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Introduction
Amyotrophic lateral sclerosis (ALS) is a progres-
sive neurodegenerative disease that affects several 
brain regions in a distinctive propagation pattern, 
with emphasis on the motor neurons.1 To diag-
nose ALS as early as possible is a task of high 
clinical relevance for the optimized patients’ care 
and the opportunity to be enrolled in clinical tri-
als. With advances in neuroimaging in neurode-
generative diseases like ALS,2,3 it has been 
speculated that cerebral magnetic resonance 
imaging (MRI) may be able to provide insights 
that support an early diagnosis. Multiparametric, 
quantitative MRI has been discussed as a way to 

achieve a composite neuroimaging index.3 
However, the amount of biomarkers, as well as 
their (non-linear) interactions, makes a straight-
forward approach likely unsuccessful. Machine 
learning (ML) might be the missing piece to inte-
grate multiparametric MRI data into a useful 
classifier.4 In a classification problem, the ML 
model is presented with a dataset and the correct 
outcomes (supervised learning). By model-spe-
cific rules, the model is fit to the data to predict 
the outcome. The model that is created in this 
process can then be used to predict the outcome 
of new data, that is, in a diagnostic set-up, a given 
patient’s data are used to predict the correct 
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diagnosis. With advanced ML techniques, the 
promise for highly personalized medicine 
emerged. However, it was quickly realized that 
ML models in medicine could not outperform 
health professionals, even in favorable compari-
sons,5 so a more realistic approach may be to 
restrict ML to very specific tasks. One of these 
tasks is quantitative neuroimaging, supporting 
(qualitative) human visual inspection.

In ALS, several studies have incorporated ML in 
a diagnostic pursuit (for a review, see Grollemund 
et al.6). In an early approach using a linear sup-
port vector machine (SVM), independent com-
ponent analysis (ICA) from resting-state 
functional MRI (rs-fMRI) data yielded 71% 
accurate classification.7 With a similar approach, 
but using a multiple kernel SVM on rs-fMRI 
data, a 87% accurate classification was achieved.8 
However, there was no independent test sample, 
and overfitting might have occurred, that is, the 
model cannot be generalized because it fitted the 
training data too tightly. Using T1-weighted 
(T1w) and diffusion tensor imaging (DTI) data, 
various classification models achieved an accu-
racy of 78–90%,9–11 although high accuracy might 
have resulted from model overfitting, given that 
features were not defined a priori or samples were 
limited. By the use of ML classifiers on texture 
data gathered from the corticospinal tract, 70–
80% accuracy was reported.12 Interestingly, when 
re-training general image recognition models like 
ResNet or VCG-16, a 60–63% accuracy was still 
achieved.13,14 Although these results are promis-
ing, overfitting remains one of the main chal-
lenges in ML. One of the most important 
mechanisms behind overfitting is the sample to 
feature ratio (SFR) which is a general parameter 
that helps assessing how many features an ML 
model can process before overfitting or underfit-
ting is likely to occur.6 As a general rule, 10–15 
samples per feature have been proposed; how-
ever, modern ML algorithms may even work with 
lower numbers.15 To date, there are few databases 
that collect MR images from patients with ALS in 
a meaningful amount, and even those may not be 
able to establish a reasonable ML model without 
some preselection of MRI features. In 2016, 
Grolez et  al. published a systematic review that 
provides a useful collection of ALS-specific neu-
roimaging biomarkers that could be used for fea-
ture selection.16 The current review updates this 
previous work by specifically addressing ML 

models. To this end, we conducted a systematic 
review on neuroimaging in ALS, in accordance 
with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guide-
lines.17 To this end, we reviewed all available 
studies over the previous 4 years (i.e. from 2017 
onward) that could contribute to disease classifi-
cation. We compiled these data into a compre-
hensive list of findings that can be used as features 
in an ML model.

Methods

Search strategy and study selection
The literature review and study selection were 
conducted in accordance with the PRISMA 
guidelines.17 In March, 2021, a systematic search 
was conducted on the online library PubMed 
(https://www.ncbi.nlm.nih.gov/pubmed/). The 
search queries were ALS AND MRI, ALS AND 
‘magnetic resonance imaging’, ALS AND neuro-
imaging, ‘amyotrophic lateral sclerosis’ AND 
MRI, ‘amyotrophic lateral sclerosis’ AND ‘mag-
netic resonance imaging’, and ‘amyotrophic lat-
eral sclerosis’ AND neuroimaging. Only 
publications that were listed after 1 January 2017 
were considered for this review. Regarding prior 
publications, we refer to the systematic review by 
Grolez et al.16 and to the meta-analyses by Shen 
et al.18 and Gorges et al.19 Our search yielded 632 
database entries. In a cross-reference search, 
additional 7 records were found for a total of 639. 
These records were carefully checked by an expe-
rienced reviewer for the following criteria: the 
studies had to be published in a peer-reviewed 
journal in the English language; only human stud-
ies with in vivo cranial MRI were considered; and 
there had to be a group of healthy control subjects 
or mimic disorders and a group of subjects with 
sporadic ALS, according to common diagnostic 
guidelines. Primary lateral sclerosis (PLS), pro-
gressive bulbar palsy (PBP), and pure lower 
motor neuron disease (LMND) were considered 
as ALS spectrum disorders and thus also 
included.3,20,21 There had to be cross-sectional 
data, and inferential statistics had to be con-
ducted on these data. Solely longitudinal data or 
regression analyses were not considered, as these 
would not help distinguishing ALS from healthy 
controls. However, if there were appropriate data 
in Supplementary Material, these studies could 
still be included. From the 639 entries, 213 
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reports were identified as eligible. In the full-text 
review, 62 reports were excluded due to the fol-
lowing exclusion criteria: genetic as opposed to 
sporadic ALS (n = 16), no healthy control group 
(n = 24), conditions other than ALS (n = 7), no 
inferential statistics (n = 3), only statistical regres-
sion (n = 7), or data that were already reported 
elsewhere (n = 5). In total, 151 studies were 
included in this systematic review. Figure 1 sum-
marizes the literature review and study inclusion 
process according to the PRISMA guidelines. No 
automated tools were used in this systematic 

review. Ethics approval and informed consent 
were not required for this systematic review.

Semi-quantitative analysis
During the full-text review, all data that could be 
used for disease classification in an ML model were 
noted, both from the report itself and from its 
Supplementary Material if provided. In a semi-
quantitative synthesis, it was analyzed which brain 
areas were most commonly reported. This was 
done by counting how many studies reported a 

Figure 1. PRISMA flow diagram illustrating the literature review and study selection process.
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brain region as a significant finding. We categorized 
these regions into ‘major’ and ‘minor’ findings, 
based upon the quantity of studies that reported 
each finding. This procedure was repeated for each 
MRI modality. The goal of this semi-quantitative 
analysis was to provide a comprehensive list of find-
ings that could be used for disease classification in 
an ML model. As this approach relies solely on the 
quantity of reports, underreporting or overreport-
ing of specific results can bias the analysis.

Results
There were several studies with data from differ-
ent modalities; these data are reported separately 
for each of these modalities. From the 151 studies, 
a total of 221 datasets were analyzed. In addition, 
we provide a comprehensive summary of studies 
which included at least 50 subjects (ALS patients 
and controls combined) and statistical correction 
for multiple comparisons. A total of 129 datasets 
resulted, summarized in Tables 1–5.

Structural alterations: T1w imaging
Seventy-eight datasets of T1w imaging–based 
studies were reviewed (Table 1). In accordance 
with the previous literature,16 most studies 
reported loss of gray matter volume in the precen-
tral gyrus,72 either by cortical thickness assessment 
or by voxel-based morphometry.33 In addition, 
further areas were reported that resembled the 
pattern of the neuropathological four-stage model 
of the propagation of pTDP43 in ALS.107 These 
areas included the frontal cortex, the anterior cin-
gulate cortex, as well as subcortical and temporal 
structures, especially the thalamus, the hippocam-
pus, and the amygdala, summarized in a recent 
controlled study with 292 participants with ALS.68 
Single studies with high numbers of participants 
described significant atrophy in the hypothalamus 
in patients with ALS, irrespective of the disease 
stage70and abnormal T1 signal in the tongue, with 
further findings in area and shape of the tongue.69 
Few studies conducted white matter morphome-
try with mixed results, showing abnormalities in 
sensorimotor and cerebellar tracts.71

Microstructural alterations: diffusion tensor 
imaging
Sixty-six datasets were reviewed for DTI data 
(Table 2). Overall, the analysis of fractional ani-
sotropy (FA) revealed the most consistent results 

when comparing different studies. A meta-analy-
sis with a total of 3752 subjects found the follow-
ing four tracts to be the most important: the 
corticospinal tract, the corticorubral/corticopon-
tine tract, the corticostriatal tract, and the proxi-
mal portion of the perforant path, which have 
previously been described as stage-defining tracts 
(stages 1–4).19,86,87,108 A recent multicenter study 
replicated these findings, with additional abnor-
malities found in the frontal lobe.88 Within the 
corticospinal tract, the posterior limb of the inter-
nal capsule, the corona radiata, and the cerebral 
peduncle were shown to be the most affected.85 
Of note, the application of the analysis approach 
neurite orientation and dispersion density imag-
ing (NODDI) to ALS demonstrated axonal loss 
in the corticospinal tract to be the major contri-
bution to altered diffusivity and also identified 
dendritic alterations within the precentral 
gyrus.109 In addition to these stage-defining tracts, 
the corpus callosum has consistently been found 
to exhibit reduced FA, especially in the motor 
and premotor segments.76,110

Functional alterations: resting-state functional 
magnetic resonance imaging
Twenty-three datasets were reviewed (Table 3). 
Overall, results were heterogeneous, with both 
increased and decreased functional connectivity 
in the pre- and postcentral gyri, the frontal and 
temporal lobes, the operculum, the insula, and 
the lingual gyrus.38,39 In a multicenter study with 
173 patients with sporadic ALS and 79 healthy 
controls, increased functional connectivity in pre-
central, middle, and superior frontal areas in ALS 
and in the sensorimotor, basal ganglia, and tem-
poral networks in PLS was reported.93

Alterations in brain connectivity: connectomics
Eight datasets were reviewed (Table 3). As net-
work parameters, only the global efficiency was 
consistently decreased in patients with ALS.97 
In addition, some studies found reduced nodal 
degree in the frontal lobe.75,97 In a multicenter 
study, decreased structural connectivity in sen-
sorimotor, basal ganglia, frontal, and parietal 
areas was reported.93 Of note, using a random 
walker model on connectivity data, a recent 
study simulated disease spreading that resem-
bled propagation patterns in ALS, with addi-
tional survival prediction using deep 
learning.94
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Table 4. Summary of main susceptibility findings from studies with SWI or T2*-weighted data in ALS.

Publication ALS Controls Main finding

Acosta-
Cabronero 
et al.35

28 39 Increased susceptibility in the motor cortex, premotor areas, 
substantia nigra, globus pallidus, and red nucleus

Lee et al.98 26 26 Increased susceptibility in the motor cortex and decreased 
susceptibility in subcortical regions

Weidman et al.75 43 15 Increased motor cortex susceptibility

Contarino 
et al.43

42 23 Significant susceptibility skewness and trend toward increased 
susceptibility in the prefrontal cortex

Conte et al.99 48 28 Increased motor cortex susceptibility

Conte et al.100 47 38 Increased susceptibility skewness in the precentral cortex, driven 
by upper motor neuron involvement

Borsodi et al.78 24 33 Increased susceptibility in the left corticospinal tract in bulbar ALS

Welton et al.54 21 63 Increased susceptibility/iron concentration in the motor cortex, as 
part of a composite score for disease classification

ALS, amyotrophic lateral sclerosis; SWI, susceptibility weighted imaging.

Table 5. Summary of main findings from studies with special MRI modalities or analyses in ALS.

Publication Method ALS Controls Main finding

Reischauer 
et al.101

MRS 24 27 Altered diffusivity for several spectoscopic parameters in 
the precentral gyrus; reduced tNAA in the precentral gyrus

Grapperon 
et al.102

Sodium-
MRI

27 30 Higher total sodium concentration in the right precentral 
gyrus and the corticospinal tract

Ishaque 
et al.103

Texture 
analysis

83 74 Texture analysis revealed alterations in the precentral gyrus, 
corticospinal tract, insula, basal ganglia, hippocampus, and 
frontal regions, including subcortical white matter

Müller 
et al.104

Texture 
analysis

152 82 Increased entropy in area II of the corpus callosum; 
increased inhomogeneity in areas I–III of the corpus callosum

Elahi et al.12 Texture 
analysis

69 42 Texture analysis of T1-slices of the corticospinal tract 
achieves disease classification in an ensemble stacking 
machine learning model

Wirth 
et al.105

T2-
weighted 
FLAIR

28 31 Increased amount of FLAIR lesions in male patients, 
predominantly detected in the superior and posterior 
corona radiata, anterior capsula interna, and posterior 
thalamic radiation

Fabes 
et al.106

T2w 
FLAIR

33 21 Progressive FLAIR hyperintensity of the corticospinal tract

Shen et al.27 CBF 55 20 Reduced cerebral blood flow in the frontal lobe, insula, 
corpus callosum, and caudate in ALS-FTD

Welton 
et al.54

CBF 21 63 No significant difference in motor cortex perfusion

ALS, amyotrophic lateral sclerosis; CBF, cerebral blood flow; FLAIR, fluid-attenuated inversion recovery; FTD, frontotem-
poral dementia; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy.
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Alterations in susceptibility-weighted imaging 
(SWI)
Twenty datasets were reviewed (Table 4). 
Increased susceptibility in the precentral gyrus 
was consistently reported.54,75,99 In addition, few 
studies reported increased susceptibility in sub-
cortical structures and decreased susceptibility in 
the corticospinal tract.35 Of note, the use of phase 
difference–enhanced (PADRE) MRI enabled to 
identify a characteristic low-signal intensity layer 
in the precentral cortex in 50% of ALS subjects, a 
finding which had been named the ‘zebra sign’ in 
an earlier publication due to the appearance of 
three- or four-layer organizations in the precen-
tral cortex in ALS.111,112

Alterations in other MRI parameters or 
analyses
Twenty-six datasets were reviewed (Table 5). In a 
multicenter study, texture feature extraction 
[Modified Co-occurrence Histograms of Oriented 
Gradients (M-CoHOG)] from the corticospinal 
tract was able to differentiate patients with ALS 
from healthy controls.12 Texture analysis of the 
corpus callosum showed significant differences in 
homogeneity and entropy in the motor seg-
ment.104 By use of magnetic resonance spectros-
copy (MRS), reduced N-acetylaspartate and 
increased myo-inositol levels were reported in the 
precentral gyrus.101 In addition, sodium-MRS 
revealed higher total sodium concentration in the 
right precentral gyrus and the corticospinal 
tract.102 Longitudinal fluid-attenuated inversion 
recovery (FLAIR) imaging demonstrated pro-
gressive hyperintensity of the corticospinal 
tract.106 Cerebral blood flow (CBF) imaging 
showed hypoperfusion in several brain regions,27 
however, not confirmed in a recent study.54

Semi-quantitative analysis
For the semi-quantitative analysis, it was counted 
how many of the included studies reported a spe-
cific area as a significant finding (note that this 
approach may have biased the analysis by under-
reporting or overreporting of specific results). 
The findings from the semi-quantitative analysis 
are summarized in Table 6. In morphometry 
studies, the precentral gyrus, the thalamus, the 
hippocampus, the amygdala, the insula, the ante-
rior cingulate cortex (ACC), the orbitofrontal 
cortex, and the middle and inferior frontal gyri 

were most commonly reported. In DTI studies, 
the corticospinal tract, corticopontine/corticoru-
bral tract, corticostriatal pathway, proximal por-
tion of the perforant pathway, and the corpus 
callosum were most commonly reported. SWI 
and MRS studies showed abnormalities mostly in 
the motor cortex. In rs-fMRI studies, abnormali-
ties were most commonly reported in the pre- and 
postcentral gyri, frontal and temporal lobe, the 
operculum, the insula and the lingual gyrus. In 
connectome studies, decreased global efficiency 
was the only consistent result.

Discussion

Summary
This systematic review provides a comprehensive 
overview of neuroimaging findings in ALS that 
can be used as features for disease classification in 
an ML model. In accordance with a previous sys-
tematic review and neuropathological find-
ings,16,107,113,114 neuroimaging biomarkers were 
most commonly reported in the motor cortex and 
the corticospinal tract, together with frontal and 
temporal areas in later stages. Regarding feature 
selection, we provide a list of our findings in 
Table 6.

Brain structures in neuroimaging in ALS
The corticospinal tract, the corticopontine/corti-
corubral tract, the corticostriatal pathway, and 
the perforant pathway were among the most fre-
quently reported regions that exhibited diffusivity 
changes. These tracts have previously been 
described as stage-dependent,3,79 which can be 
helpful in ML models when the presence of late-
stage findings raises the confidence of the 
prediction.

The combination of structural and functional 
neuroimaging parameters in one ML model is 
very intriguing because it is expected that the 
complementary nature of these biomarkers as 
well as the low correlation between them theoreti-
cally might improve classification accuracy. 
Indeed, our review identified several candidate 
regions that could be included as features in such 
an ML model. However, both increased and 
decreased functional connectivity were reported 
with no clear directional effect. It can be argued 
that this inconsistency could ultimately introduce 
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more noise than signal, especially when the theo-
retical background of this inconsistency remains 
ill-defined. It contrast, it may be of advantage to 
approach rs-fMRI feature extraction based on 
neuropathological concepts.115 To incorporate 
functional connectivity measures as features in an 
ML model, a higher level of data preprocessing 
might be needed. Without preselection, the main 
challenge in analyzing rs-fMRI is the high amount 
of features that would have to be incorporated 
into the model. Early attempts have used spatial 
templates and principal component analysis for 
dimensionality reduction with some success.7,8 At 
any rate, implementing rs-fMRI data into ML 
models remains a challenge, and for such a com-
bination of functional and structural data, multi-
ple combined ML models may be needed.

In addition to the most commonly reported neu-
roimaging biomarkers in ALS, our analysis 

identified further promising candidates. T1w 
MRI of the tongue revealed decreased signal 
intensity in patients with ALS.69 Extracting these 
data might be a makeshift method of measuring 
lower motor neuron (LMN) degeneration. With 
respect to ML, measuring LMN degeneration 
could increase classification accuracy, as little 
correlation with other [upper motor neuron 
(UMN)] features is expected. Another biomarker 
that caught our attention was the atrophy of the 
hypothalamus. Unlike other biomarkers, hypo-
thalamic atrophy did not relate to disease stage 
and was detectable very early on, even in pre-
symptomatic cases70; this association has been 
investigated in orbitofrontal-hypothalamic pro-
jections in a murine ALS model and in human 
patients.116

One of the more recent techniques in ML is tex-
ture analysis. While even general image 

Table 6. Comprehensive list of candidate regions for each modality to be included as feature in ML models for 
disease classification from cranial MRI in ALS.

Modality Main regions Further regions

T1 Precentral gyrus, thalamus, hippocampus, 
amygdala, insula, ACC, orbitofrontal cortex, 
middle frontal gyrus, inferior frontal gyrus

Paracentral lobule, operculum, 
temporal pole, postcentral gyrus, 
posterior cingulate, superior 
temporal gyrus, medial frontal cortex, 
parahippocampal gyus, caudate, 
putamen, nucleus accumbens

DTI Corticospinal tract (subcortical, superior corona 
radiata, posterior limb of the internal capsule, 
cerebral peduncle, brainstem), corticopontine/
corticorubral tract, corticostriatal pathway, 
perforant pathway, corpus callosum (genu, body 
and splenium)

Frontal and temporal lobe (as a 
whole), corona radiata, superior 
longitudinal fascicle

rs-fMRI Precentral gyrus, postcentral gyrus, superior 
and middle frontal gyrus, middle temporal gyrus, 
operculum, insula, lingual gyrus

Inferior frontal gyrus, superior 
parietal lobule, supramarginal gyrus, 
angular gyrus, precuneus, occipital 
fusiform gyrus, occipital pole

SWI Precentral gyrus Striatum (higher susceptibility) 
and corticospinal tract (lower 
susceptibility)

MRS Precentral gyrus (NAA and myo-inositol) Supplementary motor area, 
postcentral gyrus, brainstem/
pontine region

connectomics Global efficiency Nodal degree in frontal lobe

ACC, anterior cingulate cortex; ALS, amyotrophic lateral sclerosis; DTI, diffusion tensor imaging; ML, machine learning; 
MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NAA, n-acetylaspartate; SWI, susceptibility-
weighted imaging.
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recognition models like ResNet and VCG-16 are 
capable of detecting a distinct signature in the 
corticospinal tracts of patients with ALS, custom-
tailored solutions are by far more powerful.13,14 
Using M-CoHOG in an elaborated ML model, 
Elahi et al. achieved classification with up to 80% 
accuracy.12 Müller et al. were able to differentiate 
patients with PLS and healthy controls with a 
sensitivity of 73% and a specificity of 84% using a 
single texture parameter (homogeneity) in the 
corpus callosum.104 These types of analyses sup-
port the strength of ML and could substantially 
boost the accuracy of ML models.

SWI and MRS were found to only show abnormali-
ties in the motor cortex. While this information per se 
can be very useful, there are other MRI modalities 
that can assess the integrity of the motor cortex with-
out expanding the MR measuring time. Although it 
can be argued that having more features is prefera-
ble, redundancy might not increase diagnostic accu-
racy, but lower it due to worse SFR. With this in 
mind, adding these sequences to a standard protocol 
is hard to justify for ML classification. There were 
several MRI modalities with scarce data, like arterial 
spin labeling (ASL) for cerebral blood flow quantifi-
cation. The contribution of these modalities to mul-
tiparametric classification models has to await a 
higher number of studies in the future. It has been 
concluded that the most important MRI sequences 
in this regard are T1w, DTI, and rs-fMRI, with 
MRS only being optional.117,118 Given that ML 
models usually need large datasets, multicenter ini-
tiatives are important for improving the methodo-
logical quality of future studies.

Limitations
This systematic review was confined to cranial 
MRI. However, there are plenty of studies that 
investigated spinal pathologies that can be consid-
ered to serve as biomarkers in ALS, for example, 
spinal diameter.119 We decided against the inclu-
sion of these studies in this review for two reasons. 
First, adding spinal MRI to an ML model would 
require a time-consuming MRI protocol that may 
not be suited for routine applications. Second, spi-
nal MRI in ALS mostly measures pathologies of 
the corticospinal tract which can also be measured 
in the brain. Features extracted from spinal MRI 
might thus be redundant. Most of the studies com-
pared patients with ALS with healthy controls. It 
can be argued that this is not useful in a diagnostic 

setting, where ALS has to be differentiated from its 
mimic disorders. However, many mimic disorders 
of ALS are peripheral neuropathies which are 
expected to be associated with a normal cranial 
MRI. When comparing patients with ALS with 
healthy controls and mimic disorders, Ferraro et al. 
found that the model actually performed better 
with the latter.11 Although more studies with mimic 
disorders are needed, building an ML model with 
healthy control subjects (and fine-tuning it with 
mimic disorders) might suffice. In this review, we 
did not differentiate our findings between the clini-
cal phenotypes of the ALS spectrum disorders 
(including the proportion of UMN/LMN involve-
ment), that is, ‘classic’ ALS and primary lateral 
sclerosis, UMN-predominant (pyramidal), LMN-
predominant (including flail arm and flail leg syn-
drome), and pure LMND (progressive muscular 
atrophy). Future studies should address fine phe-
notypic characterization given that there is a need 
for models discriminating not only classic ALS 
from mimic conditions but also classic ALS from 
pure/predominant UMN and pure/predominant 
LMN disease forms. Finally, our review focused on 
the neuroimaging domain, which means that the 
clinical domain, that is, a detailed assessment of the 
application of the ALS diagnostic criteria and their 
accuracy, was beyond the scope of this study. We 
used the inclusion criterion that the subjects with 
ALS had been diagnosed according to common 
diagnostic guidelines without further specification, 
while neuropathological confirmation was not a cri-
terion due to the general lack of autopsies.

Conclusion
This review summarizes the most important find-
ings that could be used as features in an ML model 
(Table 6). DTI and volumetric data can be con-
sidered to be the most robust features. Integrating 
functional or structural connectivity data might be 
challenging and may require dimensionality 
reduction techniques. Recently, texture analyses 
have demonstrated convincing results that may 
advance the field toward classification with higher 
accuracy. In the future, ML and multiparametric 
neuroimaging data might provide physicians with 
a powerful diagnostic tool.
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