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Abstract: The tumor microenvironment plays an important role in the initiation and progression of
pancreatic adenocarcinoma (PDAC). In this systematic review, we provide an overview of clinical
trials with stroma-targeting agents. We systematically searched MEDLINE/PubMed and the EMBASE
database, using the PRISMA guidelines, for eligible clinical trials. In total, 2330 records were screened,
from which we have included 106 articles. A meta-analysis could be performed on 51 articles which
describe the targeting of the vascular endothelial growth factor (VEGF) pathway, and three articles
which describe the targeting of hyaluronic acid. Anti-VEGF therapies did not show an increase in
median overall survival (OS) with combined hazard ratios (HRs) of 1.01 (95% confidence interval
(CI) 0.90–1.13). Treatment with hyaluronidase PEGPH20 showed promising results, but, thus far,
only in combination with gemcitabine and nab-paclitaxel in selected patients with hyaluronic acid
(HA)high tumors: An increase in median progression free survival (PFS) of 2.9 months, as well as a
HR of 0.51 (95% CI 0.26–1.00). In conclusion, we found that anti-angiogenic therapies did not show
an increased benefit in median OS or PFS in contrast to promising results with anti-hyaluronic acid
treatment in combination with gemcitabine and nab-paclitaxel. The PEGPH20 clinical trials used
patient selection to determine eligibility based on tumor biology, which underlines the importance to
personalize treatment for pancreatic cancer patients.

Keywords: PDAC; stroma; clinical trial; systematic review; targeted therapy

1. Introduction

Despite recent advances in our understanding of this disease, pancreatic adenocarcinoma remains
one of the deadliest cancers, with a five-year survival rate of 8% [1]. The majority of patients present with
locally advanced or metastatic diseases and are offered palliative care with chemotherapeutic treatment
options [2]. Recent clinical trials showed that the addition of nab-paclitaxel to gemcitabine increased
overall survival (OS) from 6.6 to 8.7 months (hazard ratio (HR) 0.72, 95% confidence interval (CI),
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0.62 to 0.83) [3,4]. For patients with a good physical condition, treatment with FOLFIRINOX, consisting
of 5-FU, oxaliplatin, and irinotecan, increased survival to 11.1 months compared to gemcitabine alone,
but this treatment comes at the cost of potentially severe side-effects [5].

Based on recent advances in our understanding of the biology of pancreatic cancer, novel
therapeutic strategies have focused on tumor-stromal interactions. The dense stroma is a characteristic
of many solid tumors, but in particular of pancreatic cancer [6]. Several cell types such as fibroblasts,
stellate cells, and immune cells are present in the (tumor) stroma, in addition to an abundance of
fibrous proteins, glycoproteins, and polysaccharides [6]. These constituents are thought to prevent
circulating drugs from reaching the tumor cells, to inhibit the immune system, and to provide the tumor
cells with growth factors [7–9]. However, a strong desmoplastic reaction could also prevent tumor
spread, as mechanical properties of the stroma are thought to encapsulate the tumor cells [10]. Most
stroma-targeting treatments have targeted either angiogenesis, fibroblasts or aim to modify specific
components of the extracellular matrix. In a pre-clinical setting, several tumor-stroma interactions
have been targeted [10]. Human clinical trials were initiated in which the benefit of these agents
was assessed in combination with the standard of care. With this systematic review of clinical trials
targeting tumor-stroma interactions, we aimed to determine the value of these interactions for the
treatment of pancreatic cancer. A meta-analysis could be performed on clinical trials investigating
targeting hyaluronic acid (HA) or targeting the vascular endothelial growth factor (VEGF) pathway.
These components together make up the bulk of the tumor micro-environment in pancreatic cancer
(summarized in Figure 1). For other tumor stroma-targeting strategies, such as matrix-metalloproteinase
inhibition, that have been assessed in human clinical trials, insufficient data was present to perform a
meta-analysis, but these are discussed here.
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Downstream of these receptors are both the phosphoinositide 3 kinase (PI3K) and the Ras/Mek pathway.
Anti-angiogenic treatment works through ligand binding or receptor blocking. Hyaluronic acid is
a component of the extracellular matrix and is involved in cell proliferation through the cluster of
differentiation 44 (CD44) receptor. Hedgehog is secreted by the stroma and binds to the Patched (PTCH)
receptor, which activates the smoothened receptor and, through Glioma-Associated Oncogene (GLI)
cell proliferation and survival, is activated.

2. Results

A total of 2330 studies were retrieved with our search strategy in the PubMed, Cochrane,
and Embase databases. The search and selection process is shown in Figure 2. From the search
results we have included 98 articles, of which 51 are congress abstracts, which describe anti-stromal
therapies in pancreatic adenocarcinoma [11–107]. An additional five articles were found through
cross-referencing [108–112]. These articles represent 70 individual clinical trials of which 51 used
anti-vascular endothelial growth factor receptor (VEGFR) therapies, including 25 trials that investigated
multi-tyrosine kinase inhibitors (TKIs) that are known to target additional receptors. Seven clinical
trials investigated anti-Hedgehog therapies and three investigated anti-hyaluronic acid treatment. Nine
trials could not be categorized in any of these categories. Twenty trials were randomized controlled
trials, and most trials included patients with the advanced stage of disease (Table 1).
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Table 1. All clinical trials included in this review.

Author, Year Phase Type Study Drug Disease Stage n Treatment Backbone

Anti-VEGFR
Kindler, 2005 II Single arm Bevacizumab IV 52 Gemcitabine
Crane, 2006 I Dose escalation Bevacizumab LAPC 4 Capecitabine + RT

Ko, 2008 II Single arm Bevacizumab IV 52:60 Gemcitabine + cisplatin
Crane, 2009 II Single arm Bevacizumab IV 82:63 Capecitabine + RT
Javle, 2009 III Single arm Bevacizumab LAPC/IV 50:64 Gemcitabine + capecitabine

Starling, 2009 I Dose escalation Bevacizumab + erlotinib LAPC/IV 20:60 Gemcitabine + capecitabine
Van Cutsem, 2009 III RCT Bevacizumab IV 306:301 Gemcitabine + erlotinib

Picozzi, 2009 I/II Single arm Bevacizumab IV 27 Gemcitabine + docetaxel
Isacoff, 2010 I Single arm Bevacizumab LAPC/IV 28 5-FU + nab-paclitaxel + oxaliplatin
Kindler, 2010 III RCT Bevacizumab LAPC/IV 302:300 Gemcitabine

Ko, 2010 II Single arm Bevacizumab + erlotinib IV 36:60 -
Astsaturov, 2011 II Dual arm Bevacizumab IV 16:16 Docetaxel

Czito, 2011 I Dose escalation Bevacizumab + erlotinib Any 9 RT
Fogelman, 2011 II Single arm Bevacizumab LAPC/IV 50:59 Gemcitabine + oxaliplatin

Small, 2011 II Single arm Bevacizumab LAPC 29:62 Gemcitabine + RT
Isacoff, 2012 II Single arm Bevacizumab LAPC/IV 40 5-FU + nab-paclitaxel + oxaliplatin

Ko, 2012 II RCT Bevacizumab + cetuximab LAPC/IV 30:31 Gemcitabine
Martin, 2012 II Single arm Bevacizumab LAPC/IV 42:60 Gemcitabine + 5-FU
Rougier, 2013 III RCT Aflibercept IV 217:275 Gemcitabine

Sohal, 2013 II Single arm Bevacizumab LAPC 19:60 Gemcitabine + oxaliplatin
Van Buren, 2013 II Single arm Bevacizumab LAPC 59:60 Gemcitabine + RT

Sahora, 2014 II Single arm Bevacizumab IV 30:65 Gemcitabine
Watkins, 2014 II Single arm Bevacizumab + erlotinib LAPC/IV 44 Gemcitabine + capecitabine
Chadha, 2016 I Dose escalation Bevacizumab + erlotinib LAPC 17:64 Capecitabine + RT
Berlin, 2018 II Dual arm Bevacizumab Resected 62:65 Gemcitabine + RT
Sahai, 2018 I/II Dose escalation Bevacizumab IV 12 5-FU + nab-paclitaxel + oxaliplatin
Multi-TKI

Wallace, 2007 II Single arm Sorafenib IV 17 Gemcitabine
Spano, 2008 II RCT Axitinib LAPC/IV 103 Gemcitabine
Cohen, 2009 I Single arm Sorafenib IV 19 Gemcitabine + erlotinib

Anderson, 2010 I Dose escalation Sorafenib LAPC 27 Gemcitabine + RT
Lubner, 2010 II Single arm Sorafenib Any 24 Oxaliplatin + capecitabine
O’Reilly, 2010 II Single arm Sunitinib IV 77:65 -
Cohen, 2011 II Single arm Sorafenib LAPC/IV 45 Gemcitabine + erlotinib
Kindler, 2011 III RCT Axitinib III/IV 314:316 Gemcitabine
Saletti, 2011 I Dose escalation Vandetanib LAPC/IV 15:67 Gemcitabine

El-Khoueiry, 2012 II RCT Sorafenib IV 15:37 Gemcitabine
Goncalves, 2012 III RCT Sorafenib IV 52:52 Gemcitabine

Kindler, 2012 II Single arm Sorafenib LAPC/IV 17 Gemcitabine
Spano, 2012 I Dose escalation Axitinib LAPC/IV 6:59 Gemcitabine
Reni, 2013 II RCT Sunitinib IV 28:27 -

Aparicio, 2014 I Dose escalation Sorafenib LAPC/ 12 Gemcitabine + RT
Cardin, 2014 II Single arm Sorafenib + erlotinib LAPC/IV 36:71 -
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Table 1. Cont.

Author, Year Phase Type Study Drug Disease Stage n Treatment Backbone

Cascinu, 2014 II RCT Sorafenib LAPC/IV 43:44 Gemcitabine + cisplatin
Chiorean, 2014 I Dose escalation Sorafenib LAPC/IV 27:59 Gemcitabine + RT

Dragovich, 2014 II Single arm Vatalinib IV 67:64 -
Bergmann, 2015 II RCT Sunitinib LAPC/IV 54:52 Gemcitabine
Makielski, 2015 II Single arm Sorafenib LAPC/IV 24:63 Oxaliplatin + capecitabine

Kessler, 2016 I Dose escalation Vandetanib Any 10:55 Gemcitabine + capecitabine
Zhen, 2016 I Dose escalation Cabozantinib LAPC/IV 12:61 Gemcitabine

Bozzarelli, 2016 II Single arm Regorafenib LAPC/IV 20 -
Middleton, 2017 II RCT Vandetanib LAPC/IV 72:70 Gemcitabine
Anti-Hedgehog
Richards, 2012 Ib/II Single arm IPI-926 IV 16 Gemcitabine

DeJesus-Acosta, 2014 II Single arm Vismodegib IV 59:80 Gemcitabine + nab-paclitaxel
Kim, 2014 I Single arm Vismodegib IV 25:65 Gemcitabine

Catenacci, 2015 Ib/II RCT Vismodegib IV 53:53 Gemcitabine
Ko, 2016 I Dose escalation IPI-926 LAPC/IV 15:58 FOLFIRINOX

Macarulla, 2016 Ib Dose-escalation Sonidegib IV 19 Gemcitabine
Lee, 2017 Ib Dose-escalation Sonidegib IV 26 Gemcitabine + nab-paclitaxel

Anti-Hyaluronic acid
Hingorani, 2016 Ib Dose escalation PEGPH20 IV 28 Gemcitabine
Hingorani, 2018 II RCT PEGPH20 IV 166:113 Gemcitabine + nab-paclitaxel

Ramanathan, 2019 Ib/II RCT PEGPH20 IV 59:55 FOLFIRINOX
Other stromal targets Drug target

Evans, 2001 II RCT Marimastat
(MMP) MMP any 113 -

Moore, 2003 III RCT BAY 12-9566
(MMP) MMP IV 138:139 -

Friess, 2006 II RCT Cilengitide
(integrin) Integrin LAPC 46:43 Gemcitabine

Infante, 2011 I Dose-escalation Pomalidomide VEGF/TNFα IV 22 Gemcitabine
Shi, 2012 II Single arm Thalidomide VEGF/TNFα LAPC/IV 31 Capecitabine

Infante, 2013 II Single arm Lenalidomide VEGF/TNFα IV 72 Gemcitabine
Deplanque, 2015 III RCT Masitinib cKit/PDGFR LAPC/IV 172:178 Gemcitabine
Ullenhag, 2015 Ib Dose-escalation Pomalidomide VEGF/TNFα LAPC/IV 12 Gemcitabine
O’Reilly, 2017 II RCT Necuparanib Heparanase IV 120 Gemcitabine + nab-paclitaxel

Trials that were discussed in multiple publications are shown here as most recent publication. Randomized control trial (RTC); locally advanced pancreatic cancer (LAPC); radiotherapy
(RT); metalloproteinase (MMP); tumor necrosis factor alpha (TNFα); Vascular endothelial growth factor (VEGFR).
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In most trials included in this review, gemcitabine was the standard of care, five trials did not
treat patients with any chemotherapy, and only two trials treated patients with FOLFIRINOX as
backbone. Five of the more recent trials used the combination of gemcitabine and nab-paclitaxel as
backbone [25,41,43,65,112].

2.1. Targeting Angiogenesis in Pancreatic Adenocarcinoma (PDAC)

Most trials (51/70) targeted angiogenesis, with many of these trials (26/51) assessing the treatment
benefit of bevacizumab, a monoclonal antibody that binds vascular endothelial growth factor A
(VEGF A). These clinical trials included patients with locally advanced or metastatic diseases.
In a pre-clinical setting, anti-angiogenic treatment reduced pancreatic tumor cell growth, and an
overexpression of VEGF was associated with tumor progression and poor prognosis [114,115]. These
results, and the clinical benefits observed in other tumor types, provided a rationale to investigate the
use of bevacizumab for the treatment of pancreatic cancer.

In a single-arm phase II trial, the combination of bevacizumab and gemcitabine for metastatic
disease showed promising results [57]. Several clinical trials followed, with some alterations to the
chemotherapy backbone; these trials showed mixed results [21,22,51,62]. Kindler et al. demonstrated,
in a large phase III trial with 603 patients, that the addition of bevacizumab did not increase overall
survival (5.8 vs. 5.9 months, p = 0.95) for patients with advanced diseases [59]. Yet, some benefit
of treatment was seen in progression free survival (PFS), albeit not significant (3.8 vs. 2.9 months,
p = 0.075). Several phase I and II trials followed, with alternative chemo(radio)therapy backbones, but
no benefit of bevacizumab addition was observed. Next, the combination of VEGF and an epidermal
growth factor receptor (EGFR) inhibition was assessed, as the addition of erlotinib to gemcitabine had
shown some treatment benefit [116]. In a phase III trial bevacizumab was combined with erlotinib and
gemcitabine, but no significant increase in overall survival was found (7.1 vs. 6.0 months, p = 0.21) [104].
However, a benefit was seen in PFS: 4.6 vs 3.6 months (p = 0.0002). Three phase I [17,24,106] and three
phase II [61,64,66] clinical trials followed. None of these trials showed an increase in overall survival.

Axitinib and sorafenib, both small molecule tyrosine kinase receptor inhibitors (TKI) and
aflibercept, a VEGF “trap” fusion protein, were used to target angiogenesis in advanced pancreatic
cancer [58,87,96,97]. In a phase II trial, the combination of axitinib, a pan-VEGF receptor inhibitor,
and gemcitabine did not show an increase in overall survival compared to gemcitabine alone (6.9
vs. 5.6 months) [96]. In a large phase III trial, Kindler et al. confirmed that the addition of
axitinib did not increase overall survival: 8.5 months versus 8.3 months [58]. The treatment benefit
of sorafenib, an inhibitor of VEGFR 2 and 3, platelet derived growth factor receptor (PDGFR)
and Raf family kinases, was assessed in multiple trials, but none of these trials demonstrated a
treatment benefit [11,12,14,18,28,32,60,67,69]. In a phase III randomized clinical trial no significant
difference had been observed in median OS: 8.0 vs. 9.2 months when combined with gemcitabine [32].
Thereafter, sorafenib was assessed in combination with EGFR inhibition, but no benefit for OS or
PFS was observed [19,20]. Targeting the VEGF, a ligand targeting agent aflibercept was added
to gemcitabine in a phase III trial but also yielded no significant difference in overall survival
(6.5 months vs. 7.8 months) [87]. Other TKIs that also target the VEGF receptor were assessed in
combination with chemotherapy in seven clinical trials (see Table 1). None of the clinical trials assessing
the TKIs sunitinib, vandetanib, regorafenib, cabozantinib, or vatalinib demonstrated a treatment
benefit [26,27,45,52,71,79,84,88,91,107].

A meta-analysis did not show a treatment benefit in OS of all VEGF or VEGFR-targeting treatments
(Figure 3A). This analysis is based on the information of ten clinical trials, with a total of 1471 patients
in the experimental arms and 1434 patients in the control arms. The combined HR for OS across all
studies was 1.01 (95% CI, 0.90–1.13), showing that the addition of bevacizumab, axitinib, sorafenib, or
aflibercept does not improve overall survival. Data on PFS was reported in eight out of ten studies;
again, no treatment benefit was seen for PFS with a pooled HR of 0.91 (95% CI, 0.78–1.06) (Figure 3B).
The combined overall response rate (ORR) of the VEGF targeting clinical trials suggests a detrimental
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effect of anti-VEGF, with a combined HR of 1.54 (95% CI, 1.15–2.07) (Figure 3C). Removing treatment
heterogeneity and compiling the clinical trials that used only bevacizumab (Pooled HR 0.94 (0.77–1.16)),
axitinib (Pooled HR 0.90 (0.65–1.25)), or sorafenib (Pooled HR 1.12 (0.82–1.53)), showed that there was
no increase in overall survival from the addition of any VEGF targeting drug.
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2.2. Targeting the Hedgehog Pathway in PDAC

The Hedgehog (Hh) pathway plays a critical role in tumor progression in pre-clinical PDAC
models [117,118]. This is recapitulated in human pancreatic tumors, as the pathway’s ligand Sonic
Hedgehog (Shh) is overexpressed in 70% of pancreatic tumors, and is identified as one of the core
signaling pathways that undergo alterations in pancreatic cancer [119,120]. Interestingly, Shh is absent
from both the developing and the healthy pancreas but increases dramatically from the pancreatic
intraepithelial neoplasia (PanIN) stages to carcinoma [119,121]. The stromal compartment responds to
Hedgehog ligands secreted by tumor cells to support the latter indirectly, in contrast to other Hedgehog
driven cancers, such as basal cell carcinoma, where the Hedgehog pathway is often upregulated
through loss of function mutations in Patched homologue 1 (PTCH1) [122,123].

Vismodegib (GDC-0449, Genentech) and other Hedgehog inhibitors have been tested in several
clinical trials. In a genetically engineered mouse model of PDAC, Olive et al. demonstrated an
improved delivery of gemcitabine, following administration of saridegib, which warranted human
clinical trials [117]. Twenty-five patients in a single arm clinical trial were enrolled for vismodegib
treatment combined with gemcitabine [53]. The primary endpoint of this trial was the effect of
vismodegib on stem cell population in core-biopsies before and after treatment, but no significant
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treatment effect was seen. Treatment benefit for OS (5.3 months (95% CI, 3.6–8.4)) or PFS (2.8 months
(95% CI, 1.4–4.7)) was not found, compared to historical controls [53].

The phase Ib/II randomized clinical trial, evaluating the addition of vismodegib to gemcitabine,
showed no treatment benefit for OS nor PFS [16]. The median OS was 6.9 and 6.1 months, respectively
(adjusted HR, 1.04; 95% CI, 0.69–1.58). The median PFS was 4.0 months in the vismodegib arm versus
2.5 months in placebo (HR, 0.83; 95% CI, 0.55–1.23) [16]. In another phase II trial vismodegib was added
to a combination treatment of gemcitabine and nab-paclitaxel [25]. Preliminary results have been
presented and showed a median OS of 10 months (95% CI, 7.3–11 months), compared to 8.7 months for
treatment with nab-paclitaxel and gemcitabine. Median PFS was estimated to be 5.5 months (95% CI,
5.2–5.9 months) [25]. With 57 out of 80 patients included in 2014, final results were not presented [25].

The Hedgehog pathway inhibitor, saridegib (IPI-926, Infinity), has been used in several clinical
trials [85,100]. After a successful phase 1b trial with IPI-926 and gemcitabine demonstrating good
tolerability of the combination, the trial continued in a randomized, double blind phase II trial.
However, the phase II part of this trial was halted due to the early detection of a shorter median OS
in the experimental arm compared to the placebo arm [124]. The same drug was assessed in a phase
I trial combined with FOLFIRINOX [63]. This trial was halted early, with just 15 patients included,
due to the cancellation of the phase II trial described above and the lack of treatment benefit with
vismodegib treatment thus far.

In two phase I clinical trials, the Shh inhibitor, sonidegib (LDE225, Novartis, Basel, Switzerland) was
assessed in combination with gemcitabine monotherapy or in combination with nab-paclitaxel [65,68].
Even though efficacy was not the primary outcome for these trials, Lee et al. reported a median PFS of
4.9 months: This combination did not seem to confer additional clinical benefit [68].

With only one clinical trial publishing HRs, a meta-analysis could not be done for
anti-Hedgehog therapies.

2.3. Targeting Hyaluronic Acid in PDAC

The extracellular matrix is thought to play an important role in the development and progression
of PDAC. The dense matrix consists mainly of several types of glycans and collagens. The predominant
glycosaminoglycan is hyaluronic acid (HA). This protein retains water, which increases interstitial fluid
pressure, restricts vascular tissue, and may reduce chemotherapeutic delivery [125]. In normal tissues,
the balance of hyaluronic acid is maintained by synthesizing and degrading enzymes. In pancreatic
cancer tissues, this balance is shifted towards a higher concentration of HA, which is associated with
poor survival [126,127]. Therapeutic strategies that target hyaluronic acid can either inhibit synthesis,
block HA signaling, or break down stromal HA, as reviewed by Sato et al. [128].

Targeting HA deposition in PDAC is currently being assessed in clinical trials for several tumor
types. PEGPH20 (HALOzyme) is the PEGylated form of a recombinant human hyaluronidase, which
breaks down HA. In two phase I trials for solid tumors, dosing schedules and tolerability were assessed
of PEGPH20 [129]. PEGPH20 was used in combination with gemcitabine and nab-paclitaxel in a
phase Ib/II trial with previously untreated stage IV PDAC patients [42]. The phase II part of this trial
showed clinically meaningful improvements in PFS and ORR for patients with HAhigh tumors: An
increase in PFS from 6.3 (n = 21) to 9.2 (n = 22) months for the addition of PEGPH20 to gemcitabine
and nab-paclitaxel treatment. In a second phase II trial from Hingorani et al., the median OS in the
experimental arm was found to be 6.0 months (95% CI, 4.0–11,5), but stratification of patients based
on HA expression showed a significant treatment benefit for HAhigh patients with a median OS of
13.0 months (95% CI, 6.9–19.0) and a PFS of 7.2 months (95% CI, 5.2–9.0) [43]. For HAlow patients the
treatment benefit was markedly less: OS of 5.7 months (95% CI, 1.1–9.6) and PFS of 3.5 months (95% CI,
0.5–5.3). In addition to the phase II trial with nab-paclitaxel and gemcitabine, a phase 1b/II trial with
PEGPH20 and FOLFIRINOX was initiated concurrently [82]. This trial was closed in 2017 when a
planned interim analysis, with 114/138 patients included, showed a detrimental effect of PEGPH20
addition: Median OS for treatment with FOLFIRINOX only was 14.4 months and with PEGPH20
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just 7.7 months. The HR of 2.07 (95% CI, 1.28–3.34) clearly shows favor for a FOLFIRINOX only
treatment [82].

As demonstrated in the phase II trial, PFS for patients with HAhigh tumors was significantly
improved when treated with PEGPH20 in combination with chemotherapy, compared to chemotherapy
alone (HR 0.51, 95%CI, 0.26–1.00 p = 0.048) [43]. Currently, this treatment regimen is being tested in a
large randomized, double blinded phase III trial only for patients with HAhigh pancreatic tumors in
combination with gemcitabine and nab-paclitaxel [130].

2.4. Targeting Other Stromal Targets in PDAC

Several clinical trials target tumor-stroma interactions through additional targets, which are
summarized below: Targeting of the platelet derived growth factor (PDGF) receptor has been
investigated in multiple clinical trials. This receptor is expressed on cancer-associated fibroblasts and
has been shown to correlate with poor prognosis in pancreatic cancer [131]. Several of the TK inhibitors
discussed above also inhibit PDGF, albeit with lower affinity. Masitinib is a PDGFR inhibitor and was
assessed for treatment of pancreatic cancer in combination with gemcitabine in a phase III clinical
trial. Median OS was similar between treatment-arms: 7.7 and 7.1 months, with a HR of 0.89 (95% CI,
0.70–1.13) [109].

Thalidomide and its derivatives, such as pomalidomide, are thought to have immunomodulating
effects in addition to having anti-angiogenic and anti-inflammatory properties [132]. Thalidomide was
tested in combination with capecitabine in a phase II trial but, with a median PFS of 2.7 months (95%
CI, 2.4–3.3) and median OS of 6.1 months (95% CI, 5.3–6.9), results were not convincing [111]. The more
potent derivative pomalidomide was used in a phase I study for pancreatic cancer in combination with
gemcitabine [47]. Efficacy data are limited due to the number of patients, but three out of 20 patients
showed a partial response. Lenalidomide was also assessed in a phase I clinical trial in combination
with gemcitabine [101].

Several matrix metalloproteinase (MMP) inhibitors have been studied in the clinical setting. MMPs
are involved in extracellular matrix remodeling and may provide favorable conditions for cancer cell
migration [133]. MMP inhibitors, BAY 12-9566 and Marimastat mono-therapy, were compared to
gemcitabine, but failed to improve survival [72,108,110].

Integrins αv were involved in angiogenesis through VEGF and fibroblast growth factor (FGF)
signaling pathways [134]. An integrin receptor inhibitor, cilengitide was assessed for anti-angiogenic
capabilities in a phase II clinical trial in combination with gemcitabine for patients with advanced
diseases [31]. With a median OS of 6.7 months, compared to 7.7 months for gemcitabine alone, there
was no benefit of the addition of cilengitide [31].

3. Discussion

Treatment of pancreatic cancer with stroma-targeting therapies is aimed to reduce tumor bulk, or
increase delivery of chemotherapeutic agents to tumor cells, to improve immune-surveillance and
inhibit tumor-promoting signaling from the stroma. However, as shown in this systematic review,
clinical trials with stroma-targeting therapies have so far shown limited treatment benefits for patients
with advanced diseases, with an exception for hyaluronidase, which may improve its clinical outcome
when combined with gemcitabine and nab-paclitaxel and is currently being assessed in a phase III
clinical trial.

Treatment with anti-angiogenic drugs was thought to be beneficial in pancreatic cancer, as tumor
cell expression of VEGF is associated with metastases and poor prognosis [114,135]. In other tumor types,
such as breast cancer, non-small-cell lung cancer, and colorectal cancer, the addition of bevacizumab
to chemotherapeutic regimens has been shown to be beneficial [136–139]. Despite numerous clinical
trials with varying treatment combinations and dosages, this meta-analysis demonstrates no clinical
benefit of any VEGF or VEGFR-targeted treatment: Neither bevacizumab, sorafenib, axitinib, or
aflibercept increased the overall survival compared to controls. There may even be an adverse effect
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as seen in the objective response. This lack of efficacy for pancreatic tumors is difficult to explain;
it has been shown that large parts of the pancreatic tumor are already hypoxic due to the extensive
desmoplasia and limited vasculature, therefore anti-angiogenic agents directed against the ligand, such
as bevacizumab, may have limited effects [140]. In addition, there may be other effects of targeting
angiogenesis, unrelated to vasculature, as reviewed in Ellis et al. [141]. However, some parts of the
pancreatic tumor are oxygenated, and targeting VEGF in these regions could induce normalization of
the tumor-associated aberrant vasculature. In turn, this would increase chemotherapeutic delivery.
Timing is important for this concept to work, as proposed by Huang et al. [142]. In the trials discussed
in this review, anti-angiogenic therapies were given concurrently with chemotherapeutics. This could
be improved by administration of anti-angiogenic treatment several days before chemotherapeutic
delivery, as vasculature in rat models was normalized between two and four days after treatment [143].
Van der Veldt et al. investigated the process of vasculature normalization using bevacizumab
in vivo and observed that treatment with bevacizumab actually induced an overall decrease in tumor
perfusion [144]. This reduction started several hours after treatment and continued for several days.
This is contrary to observations published before and, therefore, more studies are required that
investigate the timing of anti-angiogenic treatment.

Pre-clinical studies often do not reflect the more complex human pancreatic cancer biology. This
was observed in the clinical trial with the Smo inhibitor IPI-926: In the pre-clinical trial, IPI-926 reduced
desmoplasia and increased intratumoral gemcitabine concentrations [117]. In the subsequent human
clinical trial, treatment with IPI-926, the experimental arm, showed an increase in progressive disease
compared to gemcitabine monotherapy [124]. Further investigation in mice, Rhim et al. demonstrated
that Shh deletion increased metastasis formation, generated poorly differentiated tumors, and, more
importantly, significantly reduced overall survival [145]. This was also confirmed in KPC mice,
which spontaneously develop pancreatic tumors, where long-term treatment with IPI-926 reduced
overall survival [145]. In other mouse models, it was shown that cancer-associated fibroblasts and the
desmoplasia limit epithelial growth, thus function to restrain pancreatic cancer [9,146]. This example
demonstrates that our understanding of tumor-stroma interactions is still too limited to fundamentally
advance the treatment for pancreatic cancer.

A more successful strategy that aims to deplete the some of the mechanical properties of the
stroma in PDAC is to target components of the extracellular matrix, such as hyaluronic acid. In several
clinical trials, the increased median OS and median PFS for HAhigh patients showed that stroma
depletion by breaking down hyaluronic acid can improve survival for pancreatic cancer patients [43].
In the ongoing phase III trial, patient selection is based on high HA levels in tumor biopsies. This is of
particular importance because assessment of biopsies identifies patients that may benefit most from this
treatment. Not only does this limit over-treatment of patients who will not benefit from treatment, but
more importantly, patients are given the optimal treatment for their specific tumor. In addition, patient
selection improves our design of clinical trials. The promising results of treatment with PEGPH20
for HAhigh patients may not have been found without patient selection [43]. The detrimental overall
efficacy results of the PEGPH20 trial with FOLFIRINOX backbone confirm that patient selection before
the start of treatment is necessary [82]. A similar approach for anti-angiogenic treatment has been
assessed several times in multiple cancer types, but despite holding prognostic significance, none of the
VEGF ligands or receptors can be used to determine or predict response to anti-angiogenic treatment,
regardless of assessment in biopsy material or in blood samples [147].

Patient selection using tumor biopsies is invasive, and developing multiple stainings for regular
clinical practice is laborious and expensive. Therefore, a less invasive and expensive alternative is
warranted, such as blood-based biomarkers or biomarker-based imaging. In addition, biomarkers
can be used for early detection of PDAC, which could provide more patients with surgery as part of
their curative treatment plan. Progress and challenges in their development have been reviewed by
Root et al. [148]. Biomarkers can be used for a specific treatment, such as circulating levels of VEGF-A
in blood samples, but more interesting are biomarkers for stroma, either specific for PDAC or for
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multiple cancer types. ADAM12 was recently identified as a marker for stromal activation and is
predictive for response to chemotherapy in pancreatic cancer [149]. This stromal marker is not only
predictive for response in pancreatic cancer, but also correlates with the tumor stage in breast and
bladder cancer and has prognostic value in small-cell lung cancer [150–152]. The usage of a general
stromal biomarker could provide clinical relevance for stroma-targeting therapies, spanning cancer
types and decreasing expense, while optimizing treatment.

This systematic review and meta-analysis have some limitations that need to be taken into account.
Our meta-analysis of all anti-angiogenic therapies combines several different types of anti-VEGF
treatments. Even when limiting the meta-analysis to a single drug, e.g., bevacizumab, substantial
heterogeneity between the studies was present, because different dosing and treatment schedules were
used. The meta-analysis of anti-hyaluronic acid treatment was limited by the total number of patients,
and this small cohort combines patients with different tumor biologies.

4. Materials and Methods

4.1. Search Strategy

A systematic search of MEDLINE/PubMed, the EMBASE, and the Cochrane database was
performed through August 2018 and updated in March 2019, in line with the guidelines of Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for systematic reviews and
meta-analyses by two independent researchers (MM, CS) [113]. We identified eligible research articles,
evaluating the effect of stroma-targeting therapies on the median overall survival in pancreatic
adenocarcinoma. Medical subject headings (MeSH) terms were used where possible. General
stroma search terms such as “stroma”, “desmoplasia”, and “extracellular matrix” were used in
combination with general search terms related to PDAC. In addition, specific search terms were
added for angiogenesis, Hedgehog, and hyaluronic acid inhibitors, to ensure that all studies targeting
these pathways were included. In the search, we excluded pre-clinical research using key words
such as “cell line”, “culture”, and “tissue samples”. The search strategy for MEDLINE/PubMed was
rewritten for the EMBASE and Cochrane databases. All strategies are shown in Appendices A–C.
Additionally, reference lists of full-text articles were searched manually for relevant literature. The
search results were analyzed by two independent investigators (MM, CS) and any disagreement was
resolved by discussion.

4.2. Eligibility Criteria

Studies considered eligible for inclusion in the systematic review of the following inclusion criteria
were met: Studies concerned pancreatic adenocarcinoma, studies described the effect of a treatment
targeting the tumor stroma, studies were prospective clinical trials, and studies were published in
English. Discordances between conference abstracts and final papers were assessed, and final papers
were referenced where possible.

4.3. Quality and Risk of Bias Assessment

The Cochrane bias assessment tool was used for the randomized controlled trials (RCTs). Each
study was assessed with a higher or lower risk for selection bias on their patient population, performance
bias, detection bias, attrition bias, reporting bias, and other possible biases, with a “high risk”, “unclear
risk”, or “low risk”. The following outcomes of interest were defined: Overall survival (OS),
progression-free survival (PFS), and overall objective response rate (ORR, defined by the rate of
complete response with partial response and stable disease). An adjusted version of the Joanna
Briggs Institute (JBI) critical appraisal checklist for case series was used to assess the quality of the
single-arm open-label studies. The studies were evaluated on their inclusion methods, standardization
of disease measurements, reporting of demographics of patients, reporting of follow-up, outcomes of
the objectives, and the statistical analysis method, by scoring each study a “yes”, “no”, or “unclear”.
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4.4. Data Extraction and Synthesis

For the eligible studies for full-text reading, we extracted data on type and phase of study,
stroma-targeting treatment, chemotherapeutic backbone, dosage and timing schedule, stage of
the tumor, number and age of patients in cohorts, the efficacy outcomes median overall survival,
progression-free survival and overall response rate, and the primary objective of the studies. We focused
on the following efficacy outcomes: Overall survival (OS), defined as the time between the beginning
of the study until time of death, progression-free survival (PFS), defined as the time between the
treatment initiation until disease progression, and overall objective response rate (ORR), defined as
the rate of complete response with partial response. Treatments targeting the VEGF, Hedgehog, or
hyaluronic acid pathway, respectively, were combined in a meta-analysis if hazard ratios (HR) were
published. OS and PFS HRs were used to assess the efficacy outcomes in a random effects model,
whereas a Mantel-Haenszel test was used for the ORR outcome, both using Review Manager 5.3.

5. Conclusions

In conclusion, the interactions between tumor and stroma in pancreatic cancer as a treatment
target remain interesting, albeit complicated. Anti-VEGF treatment has not shown treatment benefit.
However, treatment with the hyaluronic acid-modulator PEGPH20 has shown treatment benefit for
only HAhigh patients. With these results we can conclude that the stromal compartment of pancreatic
tumors needs to be considered. More importantly, trials need to stratify patients to identify subgroups
that may benefit from anti-tumor stroma therapies, which can be achieved with treatment specific
biopsies or with less invasive blood or imaging-based biomarkers. Only then can we make full use of
our increased understanding of the pancreatic tumor stromal biology.
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Appendix A

Pubmed search query: ((Angiogenic Proteins[MeSH] or Hedgehog Proteins[MeSH] or Vascular
Endothelial Growth Factors[MeSH] or Hyaluronic Acid[MeSH] or Shh protein, human[Supplementary
Concept] or Hedgehog[tiab] or Shh[tiab] or IHH[tiab] or VEGF[tiab] or hyaluronan[tiab]
or hyaluronic acid[tiab] ) AND (antagonists and inhibitors[Subheading] or inhibitor[tiab]
or antagonist[tiab] or inhibiting[tiab] OR Angiogenesis Inhibitors[Pharmacological Action] or
ciliobrevin A[tiab] OR VEGF Trapon[TIAB] or 5-nitro-2-3-phenylpropylaminobenzoic acid[tiab] or
Anecortave[tiab] or bevacizumab[tiab] or cytochalasin E[tiab] or Endostatins[tiab] or fumagillin[tiab]
or halofuginone[tiab] or homoharringtonine[tiab] or Interleukin-12[tiab] or Interleukin-23[tiab] or
LECT1[tiab] or lenalidomide[tiab] or O-chloroacetylcarbamoylfumagillol[tiab] or pomalidomide[tiab]
or Ranibizumab[tiab] or roquinimex[tiab] or semaxinib[tiab] or squalamine[tiab] or sunitinib[tiab]
or tetra4-N-methylpyridylporphine[tiab] or tetrathiomolybdate[tiab] or Thalidomide[tiab] or
thymogen[tiab] or trebananib[tiab] or Tumor Necrosis Factor Ligand Superfamily Member 15[tiab] or
volociximab[tiab] or zhengguangmycin[tiab] or sonidegib[tiab] or vismodegib[tiab] or IPI-926[tiab]
or LDE225[tiab] or LY2940680[tiab] or ramucirumab[tiab] or regorafenib[tiab] or sorafenib[tiab] or
sunitinib[tiab] or axitinib[tiab] or PEGPH20[tiab] OR “tumor microenvironment”[MeSH Terms]
OR stroma* [tiab] OR desmoplasia [tiab] OR “Extracellular Matrix”[Mesh] OR “extracellular
matrix proteins”[MeSH Terms] OR “Connective Tissue Cells”[Mesh] OR “Stromal Cells”[Mesh]
OR microenvironment [tiab])AND (Pancreatic Neoplasms[MeSH] or pancreatic tumor*[tiab] or
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pancreatic tumor*[tiab] or pancreatic cancer[tiab] or pancreatic adenocarcinoma[tiab] or pancreatic
ductal adenocarcinoma[tiab] or pancreatic carcinoma[tiab]) NOT (histoculture[tiab] or HDRA[tiab] or
cell culture[tiab] or cells, cultured[MeSH] or single-cell suspension[tiab] or single-cell suspensions[tiab]
or single cell suspensions[tiab] or suspension cultures[tiab] or cell-line[tiab] or cell-lines[tiab] or cell
line [tiab] or cell lines[tiab] or xenograf*[tiab] or tumor line[tiab] or tumor lines[tiab] or primary cell
cultures[tiab] or in vitro model[tiab] or tissue samples[tiab] or clonogenic assay[tiab] or TCA[tiab]
or cells[tiab] AND culture[tiab] OR squamospheres[tiab] OR cell culture techniques[MeSH] or
(animals[mesh] NOT humans[meSH]))

Appendix B

Cochrane search query: (([mh “Angiogenic Proteins”] OR [mh “Hedgehog Proteins”] OR [mh
“Vascular Endothelial Growth Factors”] OR [mh “Hyaluronic Acid”] OR Hedgehog:ti,ab OR Shh:ti,ab
OR IHH:ti,ab OR VEGF:ti,ab OR hyaluronan:ti,ab OR “hyaluronic acid”:ti,ab) AND (inhibitor:ti,ab OR
antagonist:ti,ab OR inhibiting:ti,ab OR [mh “Angiogenesis Inhibitors”] OR “ciliobrevin A”:ti,ab OR
“VEGF Trapon”:ti,ab OR “5-nitro-2-3-phenylpropylaminobenzoic acid”:ti,ab OR Anecortave:ti,ab
OR bevacizumab:ti,ab OR “cytochalasin E”:ti,ab OR Endostatins:ti,ab OR fumagillin:ti,ab OR
halofuginone:ti,ab OR homoharringtonine:ti,ab OR Interleukin-12:ti,ab OR Interleukin-23:ti,ab OR
LECT1:ti,ab OR lenalidomide:ti,ab OR O-chloroacetylcarbamoylfumagillol:ti,ab OR pomalidomide:ti,ab
OR Ranibizumab:ti,ab OR roquinimex:ti,ab OR semaxinib:ti,ab OR squalamine:ti,ab OR sunitinib:ti,ab
OR “tetra4-N-methylpyridylporphine”:ti,ab OR tetrathiomolybdate:ti,ab OR Thalidomide:ti,ab OR
thymogen:ti,ab OR trebananib:ti,ab OR “Tumor Necrosis Factor Ligand Superfamily Member
15”:ti,ab OR volociximab:ti,ab OR zhengguangmycin:ti,ab OR sonidegib:ti,ab OR vismodegib:ti,ab
OR IPI-926:ti,ab OR LDE225:ti,ab OR LY2940680:ti,ab OR ramucirumab:ti,ab OR regorafenib:ti,ab
OR sorafenib:ti,ab OR sunitinib:ti,ab OR axitinib:ti,ab OR PEGPH20:ti,ab OR [mh “tumor
microenvironment”] OR stroma*:ti,ab OR desmoplasia:ti,ab OR [mh “Extracellular Matrix”] OR [mh
“Connective Tissue Cells”] OR [mh “Stromal Cells”] OR microenvironment:ti,ab or [mh “extracellular
matrix proteins”]) AND ([mh “Pancreatic Neoplasms”] OR pancreatic tumor*:ti,ab OR pancreatic
tumors:ti,ab OR “pancreatic cancer”:ti,ab OR “pancreatic adenocarcinoma”:ti,ab OR “pancreatic ductal
adenocarcinoma”:ti,ab OR “pancreatic carcinoma”:ti,ab))

Appendix C

Embase search query: ((exp vasculotropin/ OR exp hyaluronic acid/ OR exp angiogenic protein/

OR exp Hedgehog signaling/ or exp sonic Hedgehog protein/ or (Shh or Hedgehog or IHH or VEGF or
vasculotropin or hyaluronan or “hyaluronic acid”):ti,ab,kw) AND (exp pancreas cancer/ or (pancreatic
adj2 (carcinoma or tumor* or tumour* or cancer or adenocarcinoma)).ti,ab,kw.) AND (exp *angiogenesis
inhibitor/ or (“ciliobrevin A” or “VEGF Trapon” or “5-nitro-2-(3-phenylpropylamino)benzoic
acid” or “Anecortave” or Bevacizumab or “cytochalasin E” or Endostatins or fumagillin or
halofuginone or homoharringtonine or “Interleukin-12” or “Interleukin-23” or LECT1 or lenalidomide
or “O-(chloroacetylcarbamoyl)fumagillol” or pomalidomide or Ranibizumab or roquinimex or
Semaxinib or squalamine or sunitinib or “tetra(4-N-methylpyridyl)porphine” or tetrathiomolybdate or
Thalidomide or thymogen or trebananib or “Tumor Necrosis Factor Ligand Superfamily Member 15”
or volociximab or zhengguangmycin or sonidegib or vismodegib or IPI-926 or LDE225 or LY2940680 or
ramucirumab or regorafenib or sorafenib or sunitinib or axitinib or PEGPH20).ti,ab,kw. or exp tumor
microenvironment/ or exp extracellular matrix/ or exp connective tissue cell/ or exp stroma cell/ or
exp scleroprotein/ or (stroma* or microenvironmen or desmoplasia).ti,ab) NOT (exp in vitro study/ or
(“cell culture” or “single-cell suspension” or “single-cell suspensions” or “single cell suspensions” or
“suspension cultures” or cell-line or cell-lines or “cell line” or “cell lines” or xenograf* or “tumor line”
or “tumor lines” or “primary cell cultures” or “in vitro model” or “tissue samples” or “clonogenic
assay” or tca or (cells and culture) or squamospheres).ti,ab,kw. OR ((exp experimental organism/ or
animal tissue/ or animal cell/ or exp animal disease/ or exp carnivore disease/ or exp bird/ or exp
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experimental animal welfare/ or exp animal husbandry/ or animal behavior/ or exp animal cell culture/

or exp mammalian disease/ or exp mammal/ or exp marine species/ or nonhuman/ or animal.hw.) not
human/) OR neuroendocrine.ti,ab.))
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