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Purpose: Primary congenital glaucoma (PCG) is an autosomal recessive eye disorder that is postulated to result from
developmental defects in the anterior eye segment. Mutations in the cytochrome P4501B1 (CYP1B1) gene are a
predominant cause of congenital glaucoma. In this study we identify CYP1B1 mutations in PCG patients.
Methods: Twenty-three unrelated PCG patients and 50 healthy controls were enrolled in the study. CYP1B1 was screened
for mutations by PCR and DNA sequencing.
Results: DNA sequencing revealed a total of 15 mutations. Out of these, four (p.I94X, p.H279D, p.Q340H, and p.K433K)
were novel mutations and five were known pathogenic mutations. Five coding single nucleotide polymorphisms and one
intronic single nucleotide polymorphism (rs2617266) were also found. Truncating mutations (p.I94X and p.R355X) were
associated with the most severe disease phenotype. It is possible that patients with two null alleles with no catalytic activity
may present with a more severe phenotype of the disease compared to patients with one null allele (heterozygous). The
disease phenotype of patients with CYP1B1 mutations was more severe compared with the clinical phenotype of patients
negative for CYP1B1 mutations.
Conclusion: Mutations in CYP1B1 are a major cause for PCG in our patients. Identifying mutations in subjects at risk of
developing glaucoma, particularly among relatives of PCG patients, is of clinical significance. These developments may
help in reducing the disease frequency in familial cases. Such studies will be of benefit in the identification of pathogenic
mutations in different populations and will enable us to develop simple and rapid diagnostic tests for analyzing such cases.

Primary congenital glaucoma (PCG; OMIM 231300) is
an autosomal recessive disorder of the eye. In this disease the
trabecular meshwork (TM) and anterior chamber of the eye
are affected, leading to impairment in the aqueous drainage,
increased intraocular pressure (IOP), and optic nerve damage.
PCG occurs during the neonatal or early infantile period [1].
The term PCG is reserved for those cases in which the only
anatomic defect observed is isolated trabeculodysgenesis.
This increased IOP results in ocular enlargement
(buphthalmos), corneal clouding, and rapid optic nerve
cupping. Progressive degeneration of the retinal ganglion cells
(RGCs) results in the characteristic optic nerve atrophy and
visual field defects found in glaucoma. Most cases of PCG are
sporadic, but familial cases have also been reported. PCG is
the most common type of pediatric glaucoma and accounts for
55% of such cases. Its expression and penetrance vary from
40–100%. Its incidence varies substantially from one
population to another. It is estimated to occur in 1 in 10,000
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births in Europe and 1 in 3,300 births in Andhra Pradesh, India
[2,3].

Recently a putative PCG locus, GLC3A, was linked to
markers on the short arm of chromosome 2 in 11 Turkish
families [4]. Six other families did not show linkage to this
locus, suggesting locus heterogeneity for this disease. Another
PCG locus, GLC3B, was localized on chromosome 1p36 in
some families but did not show linkage to chromosome 2
markers [5]. Other subsets of families that did not show
linkage to these two loci provide evidence for at least a third
of the unmapped loci [5]. Recently Stoilov et al. [6] identified
three different mutations in the cytochrome P4501B1
(CYP1B1) gene in five unrelated Turkish families in which
the disease had been linked to the 2p21 locus [6]. Even though
three different loci have been mapped for PCG, mutations in
CYP1B1 (GLC3A) are the most predominant cause of disease
and are reported in various ethnic backgrounds [6-15].
Further, it is estimated that all the known loci/genes of
glaucoma account for a minority of the total cases of glaucoma
[4,5], and hence many other genes remain to be identified.

CYP1B1 is located on chromosome 2 and consists of three
exons and two introns. The coding region of CYP1B1 starts at
the 5′ end of exon 2 and ends within exon 3. It codes for a 543-
amino acid protein and is expressed in the ocular tissues, such
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as the anterior chamber, and in several nonocular tissues
[16]. CYP1B1 is a member of the cytochrome P450
superfamily of drug-metabolizing enzymes. It catalyzes
several oxidative reactions, some of which are biosynthetic,
producing necessary hormones or compounds of intermediary
metabolism in most living organisms and substrates, including
many xenobiotics, vitamins, and steroids [17]. CYP1B1 also
metabolizes vitamin A in two steps to all-trans-retinal and all-
trans-retinoic acid. The latter is a potent morphogen and
regulates in utero development of tissue growth and
differentiation. CYP1B1 is involved in the metabolism of
endogenous and exogenous substrates that take part in early
ocular differentiation [18-20]. In the present study we
screened all coding exons of CYP1B1 in 23 unrelated
congenital glaucoma patients.

METHODS
Clinical evaluation and patient selection: Primary congenital
glaucoma cases presenting at the Dr. R. P. Centre for
Ophthalmic Sciences (AIIMS, New Delhi, India), were
enrolled for this study. Six patients were female and 17 were
male. Mean age of presentation was 15.17 months (range 1.5
– 132 months). After ethical approval of the Institutional
Review Board (IRB00006862; All India Institute of Medical
Sciences, New Delhi, India), 23 PCG cases were enrolled in
this study. The diagnosis involved clinical ocular and systemic
examination. Inclusion criteria of the patients were increased
corneal diameter (>12.0 mm) and raised IOP (>21 mmHg)
with presence/absence of Haab’s striae and optic disc changes
(where examination was possible). Symptoms of epiphora and
photophobia were the additional inclusion factors. The age of
onset ranged from birth to 3 years. Detailed family histories
up to three generations were taken, and pedigree charts were
constructed. The history of ocular or other hereditary
disorders was recorded. Glaucoma cases other than PCG were
excluded. Fifty ethnically matched normal individuals
without any ocular disorders were enrolled as controls.
Peripheral blood samples were collected from patients and
controls by venipuncture after informed consent. Blood
samples were collected in EDTA vaccutainer and stored in -80
°C until DNA isolation.
Mutation screening and sequence analysis: Genomic DNA
was isolated from peripheral blood by the phenol chloroform

method. The entire coding region, including exon–intron
boundaries of CYP1B1, from patients and controls was
amplified and screened for mutations by using three sets of
overlapping primers (Table 1) [7,21]. The primers used were
set I (1F–1R, 786 bp) [12], set II (2F–2R, 787 bp) [13], and
set III (3F–3R, 885 bp) [12]. PCR amplifications for primer
sets I and II were performed in a 40 µl volume containing 1.0
µl of 20 µM stock solution for each primer, 100 ng of genomic
DNA, 1 unit of Taq polymerase (Banglore Genei), 0.1 mM of
each dNTP, 4 µl of 10X PCR buffer (with 15 mM MgCl2) and
4 µl of dimethyl sulphoxide (Sigma), by means of 35 cycles
of amplification, each consisting of 30 s denaturation at 94
°C, 30 s annealing at 56 °C and 1 min extension at 72 °C [12],
while conditions for set III were initial denaturation at 94 °C
for 3 min followed by 30 cycles each at 94 °C for 30 s, 60 °C
for 30 s, and 72 °C for 1 min.

Amplified PCR products were purified using a gel/PCR
DNA fragments extraction kit (number DF100; Geneaid
Biotech Ltd., Sijhih City, Taiwan). Purified PCR products
were sent for sequencing to MCLAB (Molecular Cloning
Laboratories, South San Francisco, CA). DNA sequences
were analyzed against the CYP1B1 reference sequence
ENSG00000138061 using ClustalW2 (multiple sequence
alignment program for DNA; European Molecular Biology
Laboratory (EMBL) – European Bioinformatics Institute
(EBI)).
Computational assessment of missense mutations: Two
homology-based programs PolyPhen (polymorphism
phenotyping; Division of Genetics, Department of Medicine,
Brigham and Women’s Hospital/Harvard Medical School,
Boston, MA) and SIFT (sorting intolerant from tolerant; the
J. Craig Venter Institute Rockville, MD and La Jolla, CA)
were used to predict the functional impact of missense
changes identified in this study. PolyPhen structurally
analyzes an amino acid polymorphism and predicts whether
that amino acid change is likely to be deleterious to protein
function [22-24]. The prediction is based on the position-
specific independent counts (PSIC) score derived from
multiple sequence alignments of observations. PolyPhen
scores of >2.0 indicate the polymorphism is probably
damaging to protein function. Scores of 1.5–2.0 are possibly
damaging, and scores of <1.5 are likely benign. SIFT is a
sequence homology-based tool that sorts intolerant from

TABLE 1. THE PRIMERS USED FOR PCR AMPLIFICATION.

Primer sequence Product size (bp)
1F-5′-TCTCCAGAGAGTCAGCTCCG-3′ 786
1R-5′-GGGTCGTCGTGGCTGTAG-3′  
2F-5′-ATGGCTTTCGGCCACTACT-3′ 787
2R-5′-GATCTTGGTTTTGAGGGGTG-3′  
3F-5′-TCCCAGAAATATTAATTTAGTCACTG-3′ 885
3R-5′-TATGGAGCACACCTCACCTG-3′  
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tolerant amino acid substitutions and predicts whether an
amino acid substitution in a protein will have a phenotypic
effect [25-28]. SIFT is based on the premise that protein
evolution is correlated with protein function. Positions
important for function should be conserved in an alignment
of the protein family, whereas unimportant positions should
appear diverse in an alignment. Positions with normalized
probabilities <0.05 are predicted to be deleterious and those
≥0.05 are predicted to be tolerated.

RESULTS
All cases were found to be sporadic in origin. A total of 15
nucleotide changes were observed in this study. Out of these,
five were previously reported coding single nucleotide
polymorphisms (SNPs) and one was already reported as an
intronic SNP; five were known pathogenic CYP1B1
mutations. Four novel nucleotide changes (two
nonsynonymous, one frameshift, and one synonymous
mutation) were also found in this study. Details of all
nucleotide changes are presented below.
Identification of four novel mutations:

Isoleucine94stop (p.I94X) mutation—In this mutation
a single base guanine (G) deletion (Figure 1) was observed at
genomic position 38302285, coding nucleotide number c.247.
This caused a frameshift after codon 82 and introduced a stop
codon (TAG) at position 94 in the protein. This mutation
produced a truncated CYP1B1 protein of 93 amino acids. This
change was identified as a homozygous mutation in the patient
(P55).

Histidine279aspartic acid (p.H279D) mutation—In
this mutation a single base cytosine (C) was replaced by G
(Figure 2) at genomic position 38301697, coding nucleotide

Figure 1. DNA sequence chromatogram of CYP1B1 exon 2
equivalent to codon 81–85. A: The reference sequence derived from
control is shown. B: Sequence derived from congenital glaucoma
patient P55 shows the homozygous deletion of G at c.247, which
caused a p.asp83thrfsX12 (p.I94X) mutation.

number c.835. This resulted in a codon change from CAC to
GAC and an amino acid change from histidine to aspartic acid
(p.H279D), a nonsynonymous mutation in the CYP1B1
protein. This mutation was identified in one patient (P61) and
was heterozygous.

Glutamine340histidine (p.Q340H) mutation—In this
mutation a single base G was replaced by thymine (T) (Figure
3) at genomic position 38301512, coding nucleotide number
c.1020. This resulted in a codon change from CAG to CAT
and an amino acid change from glutamine to histidine
(p.Q340H), a nonsynonymous mutation in the CYP1B1
protein. This mutation was identified in one patient (P56) and
was heterozygous and present with the p.R390H mutation in
this patient.

Lysine433lysine (p.K433K) mutation—In this
mutation a single base G was replaced with adenine (A)
(Figure 4) at genomic position 38298198, coding nucleotide
number c.1299. This resulted in a codon change from AAG
to AAA and resulted in no amino acid change (lysine). This
was a neutral mutation (p.K433K) in patient P69.

All four novel mutations p.I94X, p.H279D, p.Q340H,
and p.K433K have been registered in GenBank with accession
numbers GQ925803, GQ925804, GQ925805, and
GQ925806, respectively.
Other previously reported pathogenic CYP1B1 mutations:

Glutamic acid229lysine (p.E229K) mutation—This
mutation resulted in G being replaced with A at genomic
position 38301847 (rs57865060), coding nucleotide number
c.685. This resulted in a codon change from GAA to AAA and
an amino acid change from glutamic acid to lysine (p.E229K),
a nonsynonymous mutation in the CYP1B1 protein. This
change was found in one patient (P65) and was heterozygous.

Figure 2. DNA sequence chromatogram of CYP1B1 exon 2
equivalent to codon 277–280.  A: The reference sequence derived
from control is shown. B: Sequence derived from congenital
glaucoma patient P55 shows heterozygous c.835C>G, which
predicts a codon change of CAC>GAC and a p.H279D mutation.
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Arginine355stop (p.A355X) mutation—In this
mutation a single base C was replaced by T (Figure 5) at
genomic position 38298434, coding nucleotide number c.
1063. This resulted in a codon change from CGA to TGA
(p.R355X), a nonsense mutation in the CYP1B1 protein. This
resulted in a truncated CYP1B1 protein of 355 amino acids.
The p.R355X mutation was described only once in the
literature [29]. This change was homozygous in one patient
(P70).

Figure 3. DNA sequence chromatogram of CYP1B1 exon 2
equivalent to codon 339-342. A: The reference sequence derived
from control is shown. B: Sequence derived from congenital
glaucoma patient P56 shows heterozygous c.1020G>T change,
which predicts a codon change CAG>CAT and heterozygous
p.Q340H mutation.

Figure 4. DNA sequence chromatogram of CYP1B1 exon 3
equivalent to codon 431-434. A: The reference sequence derived
from control is shown. B: Sequence derived from congenital
glaucoma patient P69 shows heterozygous c.1294C>G and
heterozygous c.1299G>A, which predicts codon change CTG>GTG
and AAG>AAA and heterozygous p.L432V and p.K433K
mutations, respectively.

Arginine368histidine (p.R368H) mutation—In this
mutation a single base G was replaced by A at genomic
position 38298394 (rs28936414), coding nucleotide number
c.1103. This resulted in a codon change from CGT to CAT
and an amino acid change from arginine to histidine
(p.R368H), a nonsynonymous mutation. This change was
homozygous in one patient (P68).

Arginine390cysteine (p.R390C) mutation— In this
mutation a single base C was replaced by T at genomic
position 38298329 (rs56010818), coding nucleotide number
c.1168. This resulted in a codon change from CGC to TGC
and an amino acid change from arginine to cysteine
(p.R390C), a nonsynonymous mutation. This mutation was
identified in one patient (P64) and was heterozygous.

Arginine390histidine (p.R390H) mutation—In this
mutation a single base G was replaced by A (Figure 6) at
genomic position 38298328, coding nucleotide number c.
1169. This resulted in a codon change from CGC to CAC and
an amino acid change from arginine to histidine (p.R390H), a
nonsynonymous mutation. This mutation was identified in
one patient (P56) and was heterozygous.
Nonpathogenic CYP1B1 single nucleotide polymorphisms:

In addition to these pathogenic mutations, six previously
reported single nucleotide polymorphisms [8] were identified
in a less conserved region of the CYP1B1 protein. Details of
these polymorphisms are provided below.

Cytisine (C) to thymine (T) change in intron 1—In this
mutation, C was replaced by T at genomic position 38302544,
nucleotide position 780 in CYP1B1 (rs2617266) in intron I.
This was observed in 13 patients but was absent in controls.

Figure 5. DNA sequence chromatogram of CYP1B1 exon 3
equivalent to codon 353-356.  A: The reference sequence derived
from control is shown. B: Sequence derived from congenital
glaucoma patient P70 shows homozygous c.1063C>T, which
predicts a codon change CGA>TGA and p.R355X nonsense
mutation.
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Arginine48glycine (p.R48G)—In this mutation, C was
replaced by guanine (G) at genomic position 38302390
(rs10012), coding nucleotide number c.142. This resulted in
a codon change from CGG to GGG and an amino acid change
from arginine to glycine (p.R48G), a nonsynonymous
mutation in the CYP1B1 protein. This change was also present
in controls.

Alanine119serine (p.A119S)—In this mutation G was
replaced by T at genomic position 38302177 (rs1056827),
coding nucleotide number c.355. This resulted in a codon
change from GCC to TCC and an amino acid change from
alanine to lysine (p.A119S), a nonsynonymous mutation in
the CYP1B1 protein. This change was found in patients P55
and P73 but absent in controls.

Leucine432valine (p.L432V)—In this mutation a single
base C was replaced by G at genomic position 38298203
(rs1056836), coding nucleotide number c.1294. This resulted
in a codon change from CTG to GTG and an amino acid
change from leucine to valine (p.L432V), a nonsynonymous
mutation in the CYP1B1 protein. This mutation was identified
in four patients; it was homozygous in three patients (P52,
P55, and P68) and heterozygous in one patient (P69) and was
also present in controls.

Aspartic acid449aspartic acid (p.D449D)—In this
mutation a single base T was replaced by C at genomic
position 38298150 (rs1056837), nucleotide position 5174 in
the gene, coding nucleotide number c.1347. This resulted in
a codon change from GAT to GAC and no change in the amino
acid (aspartic acid) (p.D449D), a synonymous mutation in the
CYP1B1 protein. This mutation was identified in 20 patients
and was homozygous in all. This change was also present in
controls.

Figure 6. DNA sequence chromatogram of CYP1B1 exon 3
equivalent to codon 388-391. A: The reference sequence derived
from control is shown. B: Sequence derived from congenital
glaucoma patient P56 shows homozygous c.11169G>A, which
predicts a codon change CGC>CAC and p.R390H mutation.

Asparagine453serine (p.N453S)—In this mutation a
single base A was replaced by G at genomic position
38298139 (rs1800440), coding nucleotide number c.1358.
This resulted in a codon change from AAC to AGC and an
amino acid change from asparagine to serine (p.N453S), a
nonsynonymous mutation in the CYP1B1 protein. The
p.N453S mutation was present in two patients (P51 and P62)
but absent in controls.

The clinical manifestations of PCG patients have been
tabulated (Table 2), and the CYP1B1 sequence variants
identified in the various studies to date have been summarized
(Table 3). The clinical phenotype of the cases with pathogenic
CYP1B1 mutations was more severe compared to cases
without CYP1B1 mutations. The mean IOP of cases with
pathogenic CYP1B1 mutations was 30.21 mmHg compared
to 23.96 mmHg in mutation-negative cases; the difference is
significant (p value <0.005). The mean corneal diameter in
patients without the CYP1B1 mutations was 12.625×12.181
mm (left eye) and 12.406×12.781 mm (right eye), whereas it
was 13.833×13.750 mm (left eye) and 13.416×15.50 mm
(right eye) in mutation-negative cases. Haab’s striae were
present in two cases (P56 and P61), which were positive for
the CYP1B1 mutations.

DISCUSSION
Structural/functional implications of mutations:

p.I94X mutation—In the isoleucine94stop mutation (p.
194X) mutation a truncated protein of 93 amino acids is
produced in which only the first 82 amino acids are the same
as the wild-type CYP1B1 protein (Figure 7). This truncated
protein lacks all functional domains of the CYP1B1 protein
and is a nonfunctional protein [6,21,29,30].

p.H279D mutation—This histidine residue lies in the
carboxyl terminal of the G helix in the CYP1B1 protein.
Replacement of an aromatic, weak basic, amino acid histidine
whose charge state depends upon its protonation state with an
aliphatic, strong acidic, and negatively charged aspartic acid
at this locus. This in turn affects the local charge distribution,
and hence the structure of the protein is disturbed. Histidine
is conserved at this locus in the CYP1A1 protein from 12
different species (Figure 8) and in the CYP1B1 protein from
seven different species (Figure 9) analyzed, suggesting that
histidine performs some important functions at this locus. No
other known pathogenic mutation was present in the patient
(P61), and the PSIC score of this mutation was 2.628,
indicating that this change is probably damaging to the protein
function. The SIFT score of p.H279D was 0.00 and is
predicted to be deleterious for the protein function.

p.Q340H mutation—This glutamine residue lies in the
carboxyl terminal of the I helix. Replacement of a polar
uncharged amino acid (glutamine) with a weak basic amino
acid (histidine) may or may not alter the structure/function of
the protein. Glutamine is not conserved at this locus in the
CYP1A1 protein from 12 different species analyzed (Figure
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8) but is conserved in the CYP1B1 protein from seven
different species analyzed (Figure 9). The PSIC score of this
mutation was 0.276, indicating that this change is benign to
protein function. The SIFT score of p.Q340H was 0.05 and is
predicted to be tolerated. The patient with the p.Q340H
mutation also had a known pathogenic CYP1B1 mutation
(p.R390H) and had a PSIC score of 2.799 and a SIFT score of
0.00. The p.R390H mutation has previously been reported
[21] to adversely affect or damage protein function.

p.E229K mutation—The p.E229k mutation occurred in
the carboxyl terminal of the F helix in the vicinity of the
substrate-binding region in the CYP1B1 protein. Substitution
of E to K leads to a change from a negatively charged residue
to a positively charged side chain, and this in turn affects the
local charge distribution. This disturbs an important cluster of
salt bridges. In wild-type CYP1B1 protein, R-194::E-229,
R-194::D-333, and D-333::K-512 form a triangle of ionic
bond interactions, holding the I helix with the F helix and β-
strand S3.2. As a result of this mutation, the R-194::E-229
interaction is lost, which has the potential to destabilize the
other ionic interactions in the protein [30]. The SIFT score of
the p.E229K mutation was 0.01 and is predicted to be
deleterious for the protein function. The CYP1B1 protein with
the p.E229K mutation shows 20–40% enzymatic activity
compared to the wild-type CYP1B1 protein [31].

p.R355X mutation—In the p.R355X mutation, a
truncated protein of 354 amino acids is produced (Figure 7).
The arginine residue at position 355 lies in the carboxyl

terminal of the J helix, carboyxl terminal of the J helix is
involved in the functionally important heme-binding domain.
This truncating mutation results in a loss of the heme-binding
domain and a functionally inactive protein [6,21,29,30].

p.R368H mutation—This arginine residue lies between
the J and K helix in an exposed loop [8,15]. In this mutation
the positively charged amino acid arginine is replaced by
histidine whose charge state depends upon its protonation
state. Consequences of this change are not immediately
apparent. In the wild type, arginine at position 368 interacts
with G-365, D-367, V-363, and D-374. Because of the R368H
mutation, interaction between D-367 and D-374 are
weakened. The PSIC score of this mutation was 2.653,
indicating that this change is probably damaging to protein
function. The SIFT score of p.R368H was 0.00 and is
predicted to be deleterious for the protein function. How
p.R368H affects the conformation and functionality of the
protein is still not clear [31].

p.R390H/C mutation—This arginine residue is located
in the conserved α helix K [8]. It forms the consensus sequence
GluXXArg, which is conserved among all members of the
cytochrome P450 superfamily [21]. Arg390 and Glu387 are
one helical turn apart and are predicted to form a salt bridge.
The parallel orientation of their side chains is more transparent
in the three-dimensional model. Conservation of this motif
indicates that presence of arginine at this position is essential
for the normal function of the P450 molecule. The PSIC scores
of p.R390C and p.R390H were 3.474 and 2.799, respectively,

Figure 7. Amino acid sequence of
CYP1B1 protein. A: Wild-type
CYP1B1 protein. B: Truncated
CYP1B1 protein of 93 amino acids
(black arrow shows the position after
which frameshift takes place and red
letters shows amino acids after
frameshift). C: Truncated CYP1B1
protein of 354 amino acids.
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indicating that both these changes are probably damaging to
protein function. The SIFT score of p.R390H/C was 0.00 and
is predicted to be deleterious for the protein function.

The PSIC scores of the nonpathogenic single nucleotide
polymorphisms were <2 for p.R48G, p.A119S, p.N453S, and
p.L432V, indicating that all these changes were benign to
protein function. The SIFT scores of the nonpathogenic single
nucleotide polymorphisms were >0.05 for p.R48G, p.L432V,
p.K433K, and p.D449D, indicating that all these changes were
tolerated in the protein.

PCG is a clinically and genetically heterogeneous
disorder. More than 50 different mutations have been reported
in the entire coding region of CYP1B1 from various
populations. We screened the entire coding region of
CYP1B1 in 23 congenital glaucoma patients by using primers
described elsewhere [8]. Of all mutations identified herein,
the frameshift mutation (c.247delG) and nonsense mutation
(c.1063C>T) resulted in the most severe disease phenotype.

The patient (P55) with the p.I94X (homozygous)
mutation is a male child of a consanguineous marriage without
any family history of glaucoma; he presented at 8 months of
age. He was born at full term through a normal vaginal
delivery. He had severe bilateral corneal edema at birth. At
the age of 2 months he had congestion with discharge in the
left eye and was diagnosed to have a left corneal ulcer and was
treated with antibiotics; the left eye consequently developed
phthisis. The right eye dimensions increased, and he was
diagnosed as having buphthalmos at the age of 8 months.
Combined trabeculotomy and trabeculectomy with
mitomycin C was performed in his right eye. He was
diagnosed as having 100% blindness at 8 months. His parents
were also screened for CYP1B1 mutations by DNA
sequencing but were found to be negative for any pathogenic
CYP1B1 mutations.

Patient P70 has a p.R355X (homozygous) mutation and
is a male offspring of a non-consanguineous marriage; he
presented at 45 days. At birth, he had bilateral congenital

Figure 8. Multi sequence alignment of
the human CYP1B1 protein with the
CYP1A1 protein from different species.
Red Underlined amino acids shows the
conserved residues in human CYP1B1
and different CYP1A1 protein from
different species (when mutated)
causing primary congenital glaucoma
phenotype. While Red letter shows
amino acid conserved in different
CYP1A1 protein from different species
but not present in human CYP1B1
protein.

Figure 9. Multisequence alignment of
the human CYP1B1 protein with the
CYP1B1 protein from different species.
Underlined red amino acids show the
conserved residues (when mutated)
causing the primary congenital
glaucoma phenotype. Red colored
amino acid shows the non-conservation
of glutamic acid at this locus in
Zebrafish CYP1B1. Blue-colored
amino acids show the less conserved
residues in CYP1B1 protein from
different species.
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glaucoma and had IOPs of 30 and 40 mmHg in his left and
right eye, respectively. He had severe corneal clouding in both
eyes, at birth, and therefore the fundus was not visualized.
Combined trabeculotomy and trabeculectomy with
mitomycin C was performed in both eyes. He had no light
perception and was visually blind since 45 days of age. His
parents were also negative for the pathogenic CYP1B1
mutations. The absence of mutations in the parents of P55 and
P70 could be due to a parental germline mutation, which
cannot be tested by using peripheral leukocytes.

Patient P56 is a female child of a non-consanguineous
marriage; she presented at the age of 1 year. She has p.Q340H
(heterozygous) and p. R390H (homozygous) mutations. She
had bilateral congenital glaucoma since birth. She had a
corneal diameter of 14.0×14.0 mm (right eye) and
14.5×14.5 mm (left eye) and IOPs of 28 and 30 mmHg in the
right and left eye, respectively. She had Haab’s striae in both
eyes, and the fundus was not visible. Combined
trabeculotomy and trabeculectomy with mitomycin C was
performed in both eyes.

Patient P61 is a male child of a non-consanguineous
marriage; he presented at the age of 4 months and has a
p.H279D (heterozygous) mutation. He had bilateral
congenital glaucoma at birth. At presentation corneal diameter
and IOPs of his left and right eye were 15.5×15.0 mm and
14.0×14.0 mm and 30 mmHg and 34 mmHg, respectively. The
cup to disc ratio of the left eye was not visible due to the hazy
media and that of the right eye was 0.9:1. He had Haab’s striae
in both eyes. Combined trabeculotomy and trabeculectomy
with mitomycin C was performed in both eyes.

An intriguing finding that apparently does not match a
typical recessive pattern of inheritance is the presence of a
heterozygous CYP1B1 mutation in PCG patients. This
situation has been previously reported [7,29]. A heterozygous
p.Y81N mutation has also been described in PCG patients
from Germany, and a heterozygous p.E229K mutation has
been identified in unrelated French and Indian patients [7,
32]. Few heterozygous CYP1B1 mutations were associated
with the milder, primary, open-angle glaucoma phenotypes in
patients from Spain, France, and India. The presence of a
heterozygous CYP1B1 mutation in PCG suggests the
possibility of other loci, yet undetected, that may be involved
in anterior chamber formation. Recently the presence of
double heterozygote variants CYP1B1 and FOXC1 has been
described in two PCG cases, although the role of possible
digenic inheritance in disease causation is yet to be established
[33]. Defective variants of modifier genes and/or
environmental factors have an additive effect with loss-of-
function CYP1B1 alleles to produce the disease phenotype.
However further work is required to understand this
mechanism.

Previous studies have reported that the age of disease
onset in PCG patients with CYP1B1 mutations is younger than
in patients without CYP1B1 mutations [34]. Our data show

that the onset age in three patients (P60, P66, and P67) was 7,
3, and 11 months, while the rest of the patients presented at
birth. In these 20 patients there is no significant difference in
the age of disease onset in CYP1B1 mutation-positive and
mutation-negative cases, although clinical phenotypes of
patients (P55, P56, P61, P68, and P70) with homozygous
CYP1B1 mutations were more severe compared to patients
(P64 and P65) who were heterozygous for the CYP1B1
mutations (Table 1). It is possible that patients with two null
alleles with no catalytic activity may present with a more
severe phenotype of the disease compared to patients with one
null (heterozygote) allele. The disease phenotype of patients
with homozygous/heterozygous CYP1B1 mutations was more
severe compared to the clinical phenotype of patients negative
for the CYP1B1 mutations.

We also observed a higher mean IOP in a group of
patients with CYP1B1 mutations. In accordance with the idea
of associating the severe phenotypes with the null CYP1B1
allele, the percentage of severe phenotypes in at least one eye
has been reported to be associated with various mutations
ranging 80-100% for a frameshift mutation (e.g., c.376insA)
and truncating mutations [11]. Three different truncation
mutations (p.C280X, p.E281X, and p.R355X) producing a
truncated protein of 279, 280, and 354 amino acids,
respectively, have also been associated with more severe
disease phenotypes [11,21,29]. In patient P55 with a
homozygous p.I94X mutation, a truncated protein of 93 amino
acids is produced that has the first 82 amino acids similar to
the wild-type CYP1B1 protein. The disease phenotype of this
patient is severe with a left phthisic and a right buphthalmic
eye with a cup to disc ratio of 0.9:1. He is visually blind.
Another patient (P70) with a p.R355X mutation had bilateral
buphthalmos with severe corneal edema and a corneal
diameter of 15.0×15.0 mm and 15.0×14.5 mm in the left and
right eye, respectively. He was blind at the age of 45 days.
Patient P61 with a p.H279D mutation had bilateral
buphthalmos with mild edema in both eyes and a corneal
diameter of 15.5×15.5 mm and 14.0×14.0 mm in the left and
right eye, respectively. He was blind at the age of 4 months.
The range of percentages of severe phenotypes in at least one
eye is 62–83% for different mutations, such as p.G61E,
p.E229K, p.R368H, and p.R390C [9].

Membrane-bound cytochromes, such as CYP1B1, have
a molecular structure containing a transmembrane domain
located at the N-terminal end of the molecule. This is followed
by a proline-rich “hinge” region, which permits flexibility
between the membrane-spanning domain and the cytoplasmic
portion of the protein molecule. The COOH-terminal ends are
highly conserved among different members of the cytochrome
P450 superfamily [17]. This family contains a set of conserved
core structures responsible for the heme-binding region of
these molecules. The heme-binding region is essential for the
normal function of every P450 molecule. Between the hinge
region and the conserved core structure lies a less conserved
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substrate-binding region. The cytochrome P450 protein
functions like any classical enzyme molecule [18,19].
Mutations affecting such enzymes generally produce
recessive phenotypes because in heterozygous subjects the
normal allele is capable of compensating for the mutant allele.
Mutations in the CYP1B1protein interfere with the integrity
of the CYP1B1 protein as well as its ability to adopt a normal
conformation and to bind heme; for example, induced
mutations in the hinge region have previously been reported
to interfere with the heme-binding properties of the
cytochrome P450 molecules

Thus mutations of CYP1B1 are a major cause of PCG in
our study as well as various other studies [6-15,35-37]. This
study confirms genetic heterogeneity of the disease. We
identified four novel mutations in this study in addition to one
previous reported [7]. Studies of pathogenic sequence variants
of CYP1B1 in different populations will contribute to a better
understanding of the pathogenesis of PCG and will aid in
analyzing the structure–function relationship of different
CYP1B1 mutations Identifying mutations in subjects at risk of
developing glaucoma, particularly among relatives of PCG
patients, is of clinical significance. Monitoring vision in these
families would be helpful. These developments may help in
reducing the disease frequency in familial cases. Such studies
will also help in understanding the pathogenic mutations in
our patient populations and enable us to develop simple and
rapid diagnostic tests for analyzing such cases. This may lead
to the development of novel therapies in the management of
congenital glaucoma.
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