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PRIMARY RESEARCH

Identification and integrative analysis 
of ACLY and related gene panels associated 
with immune microenvironment reveal 
prognostic significance in hepatocellular 
carcinoma
Yunfeng Xu1†  , Ze Zhang1†, Da Xu1†, Xin Yang1*, Lina Zhou2* and Ying Zhu1* 

Abstract 

Background:  Cumulating evidence reveals the key role of aberrant lipogenesis and immunogenomic features in 
hepatocellular carcinoma (HCC). However, there are still obstacles in our understanding of the complicated interac-
tion between metabolic reprogramming and tumor immune microenvironment.

Methods:  We compared metabolomic, transcriptomic and immunogenomic characteristics of portal vein tumor 
thrombosis (PVTT) and primary tumor to seek valuable markers. Human HCC samples with PVTT (n  =  28) was 
analyzed through ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). Transcript levels 
of mRNA in two cohorts from published database GEO (n  =  60) and TCGA (n  =  411) were downloaded to explore 
differentially expressed genes and functional enriched gene set. Evaluation of immune infiltration was estimated and 
validated from transcriptomic data in both cohorts through six immune deconvolution algorithms and in a high-res-
olution mode (CIBERSORTx). Survival analysis (Kaplan–Meier and multivariable Cox regression model) was performed 
to examine prognostic value of ACLY, related immune checkpoints and immune infiltration levels from TCGA cohort. 
LASSO regression was further conducted to determine a gene panel to further predict survival outcomes associated 
with ACLY.

Results:  We identified a novel signature, ATP citrate lyase, through transcriptomic and metabolomic approaches. 
We demonstrated that the metabolism adaptations in both fatty acid and cholesterol biosynthesis triggered by ACLY 
oncogenic activation. We illustrated the crucial function of ACLY in lipogenesis and its potential interaction with 
immune microenvironment. CD276, a promising target in immune checkpoint blockade, showed correlation to ACLY 
and differential expression in ACLY risk classification. Combination of ACLY, CD276 and immune infiltration level and 
a novel ACLY-associated panel from a predictive model retrieved from published database validated the prognostic 
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Introduction
Hepatocellular carcinoma (HCC) is the sixth most com-
mon cancer and third leading cause of cancer-related 
death worldwide. Portal vein tumor thrombosis (PVTT) 
is a common phenomenon in HCC [1]. Approximately 
10–40% of patients exhibit macroscopic PVTT when 
HCC is first diagnosed [2, 3]. HCC patients complicated 
by PVTT are characterized with an aggressive disease 
course indicating deteriorated condition, treatment diffi-
culty, and poor prognosis [4, 5]. Moreover, PVTT is clini-
cally associated with large tumor size, increased tumor 
number, higher tumor grade, worse Child–Pugh class, 
and higher serum alpha-fetoprotein (AFP) [6]. The Bar-
celona Clinic Liver Cancer (BCLC) staging system des-
ignates PVTT as advanced disease (BCLC class C) for 
which only systemic therapy is currently recommended 
[5, 7]. Conventionally, PVTT is regarded as metastatic 
nodes compared with the primary tumor.

The drastic reprogramming of their metabolic path-
ways is one of the most significant and most frequent 
features of cancer cells [8]. There is an increased demand 
for energy and macromolecules due to the high prolifera-
tion rate of cancer cells [9]. Increased glucose uptake and 
fermentation of glucose to lactate is the most common 
characteristic of this altered metabolism. This phenom-
enon is known as the Warburg Effect [10]. Accumulative 
evidence has shown that cancer cells undergoing meta-
bolic pathway changes alongside metabolic pathways.

Comprehensibly, upregulation of de novo lipid synthe-
sis is one of the most significant metabolic signs in can-
cer cells [8]. Lipid biosynthesis could be classified into 
two objectives: fatty acid biosynthesis and mevalonate 
pathway, and the latter contributes to cholesterol and 
isoprenoid synthesis [11, 12]. Enhanced lipid synthesis 
and/or uptake leads to rapid enlargement of tumor size 
and progression, while de novo synthesis of fatty acid is 
suppressed in most noncancerous cells. Activated fatty 
acid synthesis in malignancies helps to fuel membrane 
biogenesis through rapid proliferation of cancer cells and 
saturation of lipid on cell membrane, thereby affecting 
fundamental cellular processes including signal transduc-
tion, functional gene expression and therapy response 

[13]. Metabolic microenvironment in tumor cells is 
observed from substantial increase in both transcrip-
tomic level and activation of various enzymes participat-
ing in fatty acid biosynthesis process [13].

ATP citrate lyase (ACLY) is a cytosolic homotetra-
meric enzyme that catalyzes the conversion of citric acid 
to acetyl-CoA and oxaloacetate of citrate and coenzyme 
A (CoA) with the corresponding hydrolysis of ATP to 
ADP and phosphate [14]. It is worth noting that ACLY 
acts as a strategic converge communicating both glyco-
lytic metabolism and lipid biosynthesis. In several types 
of tumors, transcriptomic regulation of ACLY proves to 
be aberrantly activated [15–17], and its pharmacological 
or genetic inhibition significantly inhibited the prolifera-
tion and induced apoptosis of cancer cells [18, 19]. Grow-
ing evidence highlights ACLY’s central role in giving this 
enzyme a strong therapeutic potential as a key target for 
cancer treatment.

A novel way in anti-tumor therapy has been demon-
strated by immunomodulatory agents blocking the pro-
grammed cell death protein 1(PD-1)/programmed death 
1 ligand 1(PD-L1) pathway [20]. The selective expression 
of PD-L1 with dominant immune-suppressive activities 
in the tumor microenvironment (TME), promoting a 
more favorable tumor response-to-toxicity ratio, may be 
the underlying reason for the success of these agents [21]. 
To strengthen antitumor immunity, a deeper understand-
ing of key mechanisms creating an immunosuppressive 
tumor microenvironment remains a major challenge 
[20, 22]. Growing evidence reveals that TME promotes 
improper metabolic reprogramming that dampens the 
role of T cells and thus affects the immune response to 
the antitumor and the progression of the tumor [23]. The 
energy supplement of cancer cells collectively determines 
the TME’s metabolic environment.

Here, we preliminary investigated characteristics in 
PVTT, primary HCC tumor and adjacent normal tissue 
in HCC patients through metabolome and transcriptome 
approaches. A key player, ACLY, supporting lipid de novo 
synthesis was identified in association with TME among 
differentially expressed genes. Meanwhile, immune infil-
tration estimation in tumor samples was exhibited in 

value to risk stratification in patients with HCC.ACLY blockade to counteract metabolic activation and immunosup-
pressive status of the tumor microenvironment highlighted attractive prospect for translational application.

Conclusions:  We investigated ACLY and its indispensable role in metabolism, immune function and a prognostic 
gene panel in HCC. We anticipate that the multifaced role of ACLY may reveal the potential value for mechanistic 
research and combinational therapy, suggesting that the combination blockade of ACLY and immune checkpoints 
may work as a promising strategy.

Keywords:  Hepatocellular carcinoma, ACLY, Fatty acid metabolism, Portal vein tumor thrombosis, Immune 
checkpoint, Immune infiltration, Prognosis
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a landscape. Clinical statistics were also used to evalu-
ate prognostic markers in HCC. The coparticipation of 
ACLY, immune checkpoints and TME finally reflect sig-
nificant prognostic efficient and could be considered as a 
potential combination therapy target in the future.

Materials and methods
Overview of this study
In this study, metabolomic characteristics of HCC clini-
cal samples were initially analyzed to illuminate the dis-
crimination of lipid metabolites in PVTT, primary HCC 
tumor and adjacent normal tissue. We evaluated whole-
transcriptomic data of 60 samples from 20 HCC patients 
(GSE77509) from Gene Expression Omnibus (GEO) 
dataset for validation (Fig.  1A). Patient (No.14) was 
excluded from the study, whose tumor and PVTT data 
were not distinguishable from normal tissue in pre-analy-
sis. After identifying DEGs, enrichment analysis was per-
formed to explore pathways and meaningful gene sets. 
Secondly, algorithms were used to estimate the tumor 
immune microenvironment of the patient samples, and 
high-resolution estimation of transcriptomic expression 
of immune cells classified by 10 subtypes in each sam-
ple were provided. Correlation analysis was performed 
to seek the significant relationship between TIICs, DEGs 
and representative markers of immune checkpoint. An 
integration of TIICs and DEGs was analyzed to fur-
ther explore the potential mechanism between DEGs 
and TIICs, which could be used as a potential target for 
clinical medication. LASSO regression of univariate 
COX analysis was operated to seek for an ideal predic-
tive model in HCC. To consolidate the clinical value of 
metabolomic and immunologic interaction and syner-
gistic action, clinical data was applied to understand the 
prognostic value of metabolomic genes, tumor-infiltrat-
ing immune cells (TIICs) and differentially expressed 
genes (DEGs) separately or combinatorially.

Clinical sample collection and tissue pretreatment for mass 
spectrometry
Our study was approved by the ethics committee of 
Huashan Hospital affiliate to Fudan University. Seven 
patients (labeled No.1–7) primarily diagnosed with 
HCC in Huashan Hospital were included in this study. 

Four types of tissue sample were obtained from each 
patient: primary HCC tumor, PVTT, adjacent normal tis-
sue (ANT) and distal noncancerous tissue (DN). PVTTs 
were collected from portal vein. ANTs were collected 
from less than 2 cm into solid tumor border. DNs were 
collected from distal edge of the resected tissues, which 
were more than 2  cm from the border of HCC tumor. 
Consequently, a total of 28 tissue samples were prepared 
for mass spectrometry.

Pretreatment method was acquired from Zheng’s study 
[24]. The collected tissues were cut into pieces (100 mg) 
and mixed with 1 mL of 4:1 methanol/water and homog-
enized by high-speed blender. The sample were ultra-
sonicated and placed on ice for 20  min. Tissue samples 
(volume of each sample  ≤  200  μl) were prepared for 
defining MRM transitions through: centrifugation: 
10 min at 15,000g and 4 ℃ after mix for 60 s; lyophiliza-
tion: lypophilize the supernatant to a centrifuge tube and 
reconstruction: reconstitute the sample in 60  μl of 90% 
H2O/CH3OH, vortex for 60  s and centrifuge 10  min at 
15,000g and 4 ℃.

Metabolic profiling analysis based 
on ultra‑high‑performance liquid chromatography‑mass 
spectrometry (UHPLC‑MS)
Untargeted profiling was based on a Waters Acquity BEH 
C8 column to an AB Sciex Triple Q-TOF 5600  +  system 
by chromatographic separation and TOF 5600  +  mass 
spectrometer [24]. R packages XCMS [25] (http://​www.​
bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​xcms.​
html) and CAMERA [26] (http://​www.​bioco​nduct​or.​
org/​packa​ges/​relea​se/​bioc/​html/​CAMERA.​html) were 
downloaded for peak detection and peak annotation. 
Five  microliter of prepared reconstituted sample was 
then injected onto a UHPLC-HRMS with IDA mode for 
analyze. By applying MSConvert [27] (http://​prote​owiza​
rd.​sourc​eforge.​net/​tools.​shtml), the raw UHPLC-HRMS 
data format of some vendors was converted into XCMS-
supported data types and mgf file type. Five microliter of 
IS reconstruction sample was injected onto the UHPLC-
TQMS for retention-time calibration and CE voltage 
optimization. And the products were analyzed to evalu-
ate the quantitative performance of pseudotargeted 
method in three prospects: linearity repeatability and 

(See figure on next page.)
Fig. 1  Metabolomic analysis of lipid metabolism in 7 HCC samples through UHPLC-MS. A Normal, distal noncancerous tissues, primary tumor 
and PVTT sample tissues were collected from 7 patients (labeled No.1–7) primarily diagnosed with hepatocellular carcinoma during in Huashan 
Hospital. B Heatmap showed the overall similarity of processed UHPLC-MS data. C PCA analysis indicated homogeneity of tumor and PVTT samples 
and homogeneity of normal and distal noncancerous samples in HCC. D Summary of all significantly differentially expressed metabolites in normal, 
distant normal, tumor and PVTT samples. E Overall FFA production rates was analyzed. N normal; DN distal normal; T tumor; PVTT portal vein tumor 
thrombosis; PCA principal component analysis; UHPLC-MS ultra-high-performance liquid chromatography-mass spectrometry; FFA free fatty acids; 
PC phosphatidylcholines; LPC lyso-PC; PE phosphatidylserines

http://www.bioconductor.org/packages/release/bioc/html/xcms.html
http://www.bioconductor.org/packages/release/bioc/html/xcms.html
http://www.bioconductor.org/packages/release/bioc/html/xcms.html
http://www.bioconductor.org/packages/release/bioc/html/CAMERA.html
http://www.bioconductor.org/packages/release/bioc/html/CAMERA.html
http://proteowizard.sourceforge.net/tools.shtml
http://proteowizard.sourceforge.net/tools.shtml
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Fig. 1  (See legend on previous page.)
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stability. Unsupervised cluster analysis (Euclidean dis-
tance) and principal component analysis (PCA) were 
computed to discuss the divergence of samples.

Evaluation of overall similarity of samples and data 
standardization
The chip datasets GSE77509 was downloaded from GEO 
database. The corresponding genes were transformed 
into Gene Symbol according to the annotation infor-
mation on the platform. The first step is to confirm the 
heterogeneity of samples. Variance stabilizing transfor-
mation (VST), computed in R package DESeq2 [28] was 
performed to transform the homogeneity of variance. 
The clustering distance of overall similarity was also 
computed by Euclidean distance and PCA. Illumina-
HiSeq data of 438 HCC samples in TCGA cohort was 
also downloaded and standardized for further analysis 
and comparison.

Identification of candidate DEGs from GSE77509 data sets
DESeq2 was therefore used to perform differentially 
expressed gene analysis (DEA). The threshold was set by 
p value  <  0.0001, false discovery rate (FDR)  <  0.0001 and 
log2 fold change at least 1.5  ×  and all DEGs were illus-
trated in a volcano map. The candidate genes with signifi-
cantly increased expression were marked with red line, 
and those with decreased expression were marked with 
blue line.

Functional enrichment analysis and gene set enrichment 
analysis (GSEA)
For functional enrichment analysis, R package clusterPro-
filer [29] was applied to estimate enrichment in DEGs. 
Three biological characteristics: biological process (BP), 
cellular component (CC) and molecular functional (MF), 
were extracted from Gene Ontology (GO) enrichment 
analysis. The pathways discovered from DEGs were oper-
ated by matching the Kyoto Encyclopedia of Genome and 
Genome (KEGG). Top enrichment sets of each annotation 
were printed in barplot, dotplot and netplot by ggplot2 
[30]. Then we applied GSEA software (v4.1.0) [31] to fur-
ther assess enrichment of sets in GSE77509. GSEA input 
files were defined by expression data matrix, phenotype 
labels and annotation gene sets. GO and KEGG were also 
used as annotation gene sets. Sample classification [adja-
cent normal tissue (normal), primary tumor (tumor) and 
PVTT] were used as phenotype labels. And we analyzed 
the differential enrichment of Normal versus Tumor plus 
PVTT in GSE77509 cohort and tumor versus normal sam-
ples in TCGA HCC cohort by GSEA. The genes were rank-
ordered by differential expression (signal2Noise) in the two 
phenotypes. And top 20 upregulated genes were showed 
in heatmap. Venn diagram [32] were used to compare the 

DEGs rank-ordered between GSEA ES score and DESeq2 
FDR.

Proteomic understanding of lipid metabolism associated 
DEGs and interaction networks
ACLY protein distribution in cells and expression in can-
cer were reviewed by using the Human Protein Atlas [33] 
(Images are available from v20.proteinatlas.org). Immu-
nohistochemistry were adopted to show the distribution 
in cells and expression in cancer separately. STRING [34] 
(https://​string-​db.​org/) was operated to further explore the 
co-expression network construction of lipid metabolism 
associated core gene set, as well as the network of 20 inter-
actors in fatty acid biosynthesis process and 20 interactors 
in cholesterol biosynthesis process.

Evaluation of immune infiltration in HCC
To evaluate immune infiltration and landscape of tumor 
immune microenvironment, whole transcriptomic expres-
sion data were uploaded in TIMER2.0 [35] (http://​timer.​
comp-​genom​ics.​org/). Six immune deconvolution algo-
rithms: TIMER (TMR) [36], CIBERSORT (CBS & CBS-
ABS) [37], quanTIseq (QTS) [38], xCell (XCL) [39], 
MCP-counter (MCP) [40] and EPIC (EPC) [41] were used 
to estimate the infiltration condition of various kinds of 
immune cells. Landscape heatmaps in both GSE77509 and 
TCGA cohort were drawn to uncover the composition of 
TIICs of all the samples in six algorithms. And significant 
differential immune cells in MCP-counter and EPIC algo-
rithms were showed respectively.

Estimation of whole transcriptomic expression of immune 
cell in a high‑resolution mode
Analytical tool CIBERSORTx [42] was applied to further 
provide the estimation of immune cell type specific tran-
scriptomic profiles in a high-resolution mode. The types of 
immune cells in both GSE77509 and TCGA HCC cohort 
were merged into 10 major cell subsets. Batch correction 
was enabled to remove technical difference. The main 
result of CIBERSORTx High Resolution showed the cell-
type specific expression of single genes at sample level. 
Genes were filtered by their geometric coefficient of vari-
ation (CV) calculated under the natural logarithm of sub-
sampled regression coefficients. The geometric CVs were 
employed to determine the adaptive cell-type specific noise 
threshold. T-Distributed Stochastic Neighbor Embedding 
(t-SNE) was utilized for dimensionality reduction and visu-
alization of transcriptomic data.

https://string-db.org/
http://timer.comp-genomics.org/
http://timer.comp-genomics.org/
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Correlation analysis of metabolism associated DEGs, 
immune cell infiltration status, immune checkpoint 
inhibitors associated genes and prognostic gene panel
Correlation analysis were performed in both cohorts. 
Correlation was computed between lipid metabolism 
associated DEGs versus immune cell (CD8+ T cell, CD4+ 
T cell, Macrophage, Monocyte, Neutrophil and NK cell) 
infiltration status of 40 types of tumors. Correlation of 
lipid metabolism associated DEGs versus immune check-
points was also assessed. Heatmaps were drawn to show 
the correlation result.

Survival analysis and validation of prognostic significance 
of lipid metabolism associated DEGs and immune cell 
infiltration status
To validate the prognostic effectiveness of genes linked 
to lipid metabolism in HCC, clinicopathological char-
acteristics of patients in TCGA cohort were enrolled 
for survival analysis due to the lack of clinical informa-
tion in GSE cohort. According to the median of expres-
sion of lipid metabolism associated DEGs, the samples 
were divided into high expression group and low expres-
sion group. According to the median of TIICs estima-
tion score or counts, the samples were divided into high 
immune infiltration group and low immune infiltration 
group. Through establishing multivariable Cox propor-
tional hazard model (including patient age, tumor stage, 
patient gender, patient race and corrected tumor purity) 
and single gene expression, each classification was dis-
played in Kaplan–Meier curves. To further elucidate the 
relationship of gene expression and TIICs in HCC prog-
nose, we then explore the combination of ACLY expres-
sion, immune checkpoint markers expression and TIICs 
status in Cox model. And Kaplan–Meier curves were 
drawn. The hazard ratio and p value for Cox model and 
the log-rank p value for KM curve were also provided.

Determination of prognostic efficiency 
through establishment of a risk scoring model applying 
LASSO regression
The least absolute shrinkage and selection operator 
(LASSO) was fitted in R package glmnet (http://​www.​
jstat​soft.​org/​v33/​i01/) to select the genes serving as ideal 
prognostic factors in HCC. Univariate cox analysis was 
conducted to evaluate candidate gene. Candidates who 
meet the PH assumptions (ph  >  0.05) and significance 
analysis (z-score  <  0.05; p  <  0.05) of the cox equal pro-
portional hazard model were selected for multivari-
ate COX regression model. In the secondary modeling, 
variance inflation factor (VIF) and correlation coef-
ficient of each factor in the LASSO model were calcu-
lated for collinearity analysis, and the COX regression 
forest map was drawn. Risk scores were accumulated 

by using coefficients scored from the model (Linear 
transformation calculation referencing the correspond-
ing β coefficient, and the formula was: risk score  =  
gene1*β1  +  gene2*β2…). Concordance index and time-
dependent ROC curves were performed to appraise the 
predictive accuracy of the gene panel. Kaplan–Meier 
curves and log-rank test were executed to illustrate the 
prognostic efficiency.

Statistical analysis
Experiments were repeated no less than three times. Sta-
tistical analyses for UHPLC-MS, expression level and 
immune infiltration level were performed using Graph-
Pad Prism 8.0 software (GraphPad Software Inc., CA, 
USA). Transcriptomic level and TIIC infiltration level 
between or among groups ware computed by Student’s t 
test, nonparametric Mann–Whitney U-test and analysis 
of variance. Spearman correlation coefficient was con-
ducted to evaluate association among gene expression 
and/or infiltration level. Data were presented as mean  ±  
standard deviation. p values  <  0.05 were considered to be 
significant.

Results
Metabolomic overview of lipid profile in HCC clinical 
samples
To begin with, UHPLC-MS was performed to under-
stand the metabolic condition in PVTT samples com-
pared with normal tissues and HCC tissues in clinical 
samples. Similarity analysis results uncovered that PVTT 
and HCT were highly clustered (Fig. 1B). By using PCA 
analysis, we found that there was no significant difference 
between PVTT and tumor tissue in metabolomics level 
(Fig.  1C). We then characterized metabolism products 
expression in Fig.  1D. Detailed production rates of free 
fatty acids (FFA) with different carbon chain lengths were 
concluded in Fig. 1E, illustrating that metabolists in fatty 
acid biosynthesis, especially free fatty acids, increased in 
tumor and PVTT tissues, implying an activation of de 
novo synthesis in fatty acids.

Overall similarity analysis and qualification of samples 
in GSE77509
Expression data in published database was cited to 
compare and validate the difference between tumor and 
PVTT. Except for one tumor tissue (GSM2053457-T7), 
all adjacent normal tissues were clustered together by 
unsupervised hierarchical clustering (Fig. 2A). Dimen-
sionality reduction analysis showed that there was no 
significant difference between primary tumor tissue 
and PVTT samples, and all normal tissue were distin-
guished from tumor tissue (Fig.  2B), suggesting that 
the chip data were qualified for following statistical 

http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
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process. Though PVTT was considered as a metastasis 
sign, given the overall metabolomic and transcriptomic 
performance, we didn’t find any meaningful character-
istics in PVTT.

Identification of candidate DEGs and gene enrichment 
score analysis
1073 upregulated DEGs and 1041 downregulated DEGs 
were screened in tumor tissue and PVTT together 
compared with normal tissue in GSE77509 (Fig.  3A) 
and TCGA cohort (Additional file  1) by using DESeq2 

Fig. 2  Transcriptomic characteristics of samples and summary of DEGs in GSE77509. A Heatmap showed the clustering results of normal, tumor 
and PVTT samples. B PCA analysis indicated homogeneity of tumor and PVTT samples. C Identification of upregulated and downregulated DEGs 
through fold change (| log2(fold change) |> 1.5) and FDR p value (p  <  0.00001) by DESeq2 and ES score (| ES |> 1) computed by GSEA in two cohorts
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package. According to the FDR p value, the top 5 upreg-
ulated DEGs were UBE2V2, RAD17, ACLY (labeled in 
Fig.  3A), UCN and KPNA2. The top 5 downregulated 
DEGs were PTHLH, ADAMTS1, CPEB3, STAC3 and 
CETP. GSEA analysis was employed so that a gene list 
rank-ordered with enrichment score by signal2Noise 
was given to further validate the DEGs. 841 positively 
enriched genes and 998 negatively enriched genes were 
identified, among which ACLY, RACGAP1, AACS and 
SAE1 were of the enrichment score (ES)  >  1.80 and 
OIT3, DNASE1L3, ECM1, BMPER and NDST3 were 
with the enrichment score (ES)  <  − 2.80. We summarily 
identified 226 DEGs in both upregulated groups and 441 
DEGs in two downregulated groups. All DEGs were sum-
marized in Venn diagram (Fig. 2A, B). Top 20 genes with 
the highest enrichment score were displayed in heatmap 
(Fig. 3B).

Transcriptome and proteome expression of ACLY in HCC
Among the DEGs enriched at the top of the list, core 
gene ACLY associated with metabolism should be taken 
into serious account for further analysis. TIMER2.0 data-
base was referred to show the transcriptome expression 
of ACLY across all TCGA tumors. Statistical significance 
was computed under Wilcoxon test, and ACLY expres-
sion was significantly higher (p  <  0.001) in various types 
of tumor including HCC (Fig.  3C). To understand the 
proteome expression of ACLY, we performed data from 
HPA database and showed distribution of ACLY pro-
tein expression in normal tissue and different types of 
malignancies. ACLY was often with low level of protein 
expression in normal liver tissue among all organ tissues. 
However, approximately 80% of the patients in HCC indi-
cated an increase in ACLY protein expression (Fig. 3D). 
Immunohistochemistry also showed increased ACLY 
expression in tumor tissue compared with normal tissue 
(Fig. 3E).

Upregulation of lipid metabolism associated with ACLY
The next part was to explain whether ACLY was involved 
or interacted in fatty acid metabolism and/or choles-
terol metabolism. To gain insight into the functional 
role of upregulated DEGs in tumor and PVTT tissue in 
GSE77509, we exploited GO and KEGG annotation to 
determine the potential pathway and enrichment gene 

set. Gene sets with the most enriched gene numbers 
and least p values were listed in Additional file 1. Related 
genes in enriched gene sets were associated with GO 
Molecular Function: ATPase activity, DNA replication 
origin binding, cyclin-dependent protein serine/threo-
nine kinase regulator activity, fatty acid synthase activ-
ity, glucose binding, biosynthesis of unsaturated fatty 
acids, etc. and cell cycle, fatty acid biosynthesis, fatty acid 
metabolism, homologous recombination, p53 signaling 
pathway in KEGG annotation (Fig. 3F; Additional files 1; 
2: Figure S2A, B). Moreover, GSEA analysis consolidated 
that there was an obvious increase in fatty acid de novo 
biosynthesis and metabolism process (Fig. 3H–J).

According to GO and KEGG enrichment analysis 
results, core genes in lipid metabolism, such as FASN, 
ACACA, ELOVLs, FADS2 and SCD, especially fatty 
acid metabolism: fatty acid biosynthesis, elongation and 
unsaturation, were involved in the enrichment analysis. 
We then selected core genes in fatty acid biosynthesis 
process and cholesterol biosynthesis process separately 
through enrichment analysis results, DEGs, reviews and 
former studies [43]. The overall expression of targeted 
genes in GEO77509 cohort and TCGA HCC cohort (50 
tumor tissue samples and 50 homologous adjacent nor-
mal tissue samples) in relation to fatty acid biosynthesis 
process and cholesterol biosynthesis process in HCC 
were drawn in heatmaps (Fig.  4A, B; Additional file  3: 
Figure S3A, B). As ACLY was not included in the anno-
tation of fatty acid metabolism associated pathways and 
gene sets in GO and KEGG, we analyzed the correla-
tion between ACLY and 20 core genes in lipid metabo-
lism process through TIMER in TCGA tumor cohort. 
ACLY had positive correlation with almost all core genes 
in fatty acid biosynthesis process (Spearman’s rho  >  0.2; 
p  <  0.05, except ACSS2; Additional file  4: Figure S4A) 
and cholesterol biosynthesis process (Spearman’s rho  >  
0.2; p  <  0.05, except TM7SF2; Additional file  4: Figure 
S4B). ACAT1 and TM7SF2 were negatively correlated 
with ACLY (Spearman’s rho  <  −  0.1; p  <  0.05; Addi-
tional file 4: Figure S4B). Correlation analysis of 20 genes 
in fatty acid biosynthesis process and cholesterol biosyn-
thesis process in other tumors in TCGA cohort were also 
demonstrated in Additional file  4: Figure S4A, B. Func-
tional protein association networks validated the inter-
action between ACLY and two downstream metabolic 

(See figure on next page.)
Fig. 3  ACLY was a top differently expressed gene in HCC and other solid tumors. A Volcano plots showing DEGs in GSE77509 cohort. ACLY was an 
upregulated signature. B Top 20 markers identified by GSEA enrichment analysis: ACLY was at the top of the list. C An overview of ACLY expression 
of 40 solid tumors in TCGA dataset. D Proteomic ACLY expression rate of 20 solid tumors in HPA database. E Immunohistochemistry stained the 
expression of ACLY in primary HCC and adjacent normal tissue in HPA database. F Function enrich analysis indicated the top enriched pathways by 
KEGG annotation: fatty acid metabolism, fatty acid biosynthesis and biosynthesis of unsaturated fatty acids were positively enriched. G Interaction 
of fatty acid metabolism associated genes. H GSEA enrichment plots revealed activation in fatty acid metabolic process and fatty acid derivative 
biosynthesis process by GO annotation, along with fatty acid metabolism by KEGG annotation
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Fig. 3  (See legend on previous page.)
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Fig. 4  ACLY acted as an upstream regulator had close association with fatty acid and cholesterol biosynthesis and correlated with immune 
checkpoints in HCC. A Expression of fatty acid biosynthesis pathway related genes. B Expression of cholesterol biosynthesis pathway related 
genes. C Proteomic interactions between ACLY and core participants in fatty acid biosynthesis. D Proteomic interactions between ACLY and core 
participants in cholesterol biosynthesis. E Communication between lipid metabolism and immune checkpoints induced by ACLY and AKT1. F, G 
Correlation of ACLY and CD276 transcriptomic level and differentiated expression of CD276 in high ACLY expression and low ACLY expression group 
in both GSE77509 and TCGA cohort. H–K Other clinically approved and potential immune checkpoints correlated with ACLY in TCGA cohort
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pathways (Fig.  4C, D), which confirmed that ACLY was 
a core upstream marker in fatty acid biosynthesis. Fig-
ure  4E illustrated the probable proteomic communica-
tion between ACLY and immune checkpoints inducing 
by AKT pathway.

Correlation of ACLY and immune checkpoints
Spearman correlation analysis was computed to measure 
the relevance of ACLY expression and immune check-
points in both cohorts. As is depicted in Fig.  4F–M, 
clinically approved and potential immune checkpoint 
gene markers were also interrelated with ACLY in tran-
scriptome level. ACLY has remarkable correlation with 
CD276 (Spearman’s rho  =  0.477; p  <  0.001), PDCD1 
(Spearman’s rho  =  0.188, p  <  0.001), CD274 (encoding 
PD-L1) (Spearman’s rho  =  0.365, p  <  0.001) and CTLA4 
(Spearman’s rho  =  0.199, p  <  0.001) in TCGA data-
base and CD276 (Spearman’s rho  =  0.372, p  =  0.021) 
in GSE77509 cohort. Overall correlation analysis with 
immune checkpoints was illustrated in Additional file 5: 
Figure S5. Patients were divided into low and high expres-
sion group by median expression of ACLY. It is notewor-
thy that CD276 expression was also higher in high ACLY 
group (Fig.  4G, I), illustrating the worthy association of 
immune checkpoints and ACLY in HCC.

Landscape of immune infiltration in HCC
To clarify the rule of TIIC infiltration and relationship 
with ACLY, we applied the six algorithms mentioned 
above to evaluate immune cell infiltration in GSE77509 
and TCGA cohort. Landscape of detailed information 
of TIIC condition in GEO cohort was painted in heat-
map (Fig. 5A and TCGA cohort Additional file 6: Figure 
S6). Unsupervised hierarchical clustering result catego-
rized samples into three categories: immune inflamed, 
immune excluded and immune desert which has been 
defined in former studies [44–46] (Additional file  7; 
Additional file 8). MCP and EPC are the two algorithms 
recommended in the comparison of transcriptome-based 
cell-type quantification methods for immuno-oncology, 
which were qualified for most types of immune cells in 
evaluation. Therefore, the results revealed that the infil-
tration level of B cell (MCP-p  <  0.001, EPC-p  <  0.05; 
Additional file  9: Figure S9A, B), macrophage (MCP-
p  <  0.001, EPC-p  <  0.001; Additional file 9: Figure S9C, 
D) and were increased in adjacent normal tissue rather 
than primary tumor tissue and PVTT in both algo-
rithms. NK cell (p  <  0.001), CD8  +  T cell (p  <  0.001) 
and myeloid dendritic (p  <  0.001) cell (Additional file 9: 
Figure S9E–G) were higher in normal tissue estimated 
in MCP while CD4  +  T cell (p  <  0.01; Additional file 9: 
Figure S9H) was lower expressed in tumor tissue through 
calculation in EPC. In TCGA cohort, ACLY expression 

were positively associated with CD4+ T cell (EPC, TMR, 
XCL and CBS) (Additional file 10: Figure S10A), mono-
cyte (MCP and QTS) (Additional file  10: Figure S10B), 
mDC (TMR, MCP and CBS) (Additional file  10: Figure 
S10C), Treg (CBS, QTS and XCL) (Additional file 10: Fig-
ure S10D) and neutrophil (TMR, CBS, MCP and QTS) 
(Additional file  10: Figure S10E) with p value  <  0.05. 
ACLY expression were negatively related to CD8+ T cell 
(CBS and XCL) (Additional file 10: Figure S10F) and NK 
cell (EPC and CBS) (Additional file 12: Figure S12G) with 
p value  <  0.05. However, the relationship of macrophage 
and TIICs varied in six algorithms among which EPC, 
XCL had negative correlation and TMR, QTS, XCL and 
MCP had positive correlation (Additional file 10: Figure 
S10H). In GSE77509 cohort, ACLY expression was nega-
tively correlated with NK cell (MCP-p  =  0.003, CBS-p  =  
0.040) and CD8+ T cell (XCL p  =  0.026).

High‑resolution analysis of transcriptomic expression 
of specific TIICs
Further approaches were utilized to estimate the tran-
scriptomic expression of 10 types of immune cells using 
CIBERSORTx in GEO cohort (Fig.  5B–I) and TCGA 
cohort (Additional file  11: Figure S11). ACLY was esti-
mated to be a potential marker highlighting CD8+ T cell, 
CD4+ T cell, B cell and monocyte in two cohorts. The 
results of t-SNE analysis indicated that ACLY expression 
could not be applied to classify TICCs (Fig. 6A–C; Addi-
tional file  12: Figure S12). Top 1000 upregulated DEGs 
in both cohorts were drawn in heatmaps in Additional 
file 13: Figure S13. Estimated ACLY and CD276 expres-
sion were available in Fig. 5L, M. Higher expression level 
of ACLY was observed in B cell (p  =  0.049) and plasma 
cell (p  =  0.049). No statistic difference was observed in 
CD276 expression. The missing blank indicated that the 
expression level in specific immune cells lack reliability.

Prognostic application of core genes in fatty acid 
biosynthesis
We next implemented survival analysis to discover pow-
erful predictors in HCC. Multivariable Cox proportional 
hazard model was established. Patients with high expres-
sion of ACLY experienced worsen survival outcomes 
compared with low expression group (Cox HR  =  1.397, 
95% CI 1.096–1.780; p  =  0.007, Kaplan–Meier curves: 
HR  =  1.23, p  =  0.048; Fig.  7I), while CD276 did not 
show any predictive value (Fig. 7J). In fatty acid biosyn-
thesis process, AACS (Cox HR  =  1.380, 95% CI 1.110–
1.716; p  =  0.004; KM curve: HR  =  1.32; p  =  0.009), 
ACACA (Cox HR  =  1.455, 95% CI 1.120–1.890; p  =  
0.005, KM curve: HR  =  1.15; p  =  0.194), ACSL3 (Cox 
HR  =  1.316, 95% CI 1.038–1.668; p  =  0.023, KM curve: 
HR  =  1.25; p  =  0.032), ELOVL1 (Cox HR  =  1.699; 
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Fig. 5  Immune landscape in HCC and expression distribution in 10 types of TIIC A Heatmap showed the immune infiltration status between 
normal, tumor and PVTT samples. The estimation of TIICs was computed and estimated by six kinds of algorithms based on the transcriptomic 
RNA-seq data in GSE 77509. B–I Normalized gene expression were plotted and geometric CV were computed to determine the adaptive cell-type 
specific noise threshold. J Estimated expression of ACLY in different types of immune cells in published datasets. K Estimated expression of CD276 
in different types of immune cells in published datasets
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95% CI 1.268–2.276; p  <  0.001; KM curve: HR  =  1.35; 
p  =  0.005), ELOVL3 (Cox HR  =  1.502; 95% CI 1.125–
0.005; p  =  0.006, KM curve: HR  =  1.23; p  =  0.047) 
and ELOVL4 (Cox HR  =  1.623, 95% CI 1.152–2.286; 
p  =  0.006, KM curve: HR  =  1.35; p  =  0.006) were also 
proved to be significant markers in predicting clini-
cal survival outcomes (Additional file  14: Figure S14). 
High expression of mentioned genes was related to poor 
prognosis. In cholesterol biosynthesis process, only high 
expression of ACAT1 was correlated with better prog-
nosis (Cox HR  =  0.778, 95% CI 0.648–0.935; p  =  0.007, 
Kaplan–Meier curves: HR  =  0.817; p  =  0.053; Addi-
tional file 14: Figure S14).

Predictive performance of ACLY expression combined 
with TIICs and immune checkpoint
By applying TIIC status in Cox model, we found that 
only macrophage infiltration score [TMR, XCL, CBS, 
QTS and MCP (Fig.  7L)] could indicate increased risk 
and be used as a poor prognostic predictor. However, 
other TIICs such as CD8+ T cell (Fig. 7K), CD4+ T cell, 
B cell, Neutrophil and NK cell didn’t have prognostic sig-
nificance. We speculated whether ACLY and immune 
checkpoint related gene expression could be critical 
determinants influencing HCC prognosis. Consequently, 
decreased infiltration level of CD8+ T cell (KM curve: 
TMR: HR  =  0.421; p  =  0.024; MCP: HR  =  0.555; p  =  
0.095), myeloid dendritic cell (KM curve: MCP: HR  =  
0.432; p  =  0.051, XCL: HR  =  0.418; p  =  0.017; TMR: 
HR  =  0.508; p  =  0.064) and NK cell (KM curve: MCP: 
HR  =  0.420; p  =  0.026) was associated with poor overall 
survival in low ACLY expression group (Fig. 7M–O).

Meanwhile, decreased expression of CD276 accom-
panied by increased CD8  +  T cell had lower risk (KM 
curve: TMR: HR  =  0.430; p  =  0.027; CBS: HR  =  0.412; 
p  =  0.015; Fig.  7P, Q). Moreover, low expression of 
ACLY and CD276 with high infiltration level of CD8  +  
T cell turned out to contribute to the best survival out-
come (KM curve: TMR: HR  =  0.279; p  =  0.003; MCP: 
HR  =  0.479; p  =  0.060; CBS: HR  =  0.401; p  =  0.031; 
Fig.  7R, S) in HCC. The results might demonstrate the 
evidence of interaction between ACLY, TIICs and/or 
immune checkpoints in TME, suggesting that potential 
metabolism difference regulated by ACLY could play an 

unignorable role in immune function and consequently 
influenced prognosis in HCC.

Establishment of a novel gene signature to predict HCC 
prognosis
To explore predictive markers, 4559 DEGs were enrolled 
and processed under VST transformation (Fig.  7A) in 
candidate gene group. One hundred nineteen kinds of 
TIICs estimated in six algorithms were enrolled in TIIC 
group. LASSO Cox regression model was fitted to build 
a predictive marker panel (Fig. 7B) in TCGA cohort. The 
lambda value chosen by ten-fold cross-validation was 
drawn at a vertical line (Fig.  7C). The Cox regression 
forest map served as a visualization of the correlation 
matrix (Fig.  7D). In TIIC group, no panel was found to 
show sufficient predictive power in Cox model (Addi-
tional file 15: Figure S15). In candidate gene group, seven 
genes were qualified through the multicollinearity test 
in secondary modeling. The seven genes were working 
together as a predictive gene panel, including CBX2 (p  =  
0.111); LCAT (p  =  0.110); SPP1 (p  =  0.152); KPNA2 
(p  =  0.040); GAGE4 (p  =  0.047); SOCS2 (p  =  0.019) 
and PGA4 (p  <  0.001). The detailed information of par-
ticipants and HR were provided in Fig.  7E. The model 
was with a medium accuracy of predictive ability (con-
cordance index  =  0.73). Through accumulation of indi-
vidual risk score, total risk scores were calculated from 
the designed formula. Patients were divided into low-
risk or high-risk group with the median risk score work-
ing as the cutoff value. AUC values were calculated from 
1 to 5  years every 0.2  year and time-dependent ROC 
curves were drawn in Fig. 7F. The maximum AUC value 
occurred at 1.2  years (438  days). Furthermore, the gene 
panel in our model reflected significant predictive power 
in KM curves (Fig. 7G). We also compared the expression 
correlation between ACLY and the predictive gene panel 
in 40 kinds of tumors in published data (Fig. 7H). ACLY 
had association with CBX2 (Spearman’s rho  =  0.394; 
p  <  0.001), GAGE4 (Spearman’s rho  =  0.232; p  <  0.001), 
KPNA2 (Spearman’s rho  =  0.656; p  <  0.001), LCAT 
(Spearman’s rho  =  − 0.272; p  <  0.001) and SPP1 (Spear-
man’s rho  =  0.321; p  <  0.001) in HCC (Fig. 7I).

Fig. 6  High-resolution estimation of ACLY in TIICs. ACLY combinated with immune checkpoints and TIICs elucidated strong prognostic value. 
A–C Distribution of samples through t-SNE analysis classified by ACLY expression. D, E Estimated transcriptomic level of ACLY and CD276 in 
cell-type specific view by CIBERSORTx. The NA values are genes that are either not expressed or have inadequate statistical power to be imputed. 
F, G Kaplan–Meier curves showing outcomes of overall survival between patients with high and low expression of ACLY and CD276. H, I Survival 
outcomes between patients having high and low levels of CD8+ T cells and macrophages. J–M Kaplan–Meier plot showed significant differences 
combining ACLY and CD276 expression with estimated infiltration levels of CD8+ T cells compared with single gene expression. N–Q No significant 
differences was observed combining ACLY and CD276 expression with estimated infiltration levels of macrophage

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Discussion
HCC is a malignancy with a distinct ability to invade and 
grow within the hepatic vasculature. Approximately 20% 
of patients have microvascular invasion (MVI) at the time 
of diagnosis. Among patients with unresectable tumors, 
the probability of developing portal vein tumor throm-
bosis (PVTT) at 1 and 3  years is 21 and 46%, respec-
tively. The incidence of HCC accompanied by PVTT was 
44–62.2%, with the median survival period without any 
interventions for 2.7 months only [2, 3], due to the fact 
that PVTT can lead to the wide dissemination of tumors 
throughout the liver and cause a marked deterioration 
of hepatic function. On one hand, MVI impairs liver 
function through reduced liver perfusion as a result of 
impaired blood flow, either directly via reduced inflow in 
PVTT or via elevated sinusoidal pressure in hepatic vein 
invasion. On the other hand, extension of tumor within 
the vasculature promotes tumor spread beyond the liver 
via direct seeding and extension. The impact on progno-
sis is thus profound and predictable.

Another important question is whether there exist 
progressive molecular alterations between primary 
tumors and matched PVTTs. Ye et al. [4] found that the 
gene expression patterns of metastatic lesions are nearly 
identical to their corresponding primary HCCs. Similar 
results have been observed for somatic mutations and 
miRNA expressions: Huang et  al. [3] found that more 
than 94% somatic mutations are shared by primary 
tumor and PVTTs, and Wong et al. [6] reported that no 
obvious difference of miRNA expressions could be found 
between primary HCCs and the venous metastases. As 
these previous studies have declared, computational 
analysis shows that the inter-patient differences are much 
larger than the intra-patient heterogeneities between 
matched primary tumor and PVTT in most cases. Few 
consistent molecular alterations have be found between 
primary tumors and matched PVTTs. However, we have 
noticed that a few patients may undergo progressive 
molecular alterations according to the clustering analy-
sis. Therefore, we used a novel individualized differential 
analysis strategy to identify the progressively differen-
tially expressed genes between matched primary tumor 
and PVTT for each patient. Results showed that different 
patients were characterized with very different numbers 
of progressively differentially expressed genes.

The concept of metabolism reprogramming was first 
proposed a century ago, which is a sign of malignant 
tumors and plays a critical role in the process of tumor 
carcinogenesis [8, 47]. HCC is such a heterogeneous 
malignancy at metabolic level [46]. Our study indicated 
that there is an increase in fatty acid biosynthesis in both 
HCC tumor and PVTT samples by mass spectrometry 
analysis. Moreover, several core markers in fatty acid 
biosynthesis were upregulated through identification of 
GO, KEGG annotation by enrichment analysis, among 
which ACLY showed the most obvious alteration. ACLY 
is a cross-link representative between glucose and/or 
glutamine metabolism and fatty acid biosynthesis and/
or mevalonate pathways, which plays an important role 
in various kinds of tumors. Under the pressure of insuf-
ficient energy supply from mitochondria and hypoxia, 
ACLY acts as a vital building block which provides acetyl 
coenzyme for intracellular biosynthesis of fatty acids 
and cholesterol [13, 48]. Gu’s study identified an IKKβ-
USP30-ACLY axis that plays an essential role in the lipo-
genesis and liver cancer [49]. Han’s study indicated that 
knockdown of ACLY remarkably suppressed stemness 
properties, migration and invasion in HCC cells [50]. 
By identification of DEGs, functional and correlation 
analysis, considering the interaction of glucose and lipid 
metabolism connected by ACLY, we provided evidence 
that ACLY may work as a positive upstream regulator 
of fatty acid biosynthesis and activate a bypass of energy 
supplement besides Warburg effect in HCC, validating its 
significance function in metabolism.

The former results bring us to consider whether 
immune function is associated with ACLY and to seek 
meaningful clinical intervention targets. Immune-defi-
cient tumors have decreased immune cell infiltration, 
and they are mainly manifested as highly proliferative 
tumor cells with high fatty acid metabolism or neuroen-
docrine function [51]. It has been recognized that most 
types of tumors without T cell infiltration are with a 
relatively poor prognosis and cannot benefit from immu-
notherapy [51, 52]. However, we haven’t explored a dif-
ferential survival outcome with immune checkpoints 
and TIIC infiltration level except macrophage in TCGA 
HCC cohort. The phenomenon might be explained by 
aetiologic diversity and heterogeneous environmental 
factors of HCC compared with other solid tumors [45]. 

(See figure on next page.)
Fig. 7  A novel gene signature in predicting survival outcomes and its relationship with ACLY. A VST transformation of DEGs for further model 
establishment. B LASSO coefficient of 4559 candidates. C Partial likelihood deviance was computed for LASSO regression. D Correlation matrix 
revealed no multicollinearity among 7 candidate genes. E Forest plot demonstrated HR and p value of multivariate Cox model enrolled genes. F 
Time-dependent ROC curves of different time length for optimal observation time window. G Kaplan–Meier survival analysis between patients with 
high-risk scores and low risk scores. H Association of ACLY with the predictive signature in 40 kinds of solid tumors
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Fig. 7  (See legend on previous page.)
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We then demonstrated the correlation between immune 
checkpoint, TIIC infiltration and ACLY. Trough stratifi-
cation of ACLY transcriptomic level, the prognostic value 
of TIIC infiltration and immune checkpoint remarkably 
enhanced, indicating the underlying function of ACLY 
in HCC immune regulation and consequently influenced 
patients’ survival outcomes.

Given the metabolic imbalance of tumor cells, many 
drugs have shown good clinical application prospects 
and entered clinical trials. By negatively regulating the 
related pathways in metabolism, especially those that 
block the de novo synthesis of fat acid, molecule inhibi-
tors targeting ACLY such as SB-204990, hydroxycit-
ric acid and ECT-100 could inhibit the occurrence and 
development of HCC [53, 54]. HCC was a malignancy 
only partially benefit from immune-checkpoint therapy 
and strongly affected by the ongoing inflammation [55]. 
Anti-PD-1/PD-L1 antibodies have shown clinical advan-
tages in more than 15 cancer types, but most patients 
with advanced HCC have not yet obtained clinical ben-
efit from these drugs, which indicates that the immuno-
suppressive mechanism in the tumor microenvironment 
may of a great essence [56]. This begs the question that 
whether metabolism could interact with immune system 
and sensitize the anti-tumor function of immune therapy. 
To our surprise, however, there is almost no therapy tar-
geting ACLY inhibition combined with immune therapy. 
Only Gu’s study recently elucidated that the combina-
tion of ACLY blockade ECT-1002 and PD-L1 antibodies 
can inhibit HCC tumorigenesis and progression [49]. In 
the current study, we further elucidated the prognostic 
effectiveness of combined expression of ACLY plus PD1, 
CTLA4 and potential immune checkpoints in clinical tri-
als such as CD276.

As is summarized above, considering that the mecha-
nism of single-gene ACLY in HCC has been clarified 
recently, we tried to emphasize on the prognostic value 
of ACLY and its interaction with immune microenvi-
ronment. We indeed found a novel immune checkpoint 
via transcriptomic analysis in clinical samples: CD276. 
In former studies, CD276 CAR-T cells showed potent 
antitumor activity against solid tumor cells [57]; a dual-
compartment targeted CD276 ADC antibody reagent 
could simultaneously destroy both tumor cells and tumor 
vasculature [58]. The former model was based on CAR-T 
and the latter directly discussed the anti-tumor and anti-
vasculature function of CD276 but not immune function. 
Enoblituzumab was the only investigational monoclonal 
antibody targeting CD276 which was evaluated in Phase 
1 studies. The translational results of CD276 as a new 
immune checkpoint were still very limited. We hope that 
more works and drugs would be available in the future to 

validate the immune mechanism of CD276 and its asso-
ciation with ACLY.

There are certain limitations in our study. Both GEO 
and TCGA cohorts and samples we provided are ana-
lyzed retrospectively. More studies on mechanism 
through experimental consolidation and randomized 
controlled trials are required to further explore the trans-
lational value of the combination therapy of ACLY meta-
bolic inhibitors and immune checkpoint blockades.

Conclusions
In summary, we compared different sample types in HCC 
and found no difference between tumor and PVTT sam-
ples through several approaches. Then we further inves-
tigated a novel gene, ACLY, and its indispensable role 
in metabolism, immune function and a prognostic gene 
panel in HCC. Trough stratification of ACLY expres-
sion, our work reversed the insufficient prognostic value 
of immune checkpoints and TIIC infiltration, suggesting 
that the combination inhibition of ACLY and immune 
checkpoints may shed light on HCC treatment.
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biological process and molecular function in GEO cohort. It is noteworthy 
that ATPase related activities were enriched in GO molecular function, 
which indicated the upregulation of energy consumption in HCC tumor 
tissue.

Additional file 3: Figure S3. Gene panels that had close interaction 
with metabolism and oncogenesis. (A) All enriched gene sets (n = 14) 
in KEGG annotation. (B) In addition to fatty acid metabolism, cell cycle, 
homologous recombination and Fanconi anemia pathway, were cited in 
gene sets.

Additional file 4: Figure S4. Members participated in fatty acid biosyn-
thesis process (A) and mevalonate pathway (B) in TCGA cohort. Similarly, 
fatty acid synthesis was more activated in tumor tissue than cholesterol 
synthesis.

Additional file 5: Figure S5. Whole correlation analysis of ACLY, fatty 
acid biosynthesis process and cholesterol biosynthesis process in TCGA 
database. ACLY was positively correlated with both pathways in HCC and 
other malignancies in TCGA cohort. Solid squareness indicates the quali-
fied p-value (p < 0.05) in analysis.

Additional file 6: Figure S6. ACLY interacted with immune checkpoints 
and their predictive impacts in TCGA cohort.  CD276, FGL1, HAVCR2, 
KLRC1, LAG3, SIGLEC15 and TIGIT are targets under pre-clinical studies 
and clinical trials. (A) Integrated correlation analysis of ACLY and immune 
checkpoint signatures in TCGA database. (B–F) Detailed plots showing 
relevance between ACLY and promising immune checkpoints. (G–O) 
Survival consequence of patients classified by immune checkpoint 
expression (high risk group: > median expression value, low risk group: ≤ 
median expression value). FGL1, Fibrinogen-like Protein 1; HAVCR2, Hepa-
titis A Virus Cellular Receptor 2, encoding TIM-3; KLRC1, Killer Cell Lectin 
Like Receptor C1, encoding NKG2A; LAG3, Lymphocyte-activation Gene 3; 
SIGLEC15, Sialic Acid-binding Ig-like Lectin 15; TIGIT, T cell immunorecep-
tor with Ig and ITIM domains.

Additional file 7: Figure S7. TIIC estimation in 50 patients (50 tumor 
tissue samples and 50 homologous adjacent normal tissue samples in 
TCGA cohort) computed by six algorithms. CD8+ T cells and NK cells were 
escaped from HCC tumor samples, which are two TIICs considered induc-
ing anti-tumor function.

Additional file 8: Figure S8. Immune landscape in an unsupervised 
hierarchical clustering view in GEO cohort (Figure 8) and TCGA cohort 
(Figure 9). Patients were stratified in four major subtypes: S1 (immune cell 
inflamed), S2 (immune cell escaped), S3 (immune desert) and a new sub-
type: S4 (macrophage/monocyte infiltrated). The former three subtypes 
have been reported by several studies. The mechanism of macrophage/
monocyte infiltration in HCC as a unique subtype requires to be further 
investigated.

Additional file 9: Figure S9. Immune landscape in an unsupervised 
hierarchical clustering view in GEO cohort (Figure 8) and TCGA cohort 
(Figure 9). Patients were stratified in four major subtypes: S1 (immune cell 
inflamed), S2 (immune cell escaped), S3 (immune desert) and a new sub-
type: S4 (macrophage/monocyte infiltrated). The former three subtypes 
have been reported by several studies. The mechanism of macrophage/
monocyte infiltration in HCC as a unique subtype requires to be further 
investigated.

Additional file 10: Figure S10. Differentially infiltrated immune cells esti-
mated by MCP and EPC. There was no infiltration difference in tumor and 
PVTT. Furthermore, adjacent normal tissue turned out to have a higher 
level of immune cell infiltration.

Additional file 11: Figure S11. Relationships among ACLY expression 
level and TIIC level in TCGA cohort. Neutrophils and macrophages seemed 
to have an increased number of positive correlations in various kinds of 
malignancies. While infiltration level of NK cell and CD8+ T cell were nega-
tively correlated with ACLY expression. This may explain the reason why 
high ACLY expression is associated with poor prognosis. Mechanism study 
is needed for further consolidation.

Additional file 12: Figure S12. Overall cell-type specific transcriptomic 
expression evaluated by CIBERSORTx in TCGA cohort. Targets such as 

metabolism associated genes and immune checkpoints were estimated 
in cell-type specific level to elucidate the difference between various TIICs 
and select ideal immune cell markers.

Additional file 13: Figure S13. T-SNE analysis for ACLY and CD276 
expression subtypes. 361 TCGA HCC patient samples were enrolled to 
explore the stratification value of ACLY and CD276 through transcriptomic 
expression. The subjects are color-coded with high expression level (n = 
180) and low expression level (n = 181).

Additional file 14: Figure S14. K-M curves and multivariate Cox model 
for lipid metabolism related gene signature defined in our study. (A–L) 
Apart from ACLY, there are many candidates qualified for prognosis pre-
diction (overall survival and disease free survival), especially in fatty acid 
biosynthesis process.  (M, N) Clinical information (age, sex, race, stage and 
tumor purity estimated by TIMER2.0) and gene expression matrix were 
included for Cox modeling. Tumor-type specific z score (normalization 
transformation processed) are illustrated in heatmap.

Additional file 15: Figure S15. LASSO Cox regression model demon-
strated insufficient predict power for a panel of TIICs. Each label represents 
for a type of TIIC. (A) Correlation matrix revealed no multicollinearity 
among 4 TIICs. (B) Forest plot demonstrated HR and p value of multivariate 
Cox model enrolled TIICs. Each TIIC has enough power to predict survival 
outcome. (C) Time-dependent ROC curves of different time length for 
optimal observation time window. The best time window of the panel is 
still poor for prediction. (D) Kaplan–Meier survival analysis showed no dif-
ference between high and low infiltration group. There is also no qualified 
TIIC to establish a predictive model when DEGs are included. A69, CD4+ T 
cell Th2 XCELL; A70, B cell plasma CIBERSORT; A95, CD8+ T cell CIBERSORT; 
A101, Macrophage M0 CIBERSORT.
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