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A Longitudinal Item Response Theory Model to
Characterize Cognition Over Time in Elderly Subjects

Marc Vandemeulebroecke1*, Bj€orn Bornkamp1, Tillmann Krahnke2, Johanna Mielke1, Andreas Monsch3 and Peter Quarg1

For drug development in neurodegenerative diseases such as Alzheimer’s disease, it is important to understand which
cognitive domains carry the most information on the earliest signs of cognitive decline, and which subject characteristics are
associated with a faster decline. A longitudinal Item Response Theory (IRT) model was developed for the Basel Study on the
Elderly, in which the Consortium to Establish a Registry for Alzheimer’s Disease – Neuropsychological Assessment Battery
(with additions) and the California Verbal Learning Test were measured on 1,750 elderly subjects for up to 13.9 years. The
model jointly captured the multifaceted nature of cognition and its longitudinal trajectory. The word list learning and delayed
recall tasks carried the most information. Greater age at baseline, fewer years of education, and positive APOEE4 carrier
status were associated with a faster cognitive decline. Longitudinal IRT modeling is a powerful approach for progressive
diseases with multifaceted endpoints.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Cognition in the elderly has previously been modeled

by longitudinal disease progression models and a

cross-sectional Item Response Theory (IRT) model,

across a spectrum of healthy subjects and those with

Alzheimer’s disease.
WHAT QUESTION DID THIS STUDY ADDRESS?
� A longitudinal IRT model was developed, jointly cap-

turing the multifaceted nature of cognition and its longitu-

dinal trajectory, to investigate which cognitive domains

carry the most information on the earliest signs of cogni-

tive decline, and which subject characteristics are asso-

ciated with a faster decline, in generally healthy elderly

subjects.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� Verbal episodic memory as assessed by word list
learning and delayed recall tasks carried the most infor-
mation on early signs of cognitive decline. Greater age
at baseline, fewer years of education, and positive
APOEE4 carrier status were associated with a faster
cognitive decline.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� Focusing on verbal episodic memory may increase our
chances to detect putative drug effects in the early stages
of cognitive decline, in neurodegenerative diseases such
as Alzheimer’s disease or otherwise. Longitudinal IRT
modeling is a powerful approach for progressive diseases
with multifaceted endpoints.

Understanding cognition in the elderly is key to drug devel-

opment for the treatment of major neurodegenerative dis-

eases. In 2015, dementia affected more than 46 million

people worldwide, causing an estimated total cost of 818

billion USD.1 Alzheimer’s disease (AD) in particular, as the

most common cause of dementia, is progressive and fatal,

and the only existing treatments are symptomatic and of

limited effectiveness. Today it is generally believed that the

most promising approach to treat this devastating disease

effectively is to intervene very early in its underlying patho-

logical cascade.2 It is therefore important to enhance our

understanding of cognition in the elderly, its trajectory over

time, and the earliest signs of cognitive decline. This can

provide vital information for clinical trial design: emphasis

can be put on those endpoints that are the most sensitive

in the early stages; natural disease progression can serve

as an epidemiological benchmark; and knowledge of major

covariates can inform strategies of population enrichment

or stratification. In this context, the goal of the present work

was to contribute to understanding:

• which cognitive domains carry the most information on
early signs of cognitive decline in the elderly; and
• which subject characteristics are associated with a
faster cognitive decline over time.

Several models have been developed to capture cognition

in the elderly, across a spectrum of cognitively healthy up to

moderately impaired subjects. Many of these models draw

data from the Alzheimer’s Disease Neuroimaging Initiative3

(ADNI) and focus on the longitudinal trajectory of an overall

summary measure of cognition, often the Alzheimer’s
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Disease Assessment Scale – Cognitive Subscale (ADAS-
Cog) or the Clinical Dementia Rating Scale – Sum of Boxes
(CDR-SoB). Landmark models of this type include those by
Ito et al.,4,5 Rogers et al.,6 Samtani et al.,7,8 and Delor et al.9

However, “cognition” is a complex notion, and any model for
a “lump sum” summary measure can only be as good as the
summary measure that it uses. Ueckert et al.10 drew more
information from the multifaceted nature of cognition by
applying Item Response Theory11 (IRT) to the ADAS-Cog at
the individual test item level. IRT, with conceptual ideas dat-
ing back to the 1950s and 1960s (e.g., Rasch12), is a collec-
tion of latent variable models that has grown popular in
psychometrics since the 1980s (e.g., through works by
Lord13 and Hambleton et al.14), and more recently also in
pharmacometrics.10,15,16 Among other advantages, it pre-
serves each test item’s information and does not collapse all
information into a single summary score. The model by
Ueckert et al.10 was fundamentally a cross-sectional model
that was built using combined baseline data from ADNI and
seven clinical trials. The individual test items were related to
a hypothesized underlying latent “disability” variable through
a set of link functions (called “item characteristic functions” in
IRT), the parameters of which were estimated from the data.
The pattern of longitudinal progression was then investigated
in a second step, by developing a linear progression model
for the latent variable, using longitudinal data from another
(separate) study, and fixing all parameters of the IRT model
to their previously estimated values. A necessary assumption
for this approach is that the link between the underlying dis-
ability and the measured test items, as obtained from base-
line data only, applies universally at any timepoint.

The present article draws ideas from these works and
adds to their perspectives, in terms of results as well as
methodology. Our data source is a noninterventional longi-
tudinal study of mostly cognitively healthy elderly subjects.
We propose to consider both aspects, the multifaceted
nature of cognition and its longitudinal development, jointly
rather than separately. Instead of fitting an IRT model on
cross-sectional baseline data and then applying it to longi-
tudinal data, we develop a single longitudinal IRT model
that takes into account all data at once. All parameters of
the model, that is, those relating the test items to the latent
variable and those describing the longitudinal decline, are
estimated jointly based on all data. We compute the infor-
mation content of each test item, and we investigate which
baseline covariates are associated with a faster decline of
the latent variable. By implementing the model in a fully
Bayesian framework using three different software plat-
forms, we obtain an informal comparison of their perfor-
mance and ease of use for a complex statistical model.

METHODS
Available data
This work uses data from the Basel Study on the
Elderly17,18 (BASEL study), an observational study con-
ducted by the Memory Clinic of the University Center for
Medicine of Aging, Basel, Switzerland. The objective of this
study was to identify presymptomatic markers of dementia
in a group of previously healthy individuals. A cohort of

elderly subjects were assessed by two neuropsychological
test batteries: the Consortium to Establish a Registry for
Alzheimer’s Disease – Neuropsychological Assessment
Battery19 (CERAD-NAB) with its additions of Phonemic flu-
ency20 (S-words) and the Trail Making Test,21 together con-
stituting the CERAD-NAB-Plus, as well as by the California
Verbal Learning Test22 (CVLT). A subset of the initial cohort
continued into a longitudinal observation phase, during
which these assessments were biannually repeated. The
study was approved by the local Ethics Committee and
conducted in accordance with the Declaration of Helsinki;23

all subjects provided informed consent. Table 1 displays
the 14 main test items of the two neuropsychological test
batteries; ancillary measures were discarded. Word list
learning and recall tasks had been purposely included from
both batteries, in order to assess whether one performed
better than the other.

Data cleaning was performed by the Memory Clinic, with
minor additional cleaning by the authors (removing four
spurious observations: one without subject ID, two with a

Table 1 Neuropsychological test items in the BASEL study

CERAD-NAB

Semantic fluency (animals)

— Task: Naming animals; Outcome: Number of words

Boston Naming Test

— Task: Recognize pictures; Outcome: Number of correct answers

Mini-Mental Status Examination (MMSE)

— Task: Respond to a range of cognitive tasks; Outcome: Score

Word List Learning

— Task: Learn words and recall them; Outcome: Number of correct words

Word List Delayed Recall

— Task: Recall those words again after delay; Outcome: Number of correct

words

Word List Recognition

— Task: Identify those words in a list including distractor words; Outcome:

Discriminability score

Constructional Praxis

— Task: Copy pictures; Outcome: Score (how many graphical aspects were

correctly drawn)

Constructional Praxis Delayed Recall

— Task: Draw those pictures again after delay; Outcome: Score (how many

graphical aspects were correctly drawn)

CERAD-NAB additions

Phonemic Fluency (S-words)

— Task: Name words starting with “S”; Outcome: Number of words

Trail Making Test (Part A)

— Task: Connect numbers; Outcome: Score (time needed)

Trail Making Test (Part B)

— Task: Connect numbers/letters; Outcome: Score (time needed)

California Verbal Learning Test (CVLT)

CVLT – Word List Learning

— Task: Learn words and recall them; Outcome: Number of correct words

CVLT – Word List Recognition

— Task: Identify those words in a list including distractor words; Outcome:

Discriminability score

CVLT – Word List Long Delay Free Recall

— Task: Recall those words again after long delay; Outcome: Number of

correct words
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negative timepoint, and one empty observation; and using
the earlier date in case of duplicate assessment dates for
three subjects). The final dataset consisted of 52,370 neu-

ropsychological test item values from 1,750 subjects. After
inversion of the scale of the Trail Making Test (A and B),
high values indicated high abilities on all test items. The
available baseline covariates of interest were gender, age
at baseline, Mini-Mental Status Examination (MMSE) at
baseline, years of education, and APOEE4 genotype (a

genetic risk factor for AD24,25).

Model development
The dual goal of identifying informative test items and

assessing cognitive decline led to the choice of a modeling
strategy that would combine IRT with longitudinal progres-
sion in a single model using all item-level data jointly. Model
development began with descriptive and graphical data
explorations to reveal the actual visit structure, baseline
characteristics, and endpoint distribution and progression.

In light of the different empirical distributions of the end-
points, the graded response model26,27 for ordered categor-
ical responses was chosen as a generic IRT building block
to relate each test item to a common latent “ability” trait, for
its flexibility and for parsimony. We assumed unidimension-
ality of the latent ability, which implies local independence
of the test items (i.e., independence after conditioning on

the subjects’ abilities13,28). For computational feasibility, the
raw item responses were condensed into fewer categories.
The longitudinal progression was captured within the same
model, using a linear progression pattern of the latent abil-
ity over time.

We denote the response category of subject s in test
item j at time t by Ys,t,j, the corresponding latent ability by

hs,t (the same for any item), and we write
ps;t ;j ;k 5PðYs;t ;j � k j hs;t Þ. With each test item’s raw
responses condensed into K response categories of equal
width, the graded response IRT model for the BASEL data-
set is specified by ps,t,j,K 5 1 and

logitðps;t ;j ;k Þ5log
ps;t ;j ;k

12ps;t;j ;k

� �
5jj ;k 2ajhs;t ; k51; . . . ; K21:

The parameters aj determine the steepness of the item
characteristic functions and are called “discrimination

parameters” in IRT. The parameters jj,k, known as “difficulty
parameters”, determine the difficulty of each response cate-
gory of each item. Both do not depend on subject or time.
After trying several values for K, we settled on K 5 9 as a
practical compromise between computational tractability
and loss of information.

The longitudinal aspect is captured within the same
model by setting

hs;t 5c0;s1c1;s3t ;

that is, by a linear progression of the latent ability with
subject-specific intercepts and slopes. The slope parameters

are modeled as c1;s5c�1;s1x0sb, where xs is a subject-specific
vector of covariates (gender, age at baseline, MMSE at base-
line, years of education, APOEE4 carrier, and APOEE4

homozygous carrier), and b is a vector of coefficients. Contin-

uous covariates were zero-centered and standardized for

model fitting.
We cast the model in a Bayesian framework. As the use

of flat priors is not advisable in nonlinear models like

ours,29 weakly informative prior distributions were used for

all parameters except c0,s. “Weakly informative” here refers

to the fact that the prior distributions had a wide spread

compared to the likelihood function so that they did not

have a major impact on the posterior distributions but stabi-

lized the model fit. Independent N(0,1) prior distributions

were used for the subject-specific intercept parameters c0,s.

This is an arbitrary calibration of the model, required to

ensure identification of the discrimination and difficulty

parameters. For the intercept c�1;s of the subject-specific

slope parameters, a hierarchical prior was chosen to allow

sharing of information between subjects; we denote its

mean by l. See the Supplementary Material for a full

specification of the prior distributions.
Three elements are of primary interest in this model: the

discrimination parameter and the Fisher information for

each test item (high values indicate the most discriminatory

and informative test items), and the regression coefficients

for the individual slopes (to investigate which subject char-

acteristics are associated with a steeper decline of cogni-

tive ability). The Supplementary Material provides more

detail on the computation of the Fisher information, which

is also known as “item information” in IRT.
The model was implemented with Markov Chain Monte

Carlo (MCMC) methods in three programming languages,

to ensure reliability of results: WinBUGS 1.4.1,30 JAGS

4.2.0,31 and Stan 2.14.1.32 All program runs were per-

formed on a high-performance computing cluster. Pre- and

postprocessing of all analyses were done in R 3.2.3.33

Model qualification
Convergence of the MCMC results was carefully checked in

the different software implementations. MCMC trace plots

were examined, the Gelman-Rubin diagnostic34 was

checked, and effective sample sizes were computed.35

Assumptions specific to the IRT model, such as unidimen-

sionality of the latent ability and invariance of the item and

ability parameters, were checked following Hambleton

et al.14 Visual predictive checks were performed, including

a detailed categorical version following Ueckert et al.,10 in

which the observed fraction of subjects scoring in each cat-

egory of any item was compared against the corresponding

model-simulated confidence band over time.

RESULTS
Available data
Table 2 shows baseline characteristics of the total BASEL

study as used in this analysis. The cohort consisted of

1,750 elderly, well-educated, mostly cognitively healthy sub-

jects with a normal representation of APOEE4 genotypes36

and twice as many males as females. A subset of 718 sub-

jects (41.0%) provided data on more than one visit. This

subset had been determined by selecting the APOEE4 car-

riers and approximately twice as many age-, education-,
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and gender-matched noncarriers from the initial cohort.17

With individual durations of observation time of up to 13.9
years, this longitudinal subset accounted for 82.3% of the
total number of observations. The CERAD-NAB additions
and the CVLT were recorded on the same day, but often on
a different day than the CERAD-NAB: for 10% of the
subject-visits the time difference was greater than 17
weeks, with extreme differences of up to 185 weeks. Sub-
jects without complete covariate information were excluded
from the analysis; the reduced dataset consisted of 1,604
subjects and 50,917 test item values. A sensitivity analysis
was performed on all subjects using multiple imputation for
missing covariates (see Supplementary Material).

Longitudinal IRT model
The results of the JAGS and Stan implementations were
identical (up to sampling error), and they are described in
the remainder of this section. Table 3 and Figure 1 show
the posterior distributions of the discrimination parameters.
The word list learning and delayed recall tasks of the
CERAD-NAB and the CVLT were the most discriminative
(greatest discrimination parameter), i.e., the most sensitive
to subtle differences in cognitive ability. The posterior esti-
mates of the difficulty parameters are included in the Sup-
plementary Material, as well as the item characteristic
functions of each test item.

Figure 2 displays the item information. It provides an
impression on which tests carry the most information (i.e.,
are sensitive to differences in ability), and also (unlike the
discrimination parameters) where on the scale of underlying
abilities they are most informative. Again, the word list
learning and delayed recall tasks of both test batteries
were the most informative over a broad range of abilities.
The word list learning tasks showed some advantage at
very high abilities (such as h>2). The MMSE and the word
list recognition tasks were informative only in the low ability

range. Semantic fluency, the Boston Naming Test, Con-
structional praxis, Constructional praxis delayed, Phonemic
fluency, and the Trail Making Test (parts A and B) carried
little to almost no information in the BASEL sample. The
relative contribution of each item to the total information,
calculated as the area under the item information curve
divided by the sum of all such areas, is annotated inside
each panel. Together, the word list learning and delayed
recall tasks carried almost half (47.1%) of the total informa-
tion (not accounting for their quasiduplication). Among
these, the items of the CVLT carried slightly more informa-
tion than their respective counterparts of the CERAD-NAB.

The posterior mean of the typical slope parameter l was
20.013 (2.5% and 97.5% quantiles [–0.025, 20.001]),

Table 2 Baseline characteristics of the BASEL study population

Number of subjects 1750

Gender

Female 598 (34.2%)

Male 1152 (65.8%)

APOE�4 genotype

Noncarrier 1234 (70.5%)

Heterozygous carrier 347 (19.8%)

Homozygous carrier 23 (1.3%)

Missing information 146 (8.3%)

Age at baseline [years]

Mean (SD) 69.9 (8.0)

(min, max) (49, 92)

MMSE at baseline

Mean (SD) 28.6 (1.5)

(min, max) (17, 30)

Missing information 4 (0.2%)

Years of education

Mean (SD) 12.6 (3.3)

(min, max) (4, 43)

The maximum years of education would be 23 disregarding two extreme val-

ues; mean and SD would not change meaningfully. SD, standard deviation.

Figure 1 Posterior means and 95% quantile ranges of the dis-
crimination parameters.

Table 3 Posterior means and distributions of the discrimination parameters

Mean SD Q2.5 Q97.5

Semantic fluency 1.25 0.04 1.16 1.34

Boston Naming Test 1.04 0.05 0.94 1.14

MMSE 1.77 0.09 1.59 1.96

Word list learning 2.05 0.06 1.93 2.18

Word list delayed recall 2.08 0.06 1.96 2.21

Word list recognition 1.79 0.10 1.59 1.99

Constructional praxis 0.79 0.05 0.69 0.89

Constr. praxis delayed 1.06 0.04 0.97 1.15

Phonemic fluency 1.14 0.05 1.05 1.23

Trail Making Test (A) 1.08 0.05 0.99 1.17

Trail Making Test (B) 1.60 0.06 1.49 1.72

CVLT: Learning 2.42 0.09 2.25 2.60

CVLT: Recognition 1.89 0.11 1.68 2.12

CVLT: Delayed 2.28 0.09 2.11 2.45

SD, standard deviation. Q2.5, 2.5% quantile. Q97.5, 97.5% quantile.
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indicating that the latent ability declined by 0.013 units per

year for a “typical” subject. Table 4 displays the regression

coefficients of the baseline covariates for the individual

slopes. Age at baseline, years of education, and APOEE4

carrier status showed a significant association with the

slopes; gender and MMSE at baseline did not. Due to the

arbitrary calibration of the latent ability, the numbers can

only be interpreted in relative terms: older subjects, sub-

jects with fewer years of education, and APOEE4 carriers

(particularly homozygous carriers) showed a faster declin-

ing ability.

Model qualification
The model implementation in WinBUGS was inefficient and

unstable. The posterior distributions of the IRT parameters

reached effective sample sizes of only 2–36 before the

MCMC process ran into numerical errors. The JAGS and

Stan implementations were stable and more efficient. Using

10 chains for each with 5,000 iterations after burn-in, they

were numerically stable and yielded acceptable Gelman–
Rubin convergence diagnostics. Run times were similar for
Stan and JAGS, but Stan produced more efficient chains:

Figure 2 Item information curves. Inf, Relative contribution of each item to the total information.

Table 4 Regression coefficients for the individual slopes

Mean SD P

Gender 20.003 0.008 0.345

Age at baseline 20.049 0.004 < 0.001

MMSE at baseline 0.006 0.005 0.128

Years of education 0.008 0.004 0.027

APOE�4 carrier 20.019 0.008 0.008

APOE�4 homozygous carrier 20.038 0.023 0.051

The binary covariates were coded as gender [1: female, 0: male], APOE�4

carrier [1: yes, 0: no], and APOE�4 homozygous carrier [1: yes, 0: no]. The

covariates age at baseline, MMSE at baseline and years of education were

zero-centered and standardized for model fitting. Mean, posterior mean. SD,

posterior standard deviation. P512UðjMeanj=SDÞ, where U is the cumula-

tive distribution function of the standard normal distribution, approximately

corresponding to a two-sided P-value in a non-Bayesian setting.
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the mean effective sample size across the non-subject-

specific parameters was 506 for JAGS and 3,791 for Stan,

based on the 5,000 inference samples each. The fact that

the implementations in JAGS and Stan provided identical

results shows the reliability of the results.
Assumptions specific to the IRT model were verified (not

shown here). Visual Predictive Checks showed good agree-

ment between the observed data and simulations from the

model, even at the granular categorical level. The Supple-

mentary Material provides more details on the model qual-

ification and the performance comparison between JAGS

and Stan.

DISCUSSION

Based on the BASEL study, in which 14 neuropsychological

tests items were assessed on 1,750 elderly subjects for up

to 13.9 years, the goals of this work were to investigate

which cognitive domains carry the most information on the

earliest signs of cognitive decline in the elderly, and which

subject characteristics are associated with a faster cognitive

decline. Answering these questions, and more generally

developing a suitable methodology for answering them, is

relevant for drug development against neurodegenerative

diseases such as AD, where a “disease-modifying” early

intervention is believed to be key. We developed a fully lon-

gitudinal IRT model that allowed capturing the multifaceted

nature of cognition and its longitudinal development within

one and the same model, based on all item-level data at

once. With this, we combined ideas of the “giants on whose

shoulders we stand,” such as Ito et al.4,5 and others for the

longitudinal progression, and Ueckert et al.10 for IRT.
A graded response model26 was chosen for the link

between latent ability and observable test items, while the

longitudinal trajectory of the latent ability was modeled by a

linear function over time. The association of subject-specific

covariates with the slope of progression was embedded in

the same model. The modeling approach allowed using the

exact actual dates for each separate test item (per subject

and visit), which was important, since different items of the

same nominal visit were sometimes measured very far

apart. The model was implemented in a Bayesian frame-

work in three programming languages.
We found that the word list learning and delayed recall

tasks of the CERAD-NAB and the CVLT were the most sen-

sitive and carried the most information in the BASEL study,

over a broad range of abilities. Among these, the items of

the CVLT carried slightly more information than their

respective counterparts of the CERAD-NAB. The MMSE

and the word list recognition tasks were informative only in

the low ability range, and the other test items carried little

to almost no information. Greater age at baseline, fewer

years of education, and positive APOEE4 carrier status

were associated with a faster cognitive decline, with an

even faster decline for homozygous carriers. Among the

three software implementations, JAGS and Stan were sta-

ble and provided identical results, but Stan was more

efficient.

Although the BASEL study population is predominantly
cognitively healthy, our results confirm earlier findings in
cognitively impaired or mixed populations. For example,
Ueckert et al.10 found that a delayed word recall task car-
ried the most information in a population with Mild Cognitive
Impairment (MCI), followed by word recall, orientation, and
word recognition. Beck et al.37 noted that verbal episodic
memory tasks of the CVLT were more sensitive than corre-
sponding tasks of the CERAD-NAB. Baseline age and
APOEE4 carrier status were also associated with the slope
of progression in the analyses by Ito et al.5 (in a mixture of
healthy subjects and those with MCI and mostly mild AD),
Samtani et al.7 (mostly mild AD), and Rogers et al.6 (mild
and moderate AD). While we excluded subjects with miss-
ing covariate information from our analysis, a sensitivity
analysis on all subjects using multiple imputation for miss-
ing covariates showed very similar results (see Supple-
mentary Material). Due to a lack of data, we could not
investigate the influence of laboratory or imaging markers.

We fitted our model on all subjects (with nonmissing
covariates), rather than only on the subset that provided
longitudinal data, in order to obtain maximal information on
the IRT parameters. The Bayesian methodology allowed
the longitudinal slope estimates to remain vague for sub-
jects with little (or no) follow-up time. Recent disease pro-
gression models for AD have used nonlinear progression
patterns6–8,38 and/or the concept of disease onset time.9,38

Our choice of a linear progression pattern may be consid-
ered appropriate for the BASEL study population, which
displays only small cognitive changes over time. It is in line
with earlier models4,5 and ensured computational tractability
when embedding it into an IRT model. The assumption that
a single dominant latent trait influences all observable
test items was checked successfully; it was therefore not
necessary to consider multidimensional link models (which
quickly reach the limits of tractability39). It should be noted
that one of the test items in the BASEL study, the MMSE,
is derived from various cognitive tasks. Because of its wide-
spread standard use, we still treated it as a single-entity
item, acknowledging that building its summary score results
in a loss of information. Another potential limitation of our
work is that we condensed the raw item responses into
nine response categories for each item (including the Trail
Making Tests A and B whose raw values are quasicontinu-
ous), and this impacts the information provided by these
items. However, this choice greatly reduced the complexity
of the model, and the results appear robust. Sensitivity
analyses with more response categories required longer
run times but yielded the same conclusions.

In summary, verbal episodic memory as assessed by
word list learning and delayed recall tasks may be a prom-
ising domain for the detection of early signs of cognitive
decline in the elderly. Longitudinal IRT modeling, as applied
here in a mostly healthy elderly population, is a suitable
method to capture the multifaceted nature of cognition and
its longitudinal trajectory jointly. It is computationally more
intensive than cross-sectional IRT models, but it allows the
estimation of the IRT parameters based on all data. It
would be of interest to apply this method also to a cohort
with prodromal or mild AD, in this case possibly with a
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nonlinear progression pattern. In general, longitudinal IRT
modeling appears to be a powerful approach for progres-
sive diseases with multifaceted endpoints.
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