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imaging data in ALS: a systematic review
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Abstract

Background: With the advances in neuroimaging in amyotrophic lateral sclerosis (ALS), it
has been speculated that multiparametric magnetic resonance imaging (MRI) is capable to
contribute to early diagnosis. Machine learning (ML) can be regarded as the missing piece
that allows for the useful integration of multiparametric MRI data into a diagnostic classifier.
The major challenges in developing ML classifiers for ALS are limited data quantity and a
suboptimal sample to feature ratio which can be addressed by sound feature selection.
Methods: We conducted a systematic review to collect MRI biomarkers that could be used
as features by searching the online database PubMed for entries in the recent 4 years that
contained cross-sectional neuroimaging data of subjects with ALS and an adequate control
group. In addition to the qualitative synthesis, a semi-quantitative analysis was conducted for
each MRI modality that indicated which brain regions were most commonly reported.
Results: Our search resulted in 151 studies with a total of 221 datasets. In summary, our
findings highly resembled generally accepted neuropathological patterns of ALS, with
degeneration of the motor cortex and the corticospinal tract, but also in frontal, temporal,
and subcortical structures, consistent with the neuropathological four-stage model of the

propagation of pTDP-43 in ALS.

Conclusions: These insights are discussed with respect to their potential for MRI feature
selection for future ML-based neuroimaging classifiers in ALS. The integration of
multiparametric MRl including DTI, volumetric, and texture data using ML may be the best
approach to generate a diagnostic neuroimaging tool for ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a progres-
sive neurodegenerative disease that affects several
brain regions in a distinctive propagation pattern,
with emphasis on the motor neurons.! To diag-
nose ALS as ecarly as possible is a task of high
clinical relevance for the optimized patients’ care
and the opportunity to be enrolled in clinical tri-
als. With advances in neuroimaging in neurode-
generative diseases like ALS,%? it has been
speculated that cerebral magnetic resonance
imaging (MRI) may be able to provide insights
that support an early diagnosis. Multiparametric,
quantitative MRI has been discussed as a way to

achieve a composite neuroimaging index.?
However, the amount of biomarkers, as well as
their (non-linear) interactions, makes a straight-
forward approach likely unsuccessful. Machine
learning (ML) might be the missing piece to inte-
grate multiparametric MRI data into a useful
classifier.* In a classification problem, the ML
model is presented with a dataset and the correct
outcomes (supervised learning). By model-spe-
cific rules, the model is fit to the data to predict
the outcome. The model that is created in this
process can then be used to predict the outcome
of new data, that is, in a diagnostic set-up, a given
patient’s data are used to predict the correct
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diagnosis. With advanced ML techniques, the
promise for highly personalized medicine
emerged. However, it was quickly realized that
ML models in medicine could not outperform
health professionals, even in favorable compari-
sons,> so a more realistic approach may be to
restrict ML to very specific tasks. One of these
tasks is quantitative neuroimaging, supporting
(qualitative) human visual inspection.

In ALS, several studies have incorporated ML in
a diagnostic pursuit (for a review, see Grollemund
et al.®). In an early approach using a linear sup-
port vector machine (SVM), independent com-
ponent analysis (ICA) from resting-state
functional MRI (rs-fMRI) data yielded 71%
accurate classification.” With a similar approach,
but using a multiple kernel SVM on rs-fMRI
data, a 87% accurate classification was achieved.®
However, there was no independent test sample,
and overfitting might have occurred, that is, the
model cannot be generalized because it fitted the
training data too tightly. Using T1-weighted
(T1w) and diffusion tensor imaging (DTI) data,
various classification models achieved an accu-
racy of 78-90%,°-11 although high accuracy might
have resulted from model overfitting, given that
features were not defined a prior: or samples were
limited. By the use of ML classifiers on texture
data gathered from the corticospinal tract, 70—
80% accuracy was reported.!? Interestingly, when
re-training general image recognition models like
ResNet or VCG-16, a 60-63% accuracy was still
achieved.!3:14 Although these results are promis-
ing, overfitting remains one of the main chal-
lenges in ML. One of the most important
mechanisms behind overfitting is the sample to
feature ratio (SFR) which is a general parameter
that helps assessing how many features an ML
model can process before overfitting or underfit-
ting is likely to occur.® As a general rule, 10-15
samples per feature have been proposed; how-
ever, modern ML algorithms may even work with
lower numbers.!5 To date, there are few databases
that collect MR images from patients with ALS in
a meaningful amount, and even those may not be
able to establish a reasonable ML model without
some preselection of MRI features. In 2016,
Grolez er al. published a systematic review that
provides a useful collection of ALS-specific neu-
roimaging biomarkers that could be used for fea-
ture selection.1® The current review updates this
previous work by specifically addressing ML

models. To this end, we conducted a systematic
review on neuroimaging in ALS, in accordance
with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guide-
lines.1” To this end, we reviewed all available
studies over the previous 4years (i.e. from 2017
onward) that could contribute to disease classifi-
cation. We compiled these data into a compre-
hensive list of findings that can be used as features
in an ML model.

Methods

Search strategy and study selection

The literature review and study selection were
conducted in accordance with the PRISMA
guidelines.!” In March, 2021, a systematic search
was conducted on the online library PubMed
(https://www.ncbi.nlm.nih.gov/pubmed/). The
search queries were ALS AND MRI, ALS AND
‘magnetic resonance imaging’, ALS AND neuro-
imaging, ‘amyotrophic lateral sclerosis’ AND
MRI, ‘amyotrophic lateral sclerosis’ AND ‘mag-
netic resonance imaging’, and ‘amyotrophic lat-
eral sclerosis’ AND neuroimaging. Only
publications that were listed after 1 January 2017
were considered for this review. Regarding prior
publications, we refer to the systematic review by
Grolez er al.'® and to the meta-analyses by Shen
er al.'® and Gorges er al.!® Our search yielded 632
database entries. In a cross-reference search,
additional 7 records were found for a total of 639.
These records were carefully checked by an expe-
rienced reviewer for the following criteria: the
studies had to be published in a peer-reviewed
journal in the English language; only human stud-
ies with i vivo cranial MRI were considered; and
there had to be a group of healthy control subjects
or mimic disorders and a group of subjects with
sporadic ALS, according to common diagnostic
guidelines. Primary lateral sclerosis (PLS), pro-
gressive bulbar palsy (PBP), and pure lower
motor neuron disease (LMND) were considered
as ALS spectrum disorders and thus also
included.?2021 There had to be cross-sectional
data, and inferential statistics had to be con-
ducted on these data. Solely longitudinal data or
regression analyses were not considered, as these
would not help distinguishing ALS from healthy
controls. However, if there were appropriate data
in Supplementary Material, these studies could
still be included. From the 639 entries, 213
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Figure 1. PRISMA flow diagram illustrating the literature review and study selection process.

reports were identified as eligible. In the full-text
review, 62 reports were excluded due to the fol-
lowing exclusion criteria: genetic as opposed to
sporadic ALS (n=16), no healthy control group
(n=24), conditions other than ALS (=7), no
inferential statistics (z=3), only statistical regres-
sion (n=7), or data that were already reported
elsewhere (n=5). In total, 151 studies were
included in this systematic review. Figure 1 sum-
marizes the literature review and study inclusion
process according to the PRISMA guidelines. No
automated tools were used in this systematic

review. Ethics approval and informed consent
were not required for this systematic review.

Semi-quantitative analysis

During the full-text review, all data that could be
used for disease classification in an ML model were
noted, both from the report itself and from its
Supplementary Material if provided. In a semi-
quantitative synthesis, it was analyzed which brain
areas were most commonly reported. This was
done by counting how many studies reported a
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brain region as a significant finding. We categorized
these regions into ‘major’ and ‘minor’ findings,
based upon the quantity of studies that reported
each finding. This procedure was repeated for each
MRI modality. The goal of this semi-quantitative
analysis was to provide a comprehensive list of find-
ings that could be used for disease classification in
an ML model. As this approach relies solely on the
quantity of reports, underreporting or overreport-
ing of specific results can bias the analysis.

Results

There were several studies with data from differ-
ent modalities; these data are reported separately
for each of these modalities. From the 151 studies,
a total of 221 datasets were analyzed. In addition,
we provide a comprehensive summary of studies
which included at least 50 subjects (ALS patients
and controls combined) and statistical correction
for multiple comparisons. A total of 129 datasets
resulted, summarized in Tables 1-5.

Structural alterations: T1w imaging

Seventy-eight datasets of Tlw imaging—based
studies were reviewed (Table 1). In accordance
with the previous literature,!® most studies
reported loss of gray matter volume in the precen-
tral gyrus,”2 either by cortical thickness assessment
or by voxel-based morphometry.33 In addition,
further areas were reported that resembled the
pattern of the neuropathological four-stage model
of the propagation of pTDP43 in ALS.197 These
areas included the frontal cortex, the anterior cin-
gulate cortex, as well as subcortical and temporal
structures, especially the thalamus, the hippocam-
pus, and the amygdala, summarized in a recent
controlled study with 292 participants with ALS.68
Single studies with high numbers of participants
described significant atrophy in the hypothalamus
in patients with ALS, irrespective of the disease
stage’%and abnormal T'1 signal in the tongue, with
further findings in area and shape of the tongue.%®
Few studies conducted white matter morphome-
try with mixed results, showing abnormalities in
sensorimotor and cerebellar tracts.”!

Microstructural alterations: diffusion tensor
imaging

Sixty-six datasets were reviewed for DTI data
(Table 2). Overall, the analysis of fractional ani-
sotropy (FA) revealed the most consistent results

when comparing different studies. A meta-analy-
sis with a total of 3752 subjects found the follow-
ing four tracts to be the most important: the
corticospinal tract, the corticorubral/corticopon-
tine tract, the corticostriatal tract, and the proxi-
mal portion of the perforant path, which have
previously been described as stage-defining tracts
(stages 1-4).19:86:87,108 A recent multicenter study
replicated these findings, with additional abnor-
malities found in the frontal lobe.®® Within the
corticospinal tract, the posterior limb of the inter-
nal capsule, the corona radiata, and the cerebral
peduncle were shown to be the most affected.8>
Of note, the application of the analysis approach
neurite orientation and dispersion density imag-
ing (NODDI) to ALS demonstrated axonal loss
in the corticospinal tract to be the major contri-
bution to altered diffusivity and also identified
dendritic alterations within the precentral
gyrus.1% In addition to these stage-defining tracts,
the corpus callosum has consistently been found
to exhibit reduced FA, especially in the motor
and premotor segments.’6110

Functional alterations: resting-state functional
magnetic resonance imaging

Twenty-three datasets were reviewed (Table 3).
Overall, results were heterogeneous, with both
increased and decreased functional connectivity
in the pre- and postcentral gyri, the frontal and
temporal lobes, the operculum, the insula, and
the lingual gyrus.383° In a multicenter study with
173 patients with sporadic ALS and 79 healthy
controls, increased functional connectivity in pre-
central, middle, and superior frontal areas in ALS
and in the sensorimotor, basal ganglia, and tem-
poral networks in PLS was reported.®3

Alterations in brain connectivity: connectomics
Eight datasets were reviewed (Table 3). As net-
work parameters, only the global efficiency was
consistently decreased in patients with ALS.%7
In addition, some studies found reduced nodal
degree in the frontal lobe.”%7 In a multicenter
study, decreased structural connectivity in sen-
sorimotor, basal ganglia, frontal, and parietal
areas was reported.®3 Of note, using a random
walker model on connectivity data, a recent
study simulated disease spreading that resem-
bled propagation patterns in ALS, with addi-
tional survival prediction using deep
learning.%*
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Table 4. Summary of main susceptibility findings from studies with SWI or T2*-weighted data in ALS.

Publication ALS Controls Main finding

Acosta- 28 39 Increased susceptibility in the motor cortex, premotor areas,
Cabronero substantia nigra, globus pallidus, and red nucleus

et al.3®

Lee et al.?® 26 26 Increased susceptibility in the motor cortex and decreased

susceptibility in subcortical regions

Weidmanetal?® 43 15 Increased motor cortex susceptibility

Contarino 42 23 Significant susceptibility skewness and trend toward increased
etal.s3 susceptibility in the prefrontal cortex

Conte et al.?? 48 28 Increased motor cortex susceptibility

Conte et al.1%0 47 38 Increased susceptibility skewness in the precentral cortex, driven

by upper motor neuron involvement

Borsodi et al.78 24 33 Increased susceptibility in the left corticospinal tract in bulbar ALS

Welton et al.% 21 63 Increased susceptibility/iron concentration in the motor cortex, as
part of a composite score for disease classification

ALS, amyotrophic lateral sclerosis; SWI, susceptibility weighted imaging.

Table 5. Summary of main findings from studies with special MRI modalities or analyses in ALS.

Publication  Method ALS Controls Main finding

Reischauer MRS 24 27 Altered diffusivity for several spectoscopic parameters in

et al.\" the precentral gyrus; reduced tNAA in the precentral gyrus
Grapperon Sodium- 27 30 Higher total sodium concentration in the right precentral
etal.10? MRI gyrus and the corticospinal tract

Ishaque Texture 83 74 Texture analysis revealed alterations in the precentral gyrus,
et al.'%3 analysis corticospinal tract, insula, basal ganglia, hippocampus, and

frontal regions, including subcortical white matter

Miller Texture 152 82 Increased entropy in area Il of the corpus callosum;

et al.10 analysis increased inhomogeneity in areas |-l of the corpus callosum

Elahietal.’? Texture 69 42 Texture analysis of T1-slices of the corticospinal tract
analysis achieves disease classification in an ensemble stacking

machine learning model

Wirth T2- 28 31 Increased amount of FLAIR lesions in male patients,
etal.1% weighted predominantly detected in the superior and posterior
FLAIR corona radiata, anterior capsula interna, and posterior

thalamic radiation

Fabes T2w 33 21 Progressive FLAIR hyperintensity of the corticospinal tract

et al.1% FLAIR

Shen etal?’” CBF 55 20 Reduced cerebral blood flow in the frontal lobe, insula,
corpus callosum, and caudate in ALS-FTD

Welton CBF 21 63 No significant difference in motor cortex perfusion

et al.%

ALS, amyotrophic lateral sclerosis; CBF, cerebral blood flow; FLAIR, fluid-attenuated inversion recovery; FTD, frontotem-
poral dementia; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy.
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Alterations in susceptibility-weighted imaging
(SWI)

Twenty datasets were reviewed (Table 4).
Increased susceptibility in the precentral gyrus
was consistently reported.>%75:99 In addition, few
studies reported increased susceptibility in sub-
cortical structures and decreased susceptibility in
the corticospinal tract.3> Of note, the use of phase
difference—enhanced (PADRE) MRI enabled to
identify a characteristic low-signal intensity layer
in the precentral cortex in 50% of ALS subjects, a
finding which had been named the ‘zebra sign’ in
an earlier publication due to the appearance of
three- or four-layer organizations in the precen-
tral cortex in ALS. 111112

Alterations in other MRl parameters or

analyses

Twenty-six datasets were reviewed (Table 5). In a
multicenter study, texture feature extraction
[Modified Co-occurrence Histograms of Oriented
Gradients (M-CoHOG)] from the corticospinal
tract was able to differentiate patients with ALS
from healthy controls.!?2 Texture analysis of the
corpus callosum showed significant differences in
homogeneity and entropy in the motor seg-
ment.!%% By use of magnetic resonance spectros-
copy (MRS), reduced N-acetylaspartate and
increased myo-inositol levels were reported in the
precentral gyrus.l9l In addition, sodium-MRS
revealed higher total sodium concentration in the
right precentral gyrus and the corticospinal
tract.192 Longitudinal fluid-attenuated inversion
recovery (FLAIR) imaging demonstrated pro-
gressive hyperintensity of the corticospinal
tract.19¢ Cerebral blood flow (CBF) imaging
showed hypoperfusion in several brain regions,2”
however, not confirmed in a recent study.>*

Semi-quantitative analysis

For the semi-quantitative analysis, it was counted
how many of the included studies reported a spe-
cific area as a significant finding (note that this
approach may have biased the analysis by under-
reporting or overreporting of specific results).
The findings from the semi-quantitative analysis
are summarized in Table 6. In morphometry
studies, the precentral gyrus, the thalamus, the
hippocampus, the amygdala, the insula, the ante-
rior cingulate cortex (ACC), the orbitofrontal
cortex, and the middle and inferior frontal gyri

were most commonly reported. In DTT studies,
the corticospinal tract, corticopontine/corticoru-
bral tract, corticostriatal pathway, proximal por-
tion of the perforant pathway, and the corpus
callosum were most commonly reported. SWI
and MRS studies showed abnormalities mostly in
the motor cortex. In rs-fMRI studies, abnormali-
ties were most commonly reported in the pre- and
postcentral gyri, frontal and temporal lobe, the
operculum, the insula and the lingual gyrus. In
connectome studies, decreased global efficiency
was the only consistent result.

Discussion

Summary

This systematic review provides a comprehensive
overview of neuroimaging findings in ALS that
can be used as features for disease classification in
an ML model. In accordance with a previous sys-
tematic review and neuropathological find-
ings,16:107%:113,114  neyroimaging biomarkers were
most commonly reported in the motor cortex and
the corticospinal tract, together with frontal and
temporal areas in later stages. Regarding feature
selection, we provide a list of our findings in
Table 6.

Brain structures in neuroimaging in ALS

The corticospinal tract, the corticopontine/corti-
corubral tract, the corticostriatal pathway, and
the perforant pathway were among the most fre-
quently reported regions that exhibited diffusivity
changes. These tracts have previously been
described as stage-dependent,7° which can be
helpful in ML models when the presence of late-
stage findings raises the confidence of the
prediction.

The combination of structural and functional
neuroimaging parameters in one ML model is
very intriguing because it is expected that the
complementary nature of these biomarkers as
well as the low correlation between them theoreti-
cally might improve classification accuracy.
Indeed, our review identified several candidate
regions that could be included as features in such
an ML model. However, both increased and
decreased functional connectivity were reported
with no clear directional effect. It can be argued
that this inconsistency could ultimately introduce
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Table 6. Comprehensive list of candidate regions for each modality to be included as feature in ML models for

disease classification from cranial MRl in ALS.

Modality Main regions Further regions
T1 Precentral gyrus, thalamus, hippocampus, Paracentral lobule, operculum,
amygdala, insula, ACC, orbitofrontal cortex, temporal pole, postcentral gyrus,
middle frontal gyrus, inferior frontal gyrus posterior cingulate, superior
temporal gyrus, medial frontal cortex,
parahippocampal gyus, caudate,
putamen, nucleus accumbens
DTI Corticospinal tract (subcortical, superior corona Frontal and temporal lobe (as a
radiata, posterior limb of the internal capsule, whole), corona radiata, superior
cerebral peduncle, brainstem), corticopontine/ longitudinal fascicle
corticorubral tract, corticostriatal pathway,
perforant pathway, corpus callosum (genu, body
and splenium]
rs-fMRI Precentral gyrus, postcentral gyrus, superior Inferior frontal gyrus, superior
and middle frontal gyrus, middle temporal gyrus, parietal lobule, supramarginal gyrus,
operculum, insula, lingual gyrus angular gyrus, precuneus, occipital
fusiform gyrus, occipital pole
SWI Precentral gyrus Striatum (higher susceptibility)
and corticospinal tract (lower
susceptibility)
MRS Precentral gyrus (NAA and myo-inositol) Supplementary motor area,

connectomics  Global efficiency

postcentral gyrus, brainstem/
pontine region

Nodal degree in frontal lobe

ACC, anterior cingulate cortex; ALS, amyotrophic lateral sclerosis; DT, diffusion tensor imaging; ML, machine learning;
MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NAA, n-acetylaspartate; SWI, susceptibility-

weighted imaging.

more noise than signal, especially when the theo-
retical background of this inconsistency remains
ill-defined. It contrast, it may be of advantage to
approach rs-fMRI feature extraction based on
neuropathological concepts.!’> To incorporate
functional connectivity measures as features in an
ML model, a higher level of data preprocessing
might be needed. Without preselection, the main
challenge in analyzing rs-fMRI is the high amount
of features that would have to be incorporated
into the model. Early attempts have used spatial
templates and principal component analysis for
dimensionality reduction with some success.”8 At
any rate, implementing rs-fMRI data into ML
models remains a challenge, and for such a com-
bination of functional and structural data, multi-
ple combined ML models may be needed.

In addition to the most commonly reported neu-
roimaging biomarkers in ALS, our analysis

identified further promising candidates. Tlw
MRI of the tongue revealed decreased signal
intensity in patients with ALS.% Extracting these
data might be a makeshift method of measuring
lower motor neuron (LMN) degeneration. With
respect to ML, measuring LMN degeneration
could increase classification accuracy, as little
correlation with other [upper motor neuron
(UMN)] features is expected. Another biomarker
that caught our attention was the atrophy of the
hypothalamus. Unlike other biomarkers, hypo-
thalamic atrophy did not relate to disease stage
and was detectable very early on, even in pre-
symptomatic cases’®; this association has been
investigated in orbitofrontal-hypothalamic pro-
jections in a murine ALS model and in human
patients.116

One of the more recent techniques in ML is tex-
ture analysis. While even general image

journals.sagepub.com/home/taj


https://journals.sagepub.com/home/taj

TD Kocar, H-P Miller et al.

recognition models like ResNet and VCG-16 are
capable of detecting a distinct signature in the
corticospinal tracts of patients with ALS, custom-
tailored solutions are by far more powerful.!3:14
Using M-CoHOG in an elaborated ML model,
Elahi ez al. achieved classification with up to 80%
accuracy.!?2 Miller ez al. were able to differentiate
patients with PLS and healthy controls with a
sensitivity of 73% and a specificity of 84% using a
single texture parameter (homogeneity) in the
corpus callosum.!%% These types of analyses sup-
port the strength of ML and could substantially
boost the accuracy of ML models.

SWI and MRS were found to only show abnormali-
ties in the motor cortex. While this information per se
can be very useful, there are other MRI modalities
that can assess the integrity of the motor cortex with-
out expanding the MR measuring time. Although it
can be argued that having more features is prefera-
ble, redundancy might not increase diagnostic accu-
racy, but lower it due to worse SFR. With this in
mind, adding these sequences to a standard protocol
is hard to justify for ML classification. There were
several MRI modalities with scarce data, like arterial
spin labeling (ASL) for cerebral blood flow quantifi-
cation. The contribution of these modalities to mul-
tiparametric classification models has to await a
higher number of studies in the future. It has been
concluded that the most important MRI sequences
in this regard are T1lw, DTI, and rs-fMRI, with
MRS only being optional.!'%:118 Given that ML
models usually need large datasets, multicenter ini-
tiatives are important for improving the methodo-
logical quality of future studies.

Limitations

This systematic review was confined to cranial
MRI. However, there are plenty of studies that
investigated spinal pathologies that can be consid-
ered to serve as biomarkers in ALS, for example,
spinal diameter.!1® We decided against the inclu-
sion of these studies in this review for two reasons.
First, adding spinal MRI to an ML model would
require a time-consuming MRI protocol that may
not be suited for routine applications. Second, spi-
nal MRI in ALS mostly measures pathologies of
the corticospinal tract which can also be measured
in the brain. Features extracted from spinal MRI
might thus be redundant. Most of the studies com-
pared patients with ALS with healthy controls. It
can be argued that this is not useful in a diagnostic

setting, where ALS has to be differentiated from its
mimic disorders. However, many mimic disorders
of ALS are peripheral neuropathies which are
expected to be associated with a normal cranial
MRI. When comparing patients with ALS with
healthy controls and mimic disorders, Ferraro ez al.
found that the model actually performed better
with the latter.!! Although more studies with mimic
disorders are needed, building an ML model with
healthy control subjects (and fine-tuning it with
mimic disorders) might suffice. In this review, we
did not differentiate our findings between the clini-
cal phenotypes of the ALS spectrum disorders
(including the proportion of UMN/LMN involve-
ment), that is, ‘classic’ ALS and primary lateral
sclerosis, UMN-predominant (pyramidal), LMN-
predominant (including flail arm and flail leg syn-
drome), and pure LMND (progressive muscular
atrophy). Future studies should address fine phe-
notypic characterization given that there is a need
for models discriminating not only classic ALS
from mimic conditions but also classic ALS from
pure/predominant UMN and pure/predominant
LMN disease forms. Finally, our review focused on
the neuroimaging domain, which means that the
clinical domain, that is, a detailed assessment of the
application of the ALS diagnostic criteria and their
accuracy, was beyond the scope of this study. We
used the inclusion criterion that the subjects with
ALS had been diagnosed according to common
diagnostic guidelines without further specification,
while neuropathological confirmation was not a cri-
terion due to the general lack of autopsies.

Conclusion

This review summarizes the most important find-
ings that could be used as features in an ML model
(Table 6). DTT and volumetric data can be con-
sidered to be the most robust features. Integrating
functional or structural connectivity data might be
challenging and may require dimensionality
reduction techniques. Recently, texture analyses
have demonstrated convincing results that may
advance the field toward classification with higher
accuracy. In the future, ML and multiparametric
neuroimaging data might provide physicians with
a powerful diagnostic tool.
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