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Abstract: The basic helix-loop-helix (bHLH) family of transcription factors is used as a paradigm to explore structural 
implications of periodicity patterns in amino acid sequence variability. A Boltzmann-Shannon entropy profi le represents 
site-by-site amino acid variation in the bHLH domain. Spectral analysis of almost 200 bHLH sequences documents the 
periodic nature of the bHLH sequence variation. Spectral analyses provide strong evidence that the patterns of amino acid 
variation in large numbers of sequences conform to the classical a-helix three-dimensional structure periodicity of 3.6 
amino acids per turn. Multivariate indices of amino acid physiochemical attributes derived from almost 500 amino acid 
attributes are used to provide information regarding the underlying causal components of the bHLH sequence variability. 
Five multivariate attribute indices are used that refl ect patterns in i) polarity - hydrophobicity - accessibility, ii) propensity 
for secondary structures, iii) molecular volume, iv) codon composition and v) electrostatic charge. Multiple regression 
analyses of the entropy values as dependent variables and the factor score means and variances as independent variables 
are used to partition variation in entropy values into their underlying causal structural components.
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Introduction
Contemporary research in biological, medical and agricultural sciences often focuses on the architecture 
of complex traits. Complex traits are composed of various component parts that are interdependent, 
dynamic and multi-regulated. Protein molecules are complex traits. They i) contain multiple structural 
and functional domains that may arise independently from different sources; ii) the domains may be 
integrated into divergent proteins by domain shuffl ing; iii) domains are composed of many different 
amino acid sites having varying degrees of intercorrelation; iv) the various amino acids contribute 
differentially to structure and function; and v) different domains (and their constituent amino 
acids) may be subjected to separate selection regimes during evolutionary adaptation. To adequately 
understand evolution and corresponding structural divergence of proteins requires knowledge of the 
various component parts, their characteristics, dynamics, integration and divergence. 

Herein, we explore the periodicity in patterns of site by site amino acid variation to better under-
stand relationships between sequence diversity and protein structure. Specifi cally, we ask if observed 
patterns of within-site variability exhibit a systemic periodicity that corresponds to the known structural 
geometry derived from crystal structure studies. Further, we explore the underlying multidimensional 
causes of sequence diversity. 

A number of authors have suggested that individual amino acids show patterns of periodicity that 
suggest important characteristics in molecular structure (e.g. Eisenberg et al. 1984; Pasquier et al. 1998; 
Leonov and Arkin, 2005). For example, an a-helix adopts a spiral confi guration of 99 7!c c around the 
axis, generating a range in periodocity of 3.40–3.91 aa per turn, with an average periodocity of about 
3.6 aa per turn (Kyte, 1995). Mutations that disrupt such structural geometry are probably subjected to 
strong natural selection

 
(Patthy, 1999). 

In the present work, we explore the periodic behavior of site by site amino acid variability or 
diversity in a large collection of basic helix-loop-helix proteins (Atchley and Fitch, 1997). bHLH proteins 
are a collection of important transcriptional regulators involved with the control of a wide variety of 
developmental processes in eukaryote organisms (Murre et al. 1989, 1994; Sun and Baltimore, 1991; 
Atchley and Fitch, 1997; Ledent and Vervoort, 2001). Herein, we use spectral analysis, information 
theory and multivariate statistical methods to: 1) describe periodicity patterns in amino acid diversity 
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within the highly conserved bHLH protein domain; 
2) ascertain whether diversity in amino acid 
composition conforms to estimates of secondary 
structure shown by crystal studies; and 3) de-
compose variability in entropy patterns into its 
underlying structural components.

The present paper is one of a series using 
methods from computational biology to explore 
a number of structural and evolutionary aspects 
of the basic helix-loop-helix (bHLH) family of 
proteins (e.g. Atchley and Fitch, 1997; Morgen-
stern and Atchley, 1999; Atchley et al. 2000, 2001;
Wollenberg and Atchley, 2000; Atchley and Fer-
nandes, 2005; Atchley and Buck, 2006). 

Materials and Methods

Defi nition and Structure of the
bHLH Domain
The bHLH domain is a highly conserved region 
comprised of approximately 60 amino acids (Atch-
ley and Fitch, 1997). It is best modeled as two 
separate a-helices separated by a variable length 
loop (Ferre-D’Amare et al. 1993,1994; Shimizu 
et al. 1997). The basic (b) DNA binding region of 
about 14 amino acids interacts with a consensus 
hexanucleotide E-box (CANNTG). bHLH proteins 
are classifi ed into 5 major DNA-binding groups 
(A, B, C, D, and E) based on how the proteins 
bind to the consensus E-box and other attributes 
(Atchley and Fitch, 1997; Ledent and Vervoort, 
2001). The helix regions (H1 and H2) are involved 
in protein-DNA contacts and protein-protein 
interaction, i.e. dimerization. The variable length 
loop region (L) may range from approximately 
5 to 50 residues.

Herein, we analyze variation in 196 bHLH 
sequences of the bHLH subfamilies and DNA 
binding groups including 83, 72, 16, 9 and 16 
sequences belonging to DNA binding groups 
A, B, C, D and E, respectively. These sequences are 
part of a standard bHLH dataset used in a number 
of previous computational analyses (e.g. Atchley 
and Fitch, 1997; Atchley et al. 2000; Atchley 
et al. 2005).

Data preparation
Sequences were aligned using both local and 
global type alignment algorithms and the resultant 

alignments then corrected by eye when the results 
of the two alignment algorithms did not agree. 
Representatives of the aligned subfamilies can 
be found in Atchley and Fitch (1997). The amino 
acid components of the bHLH domain follow the 
structural analyses of Ferre-D’Amare et al. (1993): 
basic region (amino acids 1–13), helix 1 (14–28), 
loop (29–49), and helix 2 (50–64).

The loop region is highly divergent in both 
length and amino acid composition making ac-
curate decisions about homology difficult for 
much of this region (Atchley and Fitch, 1997; 
Morgenstern and Atchley, 1999). Unless an accu-
rate alignment is obtained, statistical analyses are 
of dubious value since putatively non-homologous 
amino acids are being compared. Thus, part of the 
highly variable interior portion of the loop region 
was removed and only 49 columns of the multiple 
alignments remain for spectral and statistical 
analysis. Removal of the non-homologous portion 
before subsequent analyses is standard procedure. 
Preliminary spectral density plots of the profi le 
containing the whole loop region were compared 
and the results and conclusions were not affected 
by removing the heterogeneous portion of the loop 
region.

Entropy Profi les 
The Boltzmann-Shannon entropy E is used 
to quantify sequence variability of amino 
acid residues at each aligned amino acid site 
(Atchley et al. 1999, 2000). It is calculated as

logE( p) p ( )p1

21

2jj
j=- =

! , where pj is the prob-
ability of a residue being a specifi c amino acid or a 
gap, and ( ) .E p0 4 39# # . An “entropy profi le” 
is given in a scatter plot (Fig.1) and a histogram 
(Fig.2a) where the height of the individual bars 
refl ects the entropy value (residue diversity) at a 
particular aligned amino acid site. Small E values 
indicate a high degree of sequence conservation. 

Factor Score transformations
Statistical analysis of alphabetic sequence data is 
hindered by the lack a rational underlying metric 
for alphabetic codes (Atchley et al. 2005). To 
resolve this “metric” problem, these authors used 
multivariate statistical analyses of 495 amino acid 
physiochemical attributes to generate a small set 
of highly interpretable numerical values that sum-
marize complex patterns of amino acid attribute 
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covariation. Using factor analysis (Johnson and 
Wichern, 2002), these authors defi ned fi ve major 
patterns of amino acid attribute covariation that 
summarize the most important physiochemical 
aspects of amino acid covariability. These fi ve pat-
terns or multidimensional indices were interpreted 
as follows: Factor I = a complex index refl ecting 
highly intercorrelated attributes for polarity, hy-
drophobicity, and solvent accessibility. Factor II = 
propensity to form various secondary structures, 
eg coil, turn or bend versus alpha helix frequency. 
Factor III = molecular size or volume, including 
bulkiness, residue volume, average volume of a 
buried residue, side chain volume, and molecular 
weight. Factor IV = relative amino acid composi-
tion in various proteins, number of codon coding 
for an amino acid, and amino acid composition. 
Factor V = electrostatic charge including isoelec-
tric point and net charge. A set of “factor scores” 
arising from these analyses provide a multidimen-
sional index value that positions every amino acid 
in each of these major interpretable patterns of 
physiochemical variation. 

Herein, we transform the original alphabetic 
amino acid codes in the aligned bHLH sequence 

data to these fi ve factor scores. This procedure 
generates fi ve sets of numerical values that ac-
curately refl ect a broad spectrum of amino acid 
attributes. The factor score transformed data are 
then used in our statistical analyses. For simplicity, 
we analyze the fi ve sets of factor score transformed 
data separately rather than an analysis of all fi ve 
factors simultaneously. 

To better understand the underlying causes of 
diversity in amino acids, we include analyses of 
both the factor score means and variances graphed 
in histograms (Fig.2.b-k). The former replaces al-
phabetic data with the average multidimensional 
amino acid attribute while the latter uses its vari-
ability. 

Spectral Analysis Based on Fourier 
Transformation (FT)
It is well-known that individual amino acid se-
quences can exhibit a periodic pattern in the oc-
currence of certain types of amino acids (Pasquier 
et al. 1998). What is not clear is whether site by 
site amino acid variation computed for large num-
bers of sequences also exhibit periodic patterns. 

Figure 1. Entropy profi le of bHLH protein domains suggesting an oscillation pattern. 
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To explore this question, a time series model is 
applied that is expressed in terms of sine and cosine 
components (Bloomfi eld, 1976) as

 ( ) ( )cos sinY A t B t et i i i i t
i

m

1
~ ~= + +

=

_ i!  (1)

where Yt is the original variable with n observa-
tions. m  =  n/2 if n is even; m  =  (n–1)/2 , if n is 
odd. ~i specifi es the Fourier frequencies, 2ri/n, 
where i  =  1, 2, …, m. Ai and Bi are the amplitude of 
the sine and cosine components and et is the error 
term. The sum of squares of the Ai and Bi can form 
periodograms by plotting them against frequency or 
against wavelength. The periodogram is interpreted 
as the amount of variation in Y at each frequency. If 
there is a signifi cant sinusoidal component at a given 
frequency, the amplitude A or B or both will be large 

and the periodogram will have a large ordinate at that 
given frequency. If there is no signifi cant sinusoidal 
component, then the periodogram will not have large 
ordinates at any frequencies. A Hamming window is 
applied to produce the spectral density plots, which 
is a general smoothing procedure in spectral analy-
sis (Kendall and Ord, 1990). The spectral density 
plots (Fig. 3) of entropy, factor score means and 
variances are produced by SAS software (PROC 
SPECTRA).

Spectral analysis by the Burg method
The Burg method

 
for spectral analysis is based 

on the well-known autoregressive (AR) model-
ing technique for processing time-series data 
(Marple, 1987; Kay, 1988). An AR model provides 
a parametric description of time-series data. For a 

Figure 2. Entropy and Factor profi les of bHLH protein domains. (a) Entropy vs. Amino Acid Sites. (b) Factor I Means vs. Amino Acid Sites. 
(c) Factor I Variance vs. Amino Acid Sites. (d) Factor II Means vs. Amino Acid Sites. (e) Factor II Variances vs. Amino Acid Sites. (f) Factor III 
Means vs. Amino Acid Sites. (g) Factor III Variance vs. Amino Acid Sites. (h) Factor IV Means vs. Amino Acid Sites. (i) Factor IV Variances 
vs. Amino Acid Sites. (j) Factor V Means vs. Amino Acid Sites. (k) Factor V Variances vs. Amino Acid Sites. 
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given discrete data sequence xi for 1 i n# # , the 
sample at index i can be approximated by a linear 
combination of previous k observations of the data 
sequence by

X X e a X ei i i k i k i
k

k

1
= + =- +

//

-

=

!  

where i k$ . With the Burg method, the spectral 
density of the time series can be described in terms 
of AR model parameters and the corresponding 
modeling error variance by

 P ( )AR f =
!

1

2

2

i
i

p1 exp 2a j fnT
T

r
v

=
+ -̂ h

!

!

!
 (2)

 j 12
=-

where 
2

v! is the estimated modeling error variance, 
and T is the sampling interval. 

The Burg method is used here as an alternative 
to the FT method to calculate the spectral density 
of the entropy as well as the factor score means and 
variances. Readers are referred to Marple (1987) 
for more details about Burg method algorithms. 
The spectral density plots for entropy, factor score 
means, and factor score variances produced by 
Matlab

 
software (version 6.5) are very similar to 

those in Fig. 3 produced by the FT method. 

Statistical Test
When spectral density plots are graphed, “large” 
peaks occur, whose statistical signifi cance and ac-
curacy requires validation. Fisher’s test (Warner, 

Figure 3. Plots of the spectral density distribution of entropy, Factor score means and variances profi les produced by the Fourier trans-
formation. (a) Spectral density plot of entropy profi le. (b) Spectral density plot of Factor I means profi le. (c) Spectral density plot of Factor 
I variances profi le. (d) Spectral density plot of Factor II means profi le. (e) Spectral density plot of Factor II variances profi le. (f) Spectral 
density plot of Factor III means profi le. (g) Spectral density plot of Factor III variances profi le. (h) Spectral density plot of Factor IV means 
profi le. (i) Spectral density plot of Factor IV variances profi le. (j) Spectral density plot of Factor V means profi le. (k) Spectral density plot of 
Factor V variances profi le.
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sis of variance (ANOVA) was used to relate the 
variance in the entropy values to the variances for 
Factors I–V. The null hypothesis is that there are no 
signifi cance differences between the total variation 
of the scores for Factor I–V and the error variance, 
i.e. there is no signifi cant added effect due to any 
particular physiochemical factor.

Multiple regression analysis is used to explore 
the underlying causes of amino acid diversity. The 
dependent variable is the entropy value while the 
independent variables are the fi ve factor scores. 
Analyses were carried out using both the factor 
score means and the factor score variances. Mul-
tiple regression was used to estimate b0, b1, …, b5 
of the following regression model equation. 

Entropy = b0 + b1(Factor I Var) + b2(Factor II Var) 
  + b3(Factor III Var)   
  + b4(Factor IV Var) (3)
  + b5(Factor V Var) + f   

where f is a normal distributed random variable with 
nf= 0 and vf

2
 = v2. Similarly, a second regression 

analysis was carried out to fi t the model: 

Entropy = b0 + b1(Factor I Mean)
  + b2(Factor II Mean)
  + b3(Factor III Mean)     (4)
  + b4(Factor IV Mean)
  + b5(Factor V Mean) + f    

Results

Periodicity analyses of entropy 
profi les
An entropy profi le of the aligned 196 bHLH do-
main sequences (Fig. 1) shows the bHLH domain 
values have a regular dynamic oscillation. Atchley 
et al. (2000) suggested the entropy patterns in 
bHLH correspond to an amphipathic a-helix with 
a variable hydrophilic surface and a conserved 
hydrophobic surface. Crystal structure studies 
of individual proteins by Ferre-D’Amare et al. 
(1993,1994) and others show which amino acid 
sites pack together.

Information in Fig. 1 can be analyzed in 
a more interpretable manner as a periodo-
gram that describes important features of this 
pattern. A spectral density plot using the Fourier 
transformation of the entropy profi le has a large 

1998) is a conservative method for identifying 
“major” periodic components. Fisher’s test rejects 
the null hypothesis if the periodogram contains a 
test statistic signifi cantly larger than the average 
value (Brockwell and Davis, 1991; Warner, 1998). 
The test statistic g, gives the proportion of the total 
variance accounted for by the largest periodogram 
component.

For the bHLH analyses, the critical values 
of the proportion of variance in Fisher’s test
at a = 0.05 level (N = 49) are 0.240, 0.156 and 
0.122 for the fi rst, second and third largest peri-
odogram ordinates, respectively. The critical value 
0.240 implies that if there are 49 data points in the 
numeric sequence, then the largest periodogram 
ordinate must account for more than 24% of the 
variance to be judged signifi cant at the P = 0.05 
level. In the special case of a constant time series 
(constant numeric sequence in this paper), the 
p-value returned in Fisher’s test is exactly 1 (i.e. 
the null hypothesis is not rejected). If the largest 
periodogram ordinate is statistically signifi cant, 
then we test the second and third largest periodo-
gram ordinates for signifi cance, and so on. 

Having obtained the major periodic compo-
nents, harmonic analysis is used to fi t the data with 
the cyclic components (Warner, 1998). Standard 
methods from elementary Fourier analysis are used 
to estimate the parameters A and B. R-square (R2) 
measures goodness of fi t of the predictive model 
and estimates the percentage of total variance of the 
observations explained by the analysis. Therefore, 
with the period estimate from the spectral analysis 
as a prior, we can search for the best period estimate 
maximizing the R-square in a relative small range 
and its confi dence interval (CI). 

For the entropy profi le, a bootstrap simulation 
produced 1000 random samples with replacement 
from the original bHLH multiple alignments. 
For each sample, the harmonic analysis is con-
ducted to detect the best period estimate with the 
largest R-square statistics. Assuming the 1000
period estimates have a normal distribution, 
the 95% confi dence interval of the mean can be
obtained. 

Underlying causes of sequence 
diversity
Simply knowing particular patterns of variation 
exist is not suffi cient since it is important to know 
the underlying causes of sequence diversity. Analy-
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peak at approximately 3.77 aa (Fig.3a). The Burg 
method result is very similar. Fisher’s test indi-
cates that this periodogram ordinate at 3.77 aa is 
statistically signifi cant. However, the second and 
third largest periodogram ordinates are non-sig-
nifi cant. Thus, one statistically signifi cant major 
periodicity component occurs in the entropy 
profi le and it corresponds to the range of known 
a-helix values.

Since the Fourier frequency reported by the 
FT method gives only an approximate periodic-
ity estimate, harmonic analysis was conducted to 
detect the best period estimate in the range from 
3.30 aa to 3.90 aa, in increments of 0.01.  A predic-
tive model was fi tted and the associated R-square 
statistics(R2)calculated for each iteration. The 
period maximizing the R-square statistics has a 
major periodic component of 3.68 aa repeat with 
an R2 = 0.46. A 95% confi dence interval of period 
estimates calculated from 1000 bootstrap entropy 
profi les includes the value of 3.68. Thus, a major 
periodic component of bHLH protein domain vari-
ability has a periodicity estimate very similar to the 
conventionally accepted value (3.6 aa per turn) for 
the elements of ideal individual a-helix structure. 
Thus, the patterns of site by site amino acid vari-
ability show a systematic dynamic that is the same 
as that reported for individual sequences.

Next, we ask if this periodicity pattern can be 
accounted for by patterns of amino acid physio-
chemical variability described by Atchley et al. 
(2005). Multiple regression analyses are carried 
out where variability of E values are the dependent 
variables and the factor means or variances are the 
independent variables.

Periodicity of Factor Score Means
The factor score means describe the average 
physiochemical attribute for each amino acid site 
in each of the fi ve factors (= multidimensional 
physiochemical attribute index). The spectral 
density plot of Factor I means (polarity-accessibil-
ity-hydrophobicity) is given in Fig. 3b. The peaks 
located between 3–4 aa suggest possible periodic 
components and the analysis suggests three pos-
sible periodic components of 3.27 aa, 3.77 aa 
and 2.58 aa. Fisher’s test for the 3.27 aa periodic 
component is 0.196 (non-signifi cant) but the 3.77 
aa component was statistically signifi cant. Thus, 
there are possible signifi cant periodic components 
in the Factor I means profi le. 

The spectral density plots of the means on fac-
tors II, III and V (Fig. 3d,3f,3i) are not statistically 
signifi cant. The spectral density plot of Factor IV 
means (Fig. 3h), on the other hand, has three large 
periodogram ordinate at 2.58 aa, 3.27 aa, and 4.9 
aa. The 2.58 aa component is not signifi cant but
the g statistic for the 3.27 aa component is sig-
nifi cant. Factor IV relates to relative amino acid 
composition in various proteins, number of codon 
coding for an amino acid, and amino acid compo-
sition. 

Multiple regression analysis gave parameter 
estimates of 

b0 
= 2.931(P < .0001), b1 

= – 0.082 (P = 0.766), 
b2 

= – 0.045 (P = 0.892), b3 
= – 0.380 (P = 0.162), 

b4 
= – 1.086 (P = 0.057) and b5 

= – 0.139
(P = 0.614). 

The proportion of the total variation explained by 
the model has an R2 = 0.21 indicating that only 
21% of the variation in entropy values could be 
explained by these fi ve factor score means compo-
nents. Only factor IV had a regression coeffi cient 
approaching statistical signifi cance. Thus, site by 
site sequence variability is not well explained by 
the mean factor scores for these multidimensional 
physiochemical attribute variables. 

Periodicity Analyses of the Factor 
Score Variances
Next, we explored the relationships between phys-
iochemical variability and the entropy analyses by 
analyzing the variances in factor scores at each 
site and their relationship to the periodic patterns 
of variability in the bHLH domain.

An analysis of variance of the factor score 
variances was statistically highly significant
(P < 0.0001) indicating that a large amount of 
the periodic variability could be explained by the 
variances in the physiochemical attribute factor 
scores. Hence, we can reject the null hypothesis 
that there is no difference between the total 
variation of Factor I–V and the error variance. 
A multiple regression analysis was carried out 
of the form:

Entropy = b0 + b1(Factor I Var) + b2(Factor II Var)
  + b3(Factor III Var)
  + b4(Factor IV Var)
  + b5(Factor V Var) + f
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Estimates of the regression parameters are: 

b0 
= 0.564 (P < .0001), b1 

= 0.470 (P = 0.052),
b2 

= 0.468 (P = 0.062), b3 
= 0.154 (P = 0.023),

b4 
= 1.263 (P < .0001), b5 

= 0.174 (P = 0.054). 

The proportion of the total variation explained 
by the model has an R2      =  0.86 indicating that 
86% of the variation in entropy values could be 
explained by the variances of these fi ve attribute 
index variables. Thus, periodic patterns in site by 
site entropy are strongly related to the amount of 
variability in these multidimensional physiochemi-
cal attribute scores.

The spectral density plot of Factor I variances 
(Fig. 3c) has peaks at three periodogram ordinates 
(2.58 aa, 3.77 aa and 3.27 aa) but none are statisti-
cally signifi cant in Fisher’s test. However, analyses 
of the Factor II variances profi le give a statistically 
signifi cant peak at 3.77 aa. A follow-up harmonic 
analysis gives an accurate period estimate as 3.69 
aa (R2 

= 0.285). Similarly, Factor III variances 
(Fig. 3g) gave a statistically signifi cant peak at 
3.77 aa. The follow-up harmonic analysis gives an 
accurate period estimate as 3.71 aa (R2 = 0.379). 
The spectral density plot of Factor IV variances 
(Fig. 3i) had three peaks at periodogram ordinates 
at 7 aa, 5.44 aa and 2.13 aa but none are statistically 
signifi cant. However, the spectral density plot of 
Factor V variances (Fig. 3k) had large periodo-
gram ordinates at 3.27 aa, 3.77 aa, and 5.44 aa. 
The value at 3.77 aa is statistically signifi cant in 
Fisher’s test.

Thus, variability in propensity for secondary 
structure, molecular size and electrostatic charge 
are statistically highly signifi cant for predicting 
patterns of periodicity in site by site amino acid 
variability. In each instance, the peak occurs at 
approximately 3.6–3.7 aa, which is close to the 
conventionally accepted value for an a-helix 
pattern. 

Discussion
Herein, we apply spectral and multivariate statisti-
cal analyses to the patterns of amino acid diversity 
for a broad array of bHLH domain-containing 
proteins to explore the underlying causes of amino 
acid diversity. First, we explore the dynamics of 
amino acid diversity using spectral analysis and 
then apply regression analyses to account for the 
underlying causes of periodic sequence diversity 

by a small set of multidimensional physiochemi-
cal indices. 

Spectral analyses of site by site sequence vari-
ability give periodicity estimates that closely agree 
with the conventionally accepted value of 3.6 aa 
for an a-helix. Hence, the patterns of amino acid 
variability for a large sample of aligned proteins 
closely parallel those seen for the amino acid prop-
erties of single proteins. 

Are the entropy patterns shown here unique or 
are they similar to those in other families of pro-
teins with equivalent secondary structure? While 
periodicity patterns of sequences are not well-
known, some data are available. For example, the 
number of residues per a-helical turn in leucine 
zipper proteins is about 3.64 (Thepaut et al. 2004), 
a value still very similar to that reported here. 
Thus, our results for bHLH may refl ect a general 
phenomenon for a-helix confi gurations. 

More complicated structural phenomena might 
affect these estimates. For example, in the basic 
region of the bHLH protein/DNA complex of the 
bHLH protein Pho4, there are non-regular a-heli-
cal turns and the basic region is mostly unfolded 
relative to residual helical content in the absence of 
DNA (Cave et al. 2000). Studies on the bHLH-leu-
cine zipper protein Max when uncomplexed with 
DNA has the fi rst 14 residues of the basic region in 
a mostly unfolded confi guration. However, the last 
four residues of the basic region form a persistent 
helical turn while the loop region is observed to 
be fl exible (Sauve et al. 2004). Thus, the various 
components of the bHLH domain may exhibit dif-
ferent periodicity values depending whether they 
are complexed with DNA. This is a topic is worthy 
of further investigation.

One additional concern is whether our removal 
of part of the highly variable loop region might 
distort the evaluation of periodicity profi les from 
multiple alignments. However, we found that 
removal of part of the loop region had little 
impact on short-range periodicity. Thus, short-
range evaluations, as described here, appear to 
be robust.

Spectral analysis has a stationarity assumption 
(Warner, 1998), i.e. the mean and variance of the 
numeric sequence are constant over amino acid 
sites and structure depends only on the relative 
position of two observations (Kendall and Ord, 
1990). Thus, it is important to consider the station-
arity property of a numeric sequence profi le since 
it can affect the periodicity evaluation. Different 
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regions of a protein sequence may be subject to 
different regimes of selection during evolutionary 
divergence and, as a consequence, may display 
entropy and factor score patterns that are not 
stationary. In the case of bHLH, partitioning the 
sequence into several short homogeneous regions 
and then investigating the periodicity for the basic 
region, Helix 1 and Helix 2 separately could im-
prove the accuracy of the periodicity evaluation. 
Such fi ndings are expected because structurally and 
evolutionarily homogeneous regions intend to be 
more stationary than the entire sequence. 

Several suggestions have been made to deal 
with the stationarity problem. For example, War-
ner (1998) has suggested a log transformation of 
the data might reduce this heterogeneity. Also, 
complex demodulation methods (e.g. Bloomfi eld, 
1976) make it possible to describe the change 
in amplitude of the periodic component across 
amino acid sites more precisely in a non-station-
ary series. 

The analysis of variance and multiple regres-
sion approach described here demonstrate that 
the overall site by site variation (entropy) can 
be explained by corresponding variation in the 
major underlying physiochemical attributes of 
amino acids. By examining the infl uence of these 
physiochemical components, we are able to better 
understand and explain the causes of the observed 
sequence variability patterns. These results dem-
onstrate that the major periodic components in 
site by site entropy values and several factor score 
index variances exhibit the classic a-helix period-
icity of 3.6 aa. The variances of the factor score 
for propensity for secondary structure (Factor II), 
molecular volume (Factor III) and electrostatic 
charge (Factor V) are signifi cant underlying causal 
components to site-by-site amino acid diversity 
in the bHLH domain. Further, the factor score 
means for polarity and codon composition also 
contain information related to the helix second-
ary structure.

These results suggest that periodicity patterns 
in amino acid diversity refl ect signifi cant second-
ary structure information. Further, entropy as a 
measure of diversity at each amino acid site can 
be decomposed into its causal components. As a 
consequence, these fi ndings should facilitate for-
mal dynamic modeling of both the variability in se-
quence elements and their underlying causes. Such 
analyses would provide valuable new information 
for structural and evolutionary biologists. 

Computational techniques, such as applied 
here, can be powerful estimators of important 
structural features in proteins. Spectral analysis, 
in combination with other powerful statistical pro-
cedures, can provide valuable information about 
the periodicities in variability patterns of protein 
domains, can facilitate other analyses to explore 
important evolutionary and structural phenomena 
in proteins, and to signifi cantly enhance our under-
standing of protein variability, structure, function 
and evolution. Studies of amino acid variability and 
periodicity can facilitate protein secondary struc-
ture prediction since amino acid variability indeed 
refl ects the underlying structure. Studies similar to 
this one need to be carried out on protein having 
different structures to generalize our results.
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