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The SARS-CoV-2 virus is currently causing
a worldwide pandemic with dramatic societal
consequences for the humankind. In the last
decades, disease outbreaks due to such zoonotic
pathogens have appeared with an accelerated
rate, which calls for an urgent development of
adaptive (smart) therapeutics. Here, we develop
a computational strategy to adaptively evolve
peptides that could selectively inhibit mutating
S protein receptor binding domains (RBDs) of
different SARS-CoV-2 viral strains from bind-
ing to their human host receptor, angiotensin-
converting enzyme 2 (ACE2). Starting from suit-
able peptide templates, based on selected ACE2
segments (natural RBD binder), we gradually
modify the templates by random mutations, while
retaining those mutations that maximize their
RBD-binding free energies. In this adaptive evo-
lution, atomistic molecular dynamics simulations
of the template-RBD complexes are iteratively
perturbed by the peptide mutations, which are
retained under favorable Monte Carlo decisions.
The computational search will provide libraries
of optimized therapeutics capable of reducing the
SARS-CoV-2 infection on a global scale.

The very fast spreading of a severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) in the human
population has already led to hundreds of thousands
of fatalities and dire socio-economic effects worldwide.
Therefore, many concepts and strategies were initiated
to identify drug targets [1], develop effective therapeutics
and vaccines against SARS-CoV-2 [2, 3], including the
optional use of therapeutics developed for other purposes
[4–7]. Some of the strategies have focused on direct tar-
geting of the spike (S) protein [8, 9], located on the outer
surface of the SARS-CoV-2 virion, which initiates the cell
entry process. This process starts by binding of the recep-
tor binding domain (RBD) on the S protein to a human
host receptor angiotensin converting enzyme 2 (ACE2),
followed by a proteolytic cleavage and release of its S1
subunit [10]. Then, the remaining S2 subunit undergoes
a conformational change, which eventually leads to virus-
host membrane fusion [11]. The S protein RBD of SARS-
CoV-2 binds more strongly to ACE2 than SARS-CoV
[12]. This fact, together with other innovative character-
istics of the S protein, including a furin preactivation of

the cleavage site, and a hidden RBD, likely contribute to
the large infectivity of SARS-CoV-2 [12].

SARS-CoV-2 is mutating and further adjusting to the
human environment, like other novel viral pathogens.
Many strains of SARS-CoV-2 have already been detected
[13, 14]. Some mutations, such as D614G on the S pro-
tein, lead to rapid and enhanced viral transmission [15],
causing this strain to locally dominate. The mutating
SARS-CoV-2 coronavirus could also adapt to new hosts,
such as domestic animals [16]. Therefore, to mitigate
the large spreading and effects of SARS-CoV-2, it is
important to identify classes of therapeutics that could
be rapidly developed to act against multiple coronavirus
strains.

Here, we address this problem by introducing libraries
of adaptive peptide therapeutics that could block differ-
ent S protein strains from interacting with ACE2. With
the use of advanced computational methods, we show
that adaptive evolution of suitable peptide templates
can provide multiple inhibitors for competitive binding
to different S protein variants. Using libraries of pep-
tides adapted to different S protein variants could prevent
their mutational escape, in analogy to using cocktails of
S protein antibodies [9]. Our algorithm can evolve pep-
tide inhibitors that competitively bind to (block) a set
of desired targets, such as different S protein variants,
S proteins with glycan shielded sites [17–19], and other
related systems [20].

Results and Discussion

S proteins variants. Over the time and geographical
regions, SARS-CoV-2 virus has so far evolved into more
than 104 mutated strains, shown in the mutation tree
of publicly available unique genome sequences (through
June 2020) in Fig. 1a [21]. Out of these mutations, so
far (June 2020) 25 have been recognized in the S protein
RBD, as summarized in Fig. 1b. Five of these mutations
include amino acids that form a part of the ACE2-binding
surface (A475V, G476S, S477I, V483A, and V503F), as
highlighted in Fig. 1c.

In Fig. 1d, we present the RBD-ACE2 host-receptor
binding free energies, ∆GMMGB−SA, obtained in the
presence of these 5 mutations. The 5 RBD:ACE2 com-
plexes are simulated for 30 ns, and their average binding
energies are obtained in the last 15 ns. The originally re-
ported RBD and the S477I RBD have the strongest bind-
ing to the human ACE2, ∆GMMGB−SA ≈ −50 kcal/mol,
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FIG. 1: Mutations of SARS-CoV-2. a) Time-dependent mutation tree of SARS-CoV-2 colored according to geographical regions
of origin (through June 2020) [21]. b) 25 single mutations identified in RBD of the S protein. c) 5 amino acid mutations on RBD
in contact with the ACE2 receptor. d) Binding free energies are evaluated with the MMGB-SA method for the ACE2-RBD
complexes, including the originally reported RBD (wild type, labeled as WT) and the five mutant RBDs listed in panel c.

while the other systems bind with ∆GMMGB−SA ≈
−(40 − 50) kcal/mol. In order to block all these RBD
variants, the peptide inhibitors should have comparable
or lower ∆GMMGB−SA values.

Adaptation of peptides by single mutations. Two
ACE2-based peptide structures, shown in Fig. 2a, are
selected as templates for the first generation peptide in-
hibitors of the S protein [8]. The smaller template-1
includes single truncated α1 helix of ACE2 (amino acids
21 − 43), and the larger template-2 includes two α1α2

helices of ACE2 (amino acids 19 − 83). In the adaptive
evolution search for optimized therapeutics, the selected
ACE2-extracted peptide templates will be gradually mu-
tated to increase their binding strength to RBD.

In recent mutagenesis experiments, the whole ACE2
with single mutations in regions directly contacting RBD
were examined for their binding to the original S protein
[22]. To perform preliminary testing of our adaptive evo-
lution search of peptide therapeutics, we first selected
the most fit mutants from these experiments, and imple-
mented their mutations in our templates-1,2. We simu-
lated 22 peptides, i.e., the original templates and their
10 single mutants, complexed with the original S protein
RBD. Their free energies of binding, ∆GMMGB−SA, were
evaluated in 100 ns simulations and presented in Fig. 2b.
Template-1 binds to RBD with ∆GMMGB−SA ≈ −19
kcal/mol, while its mutants have higher affinities giv-

ing ∆GMMGB−SA ≈ −(24 − 35) kcal/mol. In all cases,
template-1 significantly changes its conformation in the
bound configuration, as the helix loses the curvature ob-
served when within ACE2, and the hydrogen bonding
between Glu35 (template-1) and Gln493 (RBD), enabled
by the helix curvature, is broken.

In contrast, template-2 has more direct contacts with
RBD than the shorter template-1 variants, so it binds to
it more strongly, ∆GMMGB−SA ≈ −36 kcal/mol. How-
ever, only two template-2 mutants (H34A and K31W)
have higher affinities to RBD than the original template-
2, having ∆GMMGB−SA ≈ −45 kcal/mol. These simula-
tions also revealed that peptides with a stronger binding
covered larger RBD sections (Fig. S1), and reduced the
RBD exposure to other potential binding partners. These
results show that the experimental results obtained for
mutated ACE2 [22] (Fig. S2) can provide a good guidance
in the mutation of template-1, but the same mutations
are less effective in the larger template-2.

Adaptive evolution of peptide inhibitors. The
above results have clearly demonstrated that suitable
peptide templates with appropriate mutations can ac-
quire a strong binding to specific targets. To optimize
such peptides against specific viral strains, we have de-
veloped combined mutation/selection (evolution) compu-
tational algorithms which can guide a multi-step adap-
tive evolution of the peptides: 1) Random mutations
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FIG. 2: Modeling of peptide-RBD complexes. a) Complexes of S protein RBD (blue) and two peptide templates (red). Locations
of five S protein mutations examined in the present work are marked by blue spheres. Amino acid residues changed in singly
mutated peptides are marked by yellow spheres. b) Free energies of binding, ∆GMMGB−SA, between the originally reported
S protein RBD and the wild type or singly mutated ACE2-based peptides. Locations of mutated peptide amino acids are
highlighted in panel a. c) Snapshots of initial and optimized template-1 peptides binding to the original RBD. The sequence
of the optimized peptide was obtained after 100 mutation attempts, with 10 ns long MD simulation after each mutation. The
final peptide with the optimized sequence was further relaxed in a 175 ns MD simulation. The initial peptide is shown as
a red helix, with amino acids that are subsequently mutated shown in thin faded yellow licorice. The optimized peptide is
shown as an orange helix, with mutated amino acids shown in thick yellow licorice. d) Adaptive evolution of template-1. The
plot shows the binding free energies, ∆GMMGB−SA, between the peptide and the original RBD, presented as a function of
the performed mutation, where the peptide:RBD complexes are relaxed for 10 ns after each mutation attempt. e) The time
evolution of ∆GMMGB−SA between the final optimized peptide and the original RBD. The average value, obtained from the
last 75 ns of the trajectory (gray), is ∆GMMGB−SA = −57 kcal/mol. The faded green line shows the data points calculated
every 0.1 ns, and the dark green line shows the running average. f) Initial and optimized sequences of template-1 peptides.
The final peptides were optimized for binding to the original and mutant RBDs, with peptide-RBD complexes relaxed in 10 ns
MD simulations after each attempted mutation.

are introduced into random positions of the peptide
templates. 2) Short MD simulation trajectory of the
mutated-peptide:RBD complex are run and followed by
a selection or rejection of the mutation via Monte Carlo
(MC) sampling using a Metropolis criterion applied to

the change of the free energy of peptide-RBD binding,
∆GMMGB−SA (Methods). 3) The mutation/selection
process is iteratively repeated until the binding affin-
ity of peptides to the target S protein RBD is satisfac-
tory (Methods). 4) Additional evolution of the molecules
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FIG. 3: (a-c) Adaptive evolution of template-1 coupled with
singly-mutated RBDs. (d) Adaptive evolution of template-
2 coupled with the original RBD. After attempted muta-
tions, peptide:RBD complexes were relaxed in 10 ns simu-
lation steps.

might be considered after the MC decisions to allow for
a better internal relaxation of the molecules. Due to a
partly stochastic nature of MD simulations, the random-
ness in mutations, and the MC selection, different pep-
tides can be obtained in separate trajectories that corre-
spond to separate local minima of the free energy surface.
These peptides form a pool (ensemble) of potential ther-
apeutics evolved for a selected viral strain, which can be
further enriched by considering multiple viral strains.

In Figs. 2c-e, S3, and Table S1, coupling of template-1
to RBD was optimized in the adaptive evolution, where
10 ns MD simulation trajectories were generated after
each trial mutation of template-1. Of the 100 mutations
attempted, 13 mutations were accepted, and 11 amino
acids were changed (individual residues can be mutated
more than once). Figure 2d reveals the progression of
binding free energies with the mutations of template-
1, starting from ∆GMMGB−SA = −19 kcal/mol. As
detailed in Fig. 2c, during the adaptive evolution, the
mutating helical peptide lost its bending (this change is
independent of mutations) and multiple initial contacts
with RBD. At the same time, it shifted with respect
to its initial position and formed many new contacts.
Peptide residue E37 formed a salt bridge with the origi-

nal RBD, while residues Q24, Y26 (mutated), Q30 (mu-
tated), S41 (mutated) and R42 (mutated) formed hydro-
gen bonds of varying stability with the original RBD. The
resulting peptide bound to RBD with ∆GMMGB−SA =
−70 kcal/mol at the end of thirteen 10 ns-long trajecto-
ries (associated with individual accepted mutations).

As shown in Fig. 2e, additional 175 ns relaxation
of this peptide resulted in a slightly less favorable
∆GMMGB−SA ≈ −57 kcal/mol. Therefore, adaptive
evolution requires sufficiently long relaxation times for a
good stabilization of the whole system. Short relaxation
times may result in incomplete peptide adjustments and
free energies that can be misleadingly favorable. More-
over, a faster MC convergence could be achieved by con-
sidering the whole free energy changes rather than the
peptide-RBD binding free energies. However, internal
reorganizations of molecules inevitably take part in long
trajectories, so the difference in binding energies alone
might be sufficient for the MC decision, as long as addi-
tional relaxation is allowed between individual MC steps
(point 4 in the method).

Next, we adaptively evolved template-1 coupled to
3 separate singly-mutated RBDs, chosen from Fig. 1d.
For simplicity, 100 mutations were attempted, followed
by 10 ns simulations after each attempt. The adaptive
evolution gave peptides with ∆GMMGB−SA ≈ −(45 −
70) kcal/mol, as summarized in Figs. 3a-c and Fig. 2f.
Peptides targeting A475V and G476S RBDs each had 5
accepted mutations, respectively, while peptides target-
ing S477I RBD had 19 accepted mutations. In the A475V
RBD case, one of the early accepted mutations lead to
breaking of the helix secondary structure, and thus to a
different peptide-RBD binding mode. This shows that
individual alpha helices without additional stabilization,
such as by side branching [23], might be too simplistic
therapeutics.

In Fig. 3d, the adaptive evolution was performed with
a more stable template-2 (α1α2), but random muta-
tions were only introduced into the α1 helix, which
was in direct contact with the original RBD. After
12 accepted mutations and 10 changed amino acids
(listed in Table S2), the binding strength increased from
∆GMMGB−SA = −36 kcal/mol to −60 kcal/mol. There-
fore, the adaptively evolved template-2 can compete with
the whole ACE2, having ∆GMMGB−SA ≈ −50 kcal/mol
(Fig. 1c). Both the initial and optimized template-2 pre-
serve the curvature of the α1 helix, despite the mutation
of E35 (to Y35), which is observed to interact with Q493
(RBD). This feature preserves the binding pattern ob-
served in ACE2:S protein RBD complex [1]. However,
the salt bridge between D30 (initial peptide) and K417
(RBD) (shown in Fig. S4 for template-2 optimized with
1 ns simulations after mutations) is lost in the peptide
optimized with 10 ns simulations after mutations.

In summary, we have demonstrated that ACE2-based
peptide templates can be adaptively evolved by compu-
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tation using mutation/selection processes to form opti-
mized inhibitors for a strong and competitive S protein
RBD binding. The developed approach can be used to
design peptide inhibitors based on templates extracted
from different ACE2 polymorphs, including those from
other species [24], and other proteins binding to viral
pathogens. The optimized inhibitors obtained in different
evolution runs can be collected to form libraries of suit-
able therapeutics for different RBD variants. Cocktails
(ensembles) of peptide therapeutics could be delivered by
different means to provide a broad-spectrum protection
against different SARS-CoV-2 strains.

Methods
MD simulations. The simulated peptide template-1
(amino acids 21 − 43 of ACE2) and template-2 (amino
acids 19 − 83 of ACE2) were separately bound to the S
protein RBD. All structures were directly based on the
crystal structure of the human ACE2 protein bound to
the SARS-CoV-2 Spike protein RBD (pdbID: 6LZG) [10].
The mutations in peptides and RBD were introduced us-
ing the psfgen plugin in VMD [25].

The systems were simulated using NAMD2.13 [26] and
the CHARMM36 protein force field [27]. The simulations
were conducted with the Langevin dynamics (γLang = 1
ps−1) in the NpT ensemble, at temperature of T = 310 K
and pressure of p = 1 bar. The particle-mesh Ewald
(PME) method was used to evaluate Coulomb coupling,
with periodic boundary conditions applied [28]. The time
step was set to 2 fs. The long range van der Waals and
Coulombic coupling were evaluated every 1 and 2 time
steps, respectively. After 2, 000 steps of minimization,
the solvent molecules were equilibrated for 1 ns, while
the complexes were restrained using harmonic forces with
a spring constant of 1 kcal/(molÅ). Next, the systems
were equilibrated in 100 ns production MD runs with no
restraints.

MMGB-SA calculations. We used the Molecular
Mechanics Generalized Born - Surface Area (MMGB-SA)
method [29, 30] to estimate the relative binding free en-
ergies between peptides (or ACE2) and RBDs. The free
energies were estimated from separate MMGB-SA calcu-
lations for three systems (peptide/ACE2, RBD, and the
whole complex) in configurations extracted from the MD
trajectories of the whole complex in the explicit solvent.
The MMGB-SA free energies of the extracted configura-
tions of the three systems were calculated as

Gtot = EMM +Gsolv−p +Gsolv−np − T∆Sconf ,

where EMM , Gsolv−p, Gsolv−np, and ∆Sconf are the
sum of bonded and Lennard-Jones energy terms, the
polar contribution to the solvation energy, the nonpo-
lar contribution, and the conformational entropy, respec-
tively. The EMM , Gsolv−p and Gsolv−np terms were
calculated using the NAMD 2.13 package [26] general-
ized Born implicit solvent model [31], with a dielectric

constant of the solvent of 78.5. The Gsolv−np term for
each system configuration was calculated in NAMD as
a linear function of the solvent-accessible surface area
(SASA), determined using a probe radius of 1.4 Å, as
Gsolv−np = γSASA, where γ = 0.00542 kcal/molÅ2 is
the surface tension. The ∆Sconf term was neglected,
since the entropic contribution differences nearly can-
cel when considering protein-protein binding of single
residue mutants [32, 33]. Moreover, the entropy term,
which is often calculated with a large computational
cost and low prediction accuracy, is likely to be sim-
ilar for the studied systems, which differ in single or
several mutations. Since the Gtot values are obtained
for peptide configurations extracted from the trajecto-
ries of complexes, Gtot doesn’t include the free energies of
peptide reorganization; the correct free energies of bind-
ing should consider configurations of separately relaxed
systems. The approximate binding free energies of the
studied complexes were calculated as 〈∆GMMGB−SA〉 =
〈Gtot(P/ACE2−RBD)−Gtot(P/ACE2)−Gtot(RBD)〉,
where P/ACE2 represents peptides or complete ACE2,
and the 〈 averaging 〉 is performed over configurations
within the second half of the calculated trajectories.

Adaptive evolution algorithm. A mutation/selection
algorithm is developed and used to iteratively increase
the affinity of binding between peptide templates and
the S protein RBD. The algorithm involves sequences
of steps combining molecular dynamics simulations and
MC decisions using the Metropolis criterion [34, 35],
which results in MC sampling of the peptide sequence
space. Initially, the selected peptide template (directly
extracted from ACE2) complexed with RBD is equili-
brated for 100 ns. Then, the free energy of binding of
the peptide:RBD complex, ∆Gbefore

MMGB−SA, is evaluated.
Next, a random mutation is introduced at a random
position in the peptide, followed by a short 1 − 10 ns
equilibration in MD simulations of the complex, and
evaluation of the ∆Gafter

MMGB−SA free energy of binding
of the complex. Finally, the mutation is accepted if
∆Gafter

MMGB−SA < ∆Gbefore
MMGB−SA or if the Metropolis cri-

terion is satisfied,

exp[−(∆Gafter
MMGB−SA −∆Gbefore

MMGB−SA)/kBT ] > r ,

where r is a random number in the (0, 1) interval. If
the mutation is accepted, then the new peptide becomes
the new reference peptide and its ∆GMMGB−SA becomes
the reference value ∆Gbefore

MMGB−SA for the next attempted
mutation. In each run of the algorithm, 100− 200 muta-
tions were attempted on peptide templates, as stated in
the results.
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