RChigh group in the rumen, reticulum, and omasum
were all enriched in GO terms associated with transport functions,
especially the SCFAs in transmembrane transport (Fig. 9D-F). For
example, monocarboxylic acid transport binding and transmem-
brane transport were upregulated in the IL17RAhighIL17RChigh group
in the forestomach tissues (Fig. 9D-F). These results indicate that
Th17 cells play a vital role in regulating nutrient transport of
IL17RAhighIL17RChigh epithelial cells in the rumen, reticulum, and
omasum.
Discussion

Although notable progress has been made in describing the
molecular features of bovine tissues [39], little is known about
the diversity of cellular populations in complex tissues. Construct-
ing high-dimensional molecular profiles across multiple cell
types/subtypes by way of traditional molecular biological tech-
niques such as bulk sequencing remains challenging. In the present
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study, we performed single-cell transcriptomic analysis to identify
the high-resolution landscapes of the 10 key metabolic tissue types
in dairy cattle. As the rumen, reticulum, and omasum are unique
13
organs in cattle and other ruminants, to our knowledge, there is
no existing protocol to dissociate forestomach tissues into single-
cell suspensions for scRNA-seq. In this study, we developed cell
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isolation approaches for these tissues (see Material and methods
and Fig. S1B and C) and obtained high-quality cell suspensions. Cell
type definition is another major challenge in scRNA-seq studies of
bovine metabolic tissues. We carefully studied and referenced pre-
vious studies [19–22,40–67] to generate a list of canonical cell-
type-specific markers for each cell type with manual curation
15
(Table S1). Moreover, due to the limited availability of markers
with specificity to bovine cell lineages, many of the markers in
the list of canonical cell-type-specific markers were drawn from
murine and human datasets. Therefore, to further assess whether
the marker genes were sufficient to serve as a classifier for cell
identity, the AUC values of highly expressed marker genes were
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calculated and assisted in cell type annotation (see Material and
methods). We created integrated pipelines of scRNA-seq in cattle
metabolic tissues, especially for uncharacterized forestomach tis-
sues. The results provide a comprehensive view of cellular classifi-
cation and fill the gap regarding the limited availability of cell-
specific markers in bovine tissues. The data in this study also offer
a comparative framework for future studies using models of cattle
or other ruminant animals.

The death and renewal of cells occurs continuously not only in
the columnar epithelium of the abomasum, small intestine, and
large intestine but also in the stratified squamous epithelium of
the forestomach tissues, and lifelong self-renewal in these epithe-
lial cells relies on the activity of stem cells/progenitors [24,68].
Here, we discovered MC, the epithelial progenitor-like subtypes
present in the rumen, reticulum, and omasum. The forestomach
epidermal proliferation and differentiation events are believed to
coordinate with SCFA absorption, and the formation of the cor-
neum acts as a protective barrier [24,69]. We found that MC, BC,
SC, and GC subtype-specific highly expressed transcription factors
(Fig. S6) could clearly distinguish these epithelial cell subtypes in
each forestomach tissue, indicating that these transcription factors
represent a certain extent of population variance. As few studies
have reported the exact mechanisms controlling how forestomach
epithelial cells differentiate, whether these transcription factors
are involved in this process needs to be further elucidated and
experimentally validated.

Cellular metabolism in epithelial cells supports specific
demands for energy metabolism and functional maintenance
across key metabolic tissues to optimize milk production during
lactation. However, if deficient in nutrient absorption, metabolic
disorders will occur in lactating dairy cattle that have very high
nutritional requirements. Research in recent decades has provided
insights into a broad set of diverse nutrient absorptive functions in
dairy cattle, but the rumen has been the focal point of research, and
other key metabolic tissues have received less attention [31,69].
Although direct observations of cell metabolism in vivo are difficult
at single-cell resolution, it is commonly accepted that scRNA-seq,
an indirect means of assessing metabolism, could provide impor-
tant insights into metabolism at the single-cell level [15]. In the
current study, we created a global picture of the metabolic features
of several epithelial cell subtypes along the gastrointestinal tract as
well as other key metabolic tissues (liver, salivary gland, and mam-
mary gland) by analyzing single-cell datasets. Metabolic plasticity
is tissue-specific, and the activity of dynamic metabolic pathways
with high plasticity is largely dependent on specific cell subtypes
in the different tissues. We focused on SLC membrane transport
proteins because they are the largest group of transporters that
import and export most nutrients, such as sugars, SCFAs, and
amino acids [70]. SLCs are ubiquitously distributed throughout tis-
sues, and those associated with metabolic homeostasis are indis-
pensable for supporting lactation [71]. Instead of glucose, the
SCFAs released as the major end products of microbial fermenta-
tion in the reticulorumen are absorbed through the epithelium as
a major energy source in dairy cattle [31,35]. Although previous
studies in recent decades have provided further insight into differ-
ent uptake pathways for SCFAs in cattle [31–32], the SCFA trans-
porters and their cellular distribution have not been clearly
identified. We found that the mean expression of SLC genes encod-
ing candidates for SCFA transmembrane transport was cell-type-
specific in forestomach tissues as well as other tissues in our study
in which the cell subtypes with high levels of these genes in
forestomach tissues were mainly basale and spinosum strata cells,
consistent with previous studies [72–73]. We noted that co-
expression patterns of the SLC genes in epithelial cells across mul-
tiple tissues in the present study, such as SLC16A1, SLC4A9, and
SLC12A7, were highly expressed simultaneously in the cg-like SC2
16
of the rumen and the cg-like SC of the reticulum. In different
large-scale datasets, the SLC co-expression patterns also have high
robustness [70]. SLC function may have a high extent of interde-
pendence, reflecting the integrative nature of metabolism required
for homeostatic stability, but experimental validation of this
hypothesis will be required. In short, our scRNA-seq data fill this
gap and provide an opportunity for investigation of the cell-type-
specific roles in nutrient absorption in each tissue at single-cell
resolution. The cell subtypes that have preferential absorption of
different nutrients and their highly expressed marker genes that
could be considered in selecting high milk production dairy cows.
Moreover, single-cell RNA-seq data can be integrated with other
omics datasets, such as ChIP-seq or SNPs, to build transcriptional
regulatory networks at cell-type resolution and further identify
candidate loci associated with milk yield traits. These candidate
molecular markers will assist in breeding programs, or be geneti-
cally modified to test their effects on the milking traits.

The key metabolic tissues, including the gastrointestinal tract,
liver, salivary gland, and mammary gland tissues, of dairy cattle
that were examined in our study might balance nutrient transport
with defending the barrier. A recent study reported that immune
cells play an important role in regulating the intestinal response
to nutrient sensing [74]. Therefore, we aimed to explore the inter-
actions between cell subtypes within particular tissues. During our
comprehensive analysis, we identified a role for Th17 cells in reg-
ulating nutrient transport of epithelial cells in the rumen, reticu-
lum, and omasum. IL17F and IL17A, produced by Th17 cells, play
an important role in the regulation of gene expression in SCFA
transport specialized epithelial cells in the forestomach. The
forestomach epithelial cells in response to IL17A and IL17F highly
expressed IL17RA and IL17RC simultaneously. Despite being exclu-
sively in silico, the predictions remain biologically significant by
restricting analysis to the only highly expressed receptor-ligand
interactions. Indeed, IL-17RA partners with IL-17RC to induce a
response to IL-17F and IL-17A [75]. Although the focus of previous
studies on IL-17 signaling was limited to the activation of down-
stream pathways to induce the expression of antimicrobial pep-
tides in epithelial cells of cattle [76–77], recent studies have
shown evidence of a tissue-specific pattern of IL-17-dependent
genes that underlies the diversity of physiologic functions of this
cytokine [38]. For instance, IL-17 signaling promotes intestinal
epithelial regeneration and barrier integrity, while inhibition of
IL-17 receptors is associated with decreased epithelial proliferation
and increased epithelial permeability [78]. An important role of
Th17 cells in regulating the nutrient transport of IL17RAhigh-
IL17RChigh epithelial cells of forestomach tissues represents
another example of a distinct, tissue-specific pattern of IL-17-
dependent genes. Nevertheless, the mechanisms underlying how
ruminal, reticular, and omasal epithelial cells respond to IL17F
and IL17A secreted by Th17 cells remain largely unexplored.

In addition to these notable findings, our study is not without
limitations. First, the dissociation bias inherent in all single-cell tis-
sue experiments may cause spurious changes in cell distribution
and limit our ability to compare the proportions of different cell
types in a tissue. As dissociation does not equally affect all cell
types in a tissue, changes in the relative composition of a given cell
type across tissues might be more meaningful than comparing pro-
portions of different cell types in a single tissue. Second, although
comprehensive cellular classification in multiple tissues was pro-
vided in our study and verified the presence of some key cell sub-
types, unfortunately, the limited availability of useful
immunofluorescence reagents such as monoclonal or polyclonal
antibodies with specificity to bovine cells has hindered the exper-
imental validation of other cell types. RNA probes specific to
bovine cells will be considered for verification experiments. Third,
the current analysis is limited in sequencing depth, which is a lim-
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itation intrinsic to the 10X Genomics system. However, we believe
that this issue will be improved with the advancement of sequenc-
ing technology in the future.
Conclusion

In summary, we built a single-cell transcriptomic atlas of key
metabolic tissues in lactating dairy cattle, which provides a valu-
able resource for uncovering distinct gene expression patterns of
different tissues at single-cell resolution. Importantly, the identi-
fied intercellular communication signaling pathways are critical
for nutrient transport. These findings will help to reveal the key
factors and develop potential precise targets for the improvement
of animal health and production.
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