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Computational dynamic ODE models of cell function describing biochemical reactions
have been created for decades, but on a small scale. Still, they have been highly effective in
describing and predicting behaviors. For example, oscillatory phospho-ERK levels were
predicted and confirmed in MAPK signaling encompassing both positive and negative
feedback loops. These models typically were limited and not adapted to large datasets so
commonly found today. But importantly, ODE models describe reaction networks in well-
mixed systems representing the cell and can be simulated with ordinary differential
equations that are solved deterministically. Stochastic solutions, which can account for
noisy reaction networks, in some cases, also improve predictions. Today, dynamic ODE
models rarely encompass an entire cell even though it might be expected that an upload of
the large genomic, transcriptomic, and proteomic datasets may allow whole cell models. It
is proposed here to combine output from simulated dynamic ODE models, completed
with omics data, to discover both biomarkers in cancer a priori and molecular targets in
the Machine Learning setting.

Keywords: biomarkers, molecular targets, drug discovery, drug development, pharmacodynamic modeling, ODE
modeling, machine learning
INTRODUCTION

Understanding biological systems is challenging as the detail and complexity of such dynamic
entities cannot be grasped using human ken and intuition. And disease states such as cancer further
the difficulties in addressing living entities. Thus, investigators have created networks of cellular
systems that encompass many components, connect those parts in some fashion, and then
interrogate their usefulness for addressing predictability and/or to study the networks themselves
(1). This has been well studied in the case of transcription factor networks that characterize the
phenomenon of epithelial to mesenchymal transition (EMT) in cancer (2–6). Recent work
demonstrated that the topology of transcription factor regulatory networks that were parameter
free (using a Boolean approach) or were parameter agnostic (using a random parameter generator)
was important in limiting changes in cell state that may promote disease progression (3).
January 2022 | Volume 11 | Article 8055921

https://www.frontiersin.org/articles/10.3389/fonc.2021.805592/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.805592/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.805592/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.805592/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:smertins@biosystemsstrategies.com
https://doi.org/10.3389/fonc.2021.805592
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.805592
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.805592&domain=pdf&date_stamp=2022-01-21


Mertins ODE Models and Machine Learning
While important findings can be gleaned from understanding
regulation of gene expression, the effectors are not included in
such modeling nor are site-specific details such as binding
affinity or catalytic activities such as phosphorylation that are
likely to influence a particular cell behavior. Therefore, the
remainder of the Mini Review will focus on the modeling
approaches that include the depth and likely parameters that
may improve useful predictions.

Modeling cell behaviors using the mathematics underpinning
biochemical reactions has been a research topic for decades when
first approached by Tyson and others in understanding the cell
cycle in the 1980s (7). It was and still is clear that cellular networks
and pathways are dynamic and the overall contribution to cell
behavior mattered. Since then, a vast array of biological models
described by ordinary and partial differential equations (ODE,
PDE) have been published, new software has been created to
entice bench scientists to advance their findings computationally
[for example, RuleBender (8) and Virtual Cell (9)], and now, an
unprecedented amount of data to supply those models is available.
For the oncology field, melding both mathematical models and
omics data holds the promise to select the most effective molecular
targets and any concurrent biomarkers. The future promise
consists of whole cell models that lead to decisions of
personalized therapies needed to predict tumor regression.

At the cellular level, mathematical models describe reaction
networks (e.g., signal transduction pathways and metabolic cycles)
effectively, typically with output that is difficult to predict. For
example, binding of a growth factor to its receptor is a reaction that
is dependent on characteristics such as binding affinity and
concentration and leads to downstream events of interest
occurring with time. Further, if positive and/or negative feedback
loops are considered, cellular function becomes less predictable by
inspection, if at all. But, operationally, in this example, the change
in concentration of bound and unbound receptors and growth
factor with respect to time can be tracked through species in the
ODEs and downstream effects delineated. Furthermore, properties
such as molecular diffusion can be described with PDEs, thus
including spatial considerations as well. Many other biological
properties have been described and include cytoskeleton formation
(10), vesicular transport (11), and gene expression (12). Hundreds
of such mathematical models have been deposited in the
BioModels database (13) (RIDD: SCR_001993).

It is the premise of this Mini Review to describe how
computational dynamic ODE models describing biochemical
reaction networks can be analyzed by Machine Learning (ML)
algorithms capable of predicting desirable outcomes for the two
of the present challenges in oncology: discovering biomarkers
associated with positive patient outcomes and novel molecular
targets not generally considered druggable.
SELECTED ODE MODELS

As experimentalists have supplied an understanding of the
essential knowledge of biochemical pathways underscoring cell
behavior, ODE models offered predictions on some of the more
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interesting aspects. For example, stimulus response, in general,
was thought to occur in a linear fashion such that the greater
concentration of a growth factor, the greater the response.
However, some components in pathways appeared not to
follow this linear rule. Rather, an all-or-none response
occurred. ODE modeling supplied a mechanism for such
ultrasensitivity, demonstrating a phenomenon that occurs
when proteins with enzymatic function are acting at saturation
(14, 15). Other important discoveries ensued and included
uncovering bistability, a behavior dependent on initial
conditions. Bistability is defined as having two stable states at
one stimulus level (16, 17). Parenthetically, bistability has also
been defined to describe whole cell states such as those found in
EMT and is distinct from that which is noted here (3–5).
Functionally, bistability at the biochemical reaction level is of
interest because, dependent on conditions such as saturation of
an enzyme and high initial stimulus, cellular response can
resemble a toggle switch in the on position. Thus, immediate
downregulation may not be needed in these instances (16, 18).
Finally, oscillatory behavior of important transcription factors
such p53 and their regulators have been demonstrated through
ODEmodeling and in cells (19, 20). In addition, oscillatory levels
of phosphorylated kinases have been characterized by an
amplitude and frequency and were shown to be regulated and
define outcomes such as the decision to proliferate (21). Below
are two relevant examples of ODE models that can be exploited
to discover biomarkers and molecular targets in oncology.

MAPK Signaling
One of the most well-studied signal transduction pathways in
oncology is that which triggers cell proliferation via growth
factor stimulation. In one such reaction network, EGF, a
growth factor, binds to its cognate receptor, which in turn,
dimerizes and activates its kinase domain through
conformational adjustments. Trans-autophosphorylation
occurs next which forms the initial sites for adapter binding.
GRB2 binding through its SH2 domain to phosphorylated
tyrosine then binds SOS, a GTPase exchange factor. Critically,
SOS replaces GDP with GTP on RAS, thus activating it for
downstream binding of RAF, a kinase. A kinase cascade ensues
ultimately leading to a phosphorylated kinase (phospho-ERK1/
2) capable of triggering gene transcription necessary for cell
growth. Importantly, several positive and negative feedback
loops regulate the pathway and when considered in an ODE
model, oscillatory behavior of phosphorylated ERK1/2 protein
level occurs. While this description adequately corresponds to
non-oncogenic signaling, disruption in the reaction rates by
mutations leads to unpredictable outcomes dependent on
pathway protein levels (22, 23). Figure 1 (upper portion)
depicts a limited Contact Map of MAPK signaling.

Cell Cycle Arrest or Apoptosis Decision
Cell decisions regulated by p53 have been readily modeled as it is
of deep interest to determine the conditions in which the
outcome of cell cycle arrest or apoptosis occurs following
genomic insult. This is of particular importance since p53 is
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commonly mutated in cancer and underpins tumorigenesis.
Lipniacki’s group developed a sophisticated model wherein
irradiation induced DNA damage, triggering p53 transcription
and subsequent downstream reactions (24, 25). The p53 network
was created using the rule-based modeling technique that defines
biochemical interactions such as protein complex formation and
enzymatic activities. In the three-stage model, a steady state was
achieved first through simulation and solutions through
deterministic algorithms. Next, irradiation was modeled over a
Frontiers in Oncology | www.frontiersin.org 3
range (1-10 Gy). In the last relaxation phase, cell behavior was
characterized. Notably, the predicted outcomes were contingent
on the degree of irradiation. Oscillatory behavior of p53 levels
was observed as has been demonstrated in vitro and was found to
define the conditions that lead to programmed cell death. Finally,
their findings provided support for the heterogeneity in response
to DNA damage observed in tumor cell lines. [N.B. For an
overview of the methodology of ODE modeling in apoptosis,
see (26)].
FIGURE 1 | Overview of Proposed Methodology. The premise of this Mini Review is pictured. In the upper portion, a stylized version of the MAPK signaling pathway
is shown. The contact map shown is the basis of an ODE Model. Note the inclusion of positive (green line) and negative (red lines) feedback loops. Because of these
regulatory networks, it is inherently difficult to predict outcomes such as the decision to proliferate. Further, it is more challenging to ascertain pharmacologic
interventions. In the lower portion, an abstract matrix is shown that depicts the changing protein concentrations with time once an ODE model is simulated. It is
these data that are useful to train ML algorithms to discover biomarkers and novel molecular targets.
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PROTEOMIC DATABASES

One of the challenges of ODE modeling is the need to insert
quantitative parameters such as protein concentration in the
reaction network. Parenthetically, precise measurements of
reaction rates, enzymatic activity, and binding affinities are also
critically important in computational modeling. The advent of
critical technologies that can determine such include labeled and
label-free assays such and SILAC and LC-MS/MS, respectively
(27, 28). Both tumor cell lines and tumor tissue have been
studied in this fashion and databases exist to exploit (29–32).
And these quantitative proteomics efforts can evaluate post-
translational modifications as well (33). The direct analysis of
datasets from these studies has identified biomarkers, therapeutic
targets, and drug resistance mechanisms. Further, and
importantly, direct interaction networks can be constructed,
but offer a static interpretation of a dynamic living cell.

The National Cancer Institute’s Office of Cancer Clinical
Proteomics developed one such database that contains
proteomic evaluations from 13 different tumor types collected
since 2006 (31, 32, 34) (RIDD: SCR_017135). A series of studies
merged both proteomic and genomic data to better classify
actionable mutations that are expressed as proteins with
certainty rather than through sequence alone. This is even more
critical since transcriptomics does not necessarily confirm
translation in as high as 50% of all transcripts measured. But
importantly, studies utilizing this database have provided
important new classifications in cancer histologies. One study
evaluated the proteogenomics of pediatric brain tumors and found
new subgroups with wild type BRAF and novel networks that
overlap with the mutant gene (35). Thus, new therapeutic trials
could be proposed for these challenging tumor types.

SILACmethods have beenmeldedwithmathematicalmodeling
in the study of dynamic systems. For example, Yilmaz et al.
investigated proteosomal processing of NFkB subunits in mouse
embryonic fibroblasts via labeling studies and mathematical
modeling to discover the dynamics of the system under activation
(36). In another study, CHO cell extracts were processed in a
glycoproteomic approach to understand N-glycan processing and
found a kinetic description of the pathway (37). Finally, global
protein synthesis rateswere studied bypulse labeling and compared
to mRNA synthesis rates in mathematical models, thus, providing
critical quantitative parameters useful for future studies aswell (38).
In summary, SILAC and LC-MS/MS methods have supported
mathematical modeling and hold further promise.
MACHINE LEARNING

Applying ML algorithms to uncover cancer diagnoses from
histologies, to determine therapeutic decisions, and predict
outcomes is becoming pervasive in light of omics studies (39, 40).
ML, in an overview, can sort through vast inputs and discover
connections not likely to be found by human inspection. An
alternative application for ML in oncology could include the
development of hypotheses subject to future study. Thus, ML is
suited to intakevast inputs and to realize relationshipsnotpreviously
Frontiers in Oncology | www.frontiersin.org 4
expected. It is the thesis of this Mini Review to offer ways to meld
ODE modeling and ML to discover biomarkers and molecular
targets, ultimately aiding drug discovery and predictive oncology.

Biomarker and Molecular
Target Discovery
It is instructive to describe a published ODEmodel in more detail for
EGFR signaling encompassing the MAPK pathway (Figure 1) to
demonstrate how it might be utilized in ML with existing proteomic
databases. In two models published by Creamer and colleagues (41)
and Kochanczyk and colleagues (22), the basic signaling pathway is
described for EGF binding to the family of cognate receptor tyrosine
kinases with subsequent dimerization triggering autophosphorylation
on their intracellular tails at multiple sites. Next, adaptors bind with
some affinity via SH2 or PTB domains. In canonicalMAPK signaling,
bound GRB2 anchors SOS1/2, a GTPase exchange protein. During
activation, SOS1/2 binds RAS and exchanges GDP for GTP, and so
activates RAS. A kinase cascade follows RAF1 dimerization and
binding to RAS. RAF1 phosphorylates MEK1/2 and it, in turn,
phosphorylates ERK1/2 which translocates to the nucleus to
modulate transcription regulating essential genes for cell
proliferation. The ODE model of EGFR signaling as described here
includes reaction rates that underlie binding affinities, turnover rates,
phosphorylation and dephosphorylation rates, and both positive and
negative feedback loops (22). Including these important regulatory
features (the loops) is critical since unexpected behaviors emerge such
oscillatory ERK1/2 phosphorylation levels and multiple states that
includea steadystate, amonostableone, or abistableonedependenton
themathematical nature of the feedback loops.As an aside, even at this
basicunderstanding, choosingamolecular targetwouldbechallenging.

Establishing the reaction network such as the one above byODE
equations can be readily accomplished with rule-based modeling
using BioNetGen, a programming language and software that can
further simulate the model over time (8). The simulations can be
deterministically or stochastically solved with well accepted
algorithms. Deterministic solutions are reproducible, resulting in
the same output with every simulation. In contrast, stochastic
simulations apply randomness to the solution, hence output is
variablewithina certaindistribution andcanbeaveraged.However,
it is important tonote that biological systemsare noisy and the latter
solutions may bemore relevant. Simple output includes changes in
species (molecule) abundanceat each time stepmodeled. In the end,
a vast amount of data is generated and fairly complex models with
thousands of reactions can be coded (42). Figure 1 (lower portion)
pictorially describes a matrix of protein concentrations (in the
columns) that change at each time step during a deterministic
simulation (in the rows).

Parameterization of ODE models is challenging and typically,
the scientific literature can provide many (43). It is anticipated
that the proteomic databases described herein will readily
provide protein abundance for ODE models and thus, may
reflect both normal and disease states in separate models.
Databases such as BRENDA (44, 45) (RIDD: SCR_002997)
and Binding Database (46) contain curated reaction rates and
affinities culled from the published literature. Thus, with a
completed ODE model of interest, experimental protein
abundance and measured parameters underlie their usefulness.
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For ML algorithms, each time step can be represented by copy
number (abundance) for an individual protein and thus, become
features. What would be of interest for both biomarker and
molecular target discovery is which state (i.e., time point and
copy numbers) would be predictive of a desired outcome such as
inhibition of cell proliferation and/or induction of cell death
through one or more of the many known mechanisms. In order
to achieve this, a training set would be needed that describes a
signal transduction pathway or pathways anticipated to be
central to cancer pathogenesis and clinically relevant. For
example, the p53 ODE model such as the one described above
intersects a critical cellular decision in light of DNA damage,
determining cell cycle arrest or programmed cell death. The
proteins in this training set model would be derived from tumor
cell lines or tissues. Next a simulation would be completed
resulting in a matrix of protein abundance at each time step
(Figure 1). Now, the investigator has hundreds, if not thousands
of models with and without the desired outcome that act as the
training dataset for ML. The first analysis of such a ML model
would be to find biomarkers (i.e., abundances of particular
proteins) that correlate with the predicted outcome.

An alternative approach utilizing the same ODE model can aid
in the discovery of novelmolecular targets. In this case, proteins can
be knocked out virtually (individually) through simple
programming, a simulation run for each knock-out, and outcome
collected.TheMLalgorithmwould identify the connectionbetween
thepresumptivemolecular target andprogrammedcelldeath in this
instance.Thus, a virtualhigh throughput screenhasbeencompleted
using only computational effort.
CONCLUSION

It has been proposed in this Mini Review to apply ML algorithms
to discover biomarkers and molecular targets through the
Frontiers in Oncology | www.frontiersin.org 5
creation of ODE models of signaling pathways in cancer (47).
While ODE modeling is more labor intensive than the ML
analysis, the complex systems of cancer cell biology can be
studied in this novel way leading to knowledge that will be
readily apply to the pharmaceutical challenges ahead. In
addition, ongoing advances in ODE modeling combined with
tissue level simulations also show promise. For example,
mathematical models of metabolism and cell proliferation
indicated new molecular targets (48) and such multicellular
models can further predict outcomes such as necrosis and
growth arrest (49), cancer cell migration (50), and immune cell
invasion (51). It can be envisioned that the computational efforts
described herein can contribute to proposed Digital Twins for
personalized medicine in cancer (52).
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B, Pargett M, et al. Relaxation Oscillations and Hierarchy of Feedbacks in
MAPK Signaling. Sci Rep (2017) 7:38244–59. doi: 10.1038/srep38244

23. Stites EC, Shaw AS. Quantitative Systems Pharmacology Analysis of KRAS
G12C Covalent Inhibitors. CPT Pharmacometrics Syst Pharmacol (2018) 7
(5):342–51. doi: 10.1002/psp4.12291
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