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One Sentence Summary: A landscape built using only Transcriptomic analysis for 
medulloblastoma and ependymoma reveals novel insights about subtype specific biology. 

 
Abstract:  

Medulloblastoma and ependymoma are prevalent pediatric central nervous system tumors with 
significant molecular and clinical heterogeneity. We collected bulk RNA sequencing data from 
888 medulloblastoma and 370 ependymoma tumors to establish a comprehensive reference 
landscape. Following rigorous batch effect correction, normalization, and dimensionality 
reduction, we constructed a unified landscape to explore gene expression, signaling pathways, 
gene fusions, and copy number variations. Our analysis revealed distinct clustering patterns, 
including two primary ependymoma compartments, EPN-E1 and EPN-E2, each with specific 
gene fusions and molecular signatures. In medulloblastoma, we achieved precise stratification of 
Group 3/4 tumors by subtype and in SHH tumors by patient age. Our landscape serves as a vital 
resource for identifying biomarkers, refining diagnoses, and enables the mapping of new 
patients' bulk RNA-seq data onto the reference framework to facilitate accurate disease subtype 
identification. The landscape is accessible via Oncoscape, an interactive platform, empowering 
global exploration and application. 

 

 

 

Main Text: 
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INTRODUCTION 
Medulloblastoma, a highly malignant primary brain tumor originating in the cerebellum, is the 
most common pediatric central nervous system cancer, accounting for nearly 20% of all 
childhood brain tumors1. Historically considered a single disease entity, medulloblastoma is now 
understood to encompass four distinct molecular subtypes as identified in the WHO 2021 
classification: Wingless-type (Wnt), Sonic hedgehog (SHH), Group 3, and Group 4.2 These 
subtypes differ not only in their molecular characteristics but also in their clinical behavior, 
prognosis, and response to treatment. Advances in genomic technologies have revealed a 
complex landscape of genetic mutations, copy number variations, and epigenetic alterations 
across these subtypes, deepening our understanding of tumor biology and uncovering potential 
targets for precision medicine. 

Ependymomas (EPNs) are tumors of the neuroepithelial cells, presenting across all age groups 
and occurring at various locations along the central nervous system. In pediatric populations, 
ependymomas represent about 10% of all malignant central nervous system tumors, with a 
significant portion (30%) diagnosed in children younger than three years3. Recent advancements 
in DNA methylation and gene expression profiling have allowed for the identification of distinct 
molecular subtypes of ependymomas, each with unique clinical and pathological features. In the 
supratentorial region, ependymomas are characterized by two primary molecular subtypes driven 
by recurrent gene fusions: one involving the ZFTA gene (previously known as C11orf95, often 
fused with RELA), and another involving YAP14,5. In the posterior fossa, ependymomas are now 
classified into two molecular subtypes, PF-A and PF-B, with an additional classification for PF 
NEC/NOS tumors. These molecular distinctions have important implications for the diagnosis, 
treatment, and prognosis of patients with ependymoma, underscoring the necessity for precise 
molecular characterization in clinical practice. 

In this study, we present a comprehensive visual integration method for analyzing a large cohort 
of medulloblastoma and ependymoma cases. We harmonized and integrated transcriptional data 
from five publicly accessible medulloblastoma studies6-9 and eight publicly accessible 
ependymoma studies. After correcting for batch effects and normalizing the data, we employed 
dimensionality reduction techniques to construct a reference landscape that reveals significant 
patterns within this aggregated multi-disease dataset. While the previously published analysis10 
which aids in visualizing and analyzing  different brain diseases , contained ependymoma and 
medulloblastoma patient samples,  the number of samples were limited to only those derived 
from Children Brain Tumor Network (93 and 117 samples respectively).  This represents the 
largest collection of bulk RNA-seq profiles for medulloblastoma and ependymoma. 

Our transcriptomic landscape provides several critical insights and practical advantages. Our 
analysis recapitulates known molecular subtypes in medulloblastoma but also enables detailed 
examination of alterations in gene expression, signaling pathways, gene fusions, and copy 
number profiles across these tumors. 

This landscape facilitates the visualization of both common and unique features across different 
tumor subtypes, additionally it also aids in identifying potential misdiagnoses and guiding 
treatment decisions for new patients. Furthermore, our inclusion of fetal samples allows for a 
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deeper understanding of the developmental origins of these tumors, offering comparisons 
between healthy and neoplastic states.  

Finally, by making this resource available through the interactive platform Oncoscape11 
(https://oncoscape.sttrcancer.org/medepn2024.html) we empower researchers and clinicians to 
explore genes of interest, discover novel biomarkers, and accelerate the pace of research and 
discovery in the field of neuro-oncology. 

RESULTS  

 
Constructing a reference landscape for medulloblastoma and ependymoma  

We gathered 370 ependymoma samples and 888 medulloblastoma samples from North America 
and Europe to construct a comprehensive reference landscape for both tumor types. The 
ependymoma cohort4,12-15 included 134 supratentorial, 135 posterior fossa, 77 ependymoma 
(NOS), 11 anaplastic, 9 myxopapillary, and 4 spinal ependymoma samples, sourced from across 
North America and Europe. The medulloblastoma cohort7,16 consisted of 364 Group 4, 229 
Group 3, 274 SHH, 9 WNT, and 12 medulloblastoma (NOS) samples, all collected from North 
America. Additionally, we incorporated 100 healthy brain samples at various stages during 
embryonic and post-natal development17 to serve as a control dataset. These control samples 
comprised 48 forebrain and 52 hindbrain samples, covering a broad developmental range: 65 
samples were from 4 to 19 weeks post-conception and 35 post-natal samples (Fig S1). 

Raw sequencing reads from each sample were aligned to the human genome reference hg38, and 
gene counts were obtained for each gene. Focusing on protein-coding genes, we corrected for 
batch effects using the ComBatSeq function from the R package “sva”. Gene expression data 
was then normalized using variance stabilizing transformation (VST). To create a reference 
landscape, we applied various dimensionality reduction techniques, including principal 
component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and uniform 
manifold approximation and projection (UMAP) on the batch-corrected, normalized transcript 
counts (Fig S1)10,18.  

After overlaying known biological information, we selected the VST-normalized UMAP as our 
final reference landscape because it demonstrated no batch effects based on data source (Fig. 1a) 
and effectively captured clusters corresponding to publicly known subtypes of the disease (Fig. 
1b).  
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Fig. 1. Generation of the Medulloblastoma and Ependymoma Landscape with Clinical and 
Genomic Metadata (A) UMAP visualization colored by dataset source. (B) UMAP colored by 
disease type. (C) UMAP colored by subtypes for both medulloblastoma and ependymoma. (D) 
UMAP colored by subtypes within the posterior fossa. (E) UMAP highlighting supratentorial 
ependymomas (orange), with all other samples shown in grey. (F) UMAP colored by gender 
where available: Female (pink), Male (blue), and fetal samples (green). (G) UMAP colored by 
patient age at the time of tumor sample acquisition. (H) UMAP colored by age of forebrain 
samples. (I) UMAP colored by age of hindbrain samples. 

Overall structure of the reference landscape 

As expected, the medulloblastoma samples formed four distinct clusters corresponding to the 
SHH, Group 3, and Group 4 subtypes. Group 3 and Group 4 medulloblastomas were positioned 
along a continuum, consistent with previous reports. Notably, the nine WNT medulloblastoma 
samples clustered with the ependymoma samples, distinctly separate from the other 
medulloblastoma subtypes (Fig. 1c). The ependymoma clusters and the WNT medulloblastomas 
clustered closely with the developmental brain samples (Fig. 1c). 

Coloring in the landscape based on the metadata collected for each sample, the ependymoma 
samples appeared to be   divided into two major groups: posterior fossa ependymomas were 
predominantly localized on the left side of the UMAP, while supratentorial ependymomas were 
primarily situated on the right (Fig. 1d, e). Where available, we further colored the posterior 
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fossa ependymoma samples by annotated subtypes. The 17 PF-A samples were distributed across 
the left side, the 4 PF-B samples formed a tight cluster at the top, and the 9 PF-SE 
(subependymoma) samples clustered in the middle of the posterior fossa region (Fig. 1d).  

Overlaying sex information on our UMAP revealed no distinct regional patterns separating male 
and female samples on the reference landscape (Fig. 1f). However, when coloring the UMAP by 
the age of tumor samples, a clear age-based pattern emerged within the SHH medulloblastoma 
cluster. Specifically, older patients' samples predominantly occupied the lower half of the cluster, 
while younger patients' samples concentrated in the upper half, further validating our UMAP's 
ability to differentiate between previously reported SHH medulloblastoma subgroups (Fig. 1g). 
Additionally, we visualized the age distribution for the forebrain and hindbrain samples (Fig. 1h, 
i) and noted that the early fetal forebrain and hindbrain samples clustered closely with the 
supratentorial ependymomas on the right side. 

Validating the UMAP Landscape with Previously Reported Medulloblastoma Genetic 
Features  

Integrating clinical metadata into the UMAP revealed distinct regionalization of different 
subtypes. To further characterize each sample and further validate our UMAP, we employed two 
methods: Arriba19 to detect gene fusions and CaSpER20 to infer copy number patterns. 

For medulloblastomas, the SHH (Sonic Hedgehog) subgroup is marked by significant deletions 
on chromosome 9q7, while Group 3 and Group 4 medulloblastomas are associated with a loss of 
chromosome 17p and a gain of 17q9,21. In our cohort, 32.12% (88/274) of SHH 
medulloblastomas exhibited a loss of chr9q (Fig 2a), 17.90% (41/229) of Group 3 
medulloblastomas had a loss of chr17p, and 43.95% (160/364) of Group 4 medulloblastomas 
exhibited this loss (Fig. 2b). Furthermore, 62.08% (226/364) of Group 4 medulloblastomas and 
22.70% (52/229) of Group 3 medulloblastomas had a gain of chr17q. (Fig. 2c) 

When we overlaid gene expression patterns onto the reference landscape, we observed distinct 
differences between SHH medulloblastomas and other tumor types. SHH medulloblastomas 
exhibited high expression of ATOH1 (Fig. 2d), SFRP1 and HHIP (Fig S2 a,b), in contrast to 
Group 3 and Group 4 medulloblastomas and ependymomas. Group 3 medulloblastomas were 
characterized by elevated expression of MYC (Fig. 2e), GABRA5, and IMPG2 (Fig S2 c,d), 
while Group 4 medulloblastomas showed high expression of KCNA1 (Fig. 2f), EOMES, and 
RBM24 (Fig S2. 2e,f)22.  
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Fig. 2. Validation of the reference landscape through copy number, gene fusions and gene 
expression patterns (A-C) UMAP colored by copy number alterations to validate 
medulloblastoma subtypes: (A) 9q, (B) 17p, (C) 17q (red for gains, blue for deletions). (D-F) 
UMAP colored by gene expression levels: (D) ATOH1, (E) MYC, (F) KCNA1. (G-H) UMAP 
colored by gene fusions to confirm ependymoma subtypes: (G) ZFTA-RELA , (H) YAP-
MAMLD1. (I-L) UMAP colored by copy number patterns in ependymomas: (I) 9p, (J) 1q, (K) 
6q, (L) 22q. (M-O) UMAP colored by gene expression levels in ependymomas: (M) WNT5A, 
(N) TGFB1, (O) IGF2. 

 

Validating the UMAP Landscape with Previously Reported Ependymoma Genetic Features  

Supratentorial ependymomas (ST-EPNs) are frequently defined by specific gene fusions, most 
notably ZFTA-RELA23 and YAP1 fusions5, as well as recurrent losses of the entire chromosome 
9 arm5. In our study, we observed that 71.64% ( 96/134) of ST-EPNs harbored the ZFTA-RELA 
fusion (Fig.  2g), while 6.71%( 9/134)% exhibited YAP1-MAMLD1 fusions. Notably, ZFTA-
RELA fusions localized to a specific region on the UMAP, whereas YAP1-MAMLD1 fusions 
clustered on the opposite side, aligning more closely with posterior fossa ependymoma samples 
(Fig 2h). Additionally, 26.86% (36/134) of ST-EPN tumors showed deletions in the short arm of 
chromosome 9 (chr9p), and 23.88% (32/134) had deletions in the long arm (chr9q). (Fig. 2a,i).  

By contrast, posterior fossa ependymomas are typically characterized by a gain of chromosome 
1q24 and losses of chromosomes 6q and 22q5. Within our cohort, 12.59% (17/135) of posterior 
fossa ependymomas exhibited a 1q gain, 12.2% (17/134) had a 6q loss, and 11% (16/134) had a 
22q loss (Fig. 2j, k, l). As reported, posterior fossa ependymomas exhibited elevated expression 
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of WNT5A24 (Fig. 2m), TGFB124 (Fig2n), and HOXB225 (Fig S2. 2g), whereas supratentorial 
ependymomas demonstrated high expression of IGF226 (Fig. 2o), L1CAM27,  and CCND128 (Fig 
S2 i,j). 

Consistent with previous studies, we identified several reported gene fusions across various 
medulloblastoma subtypes22. Specifically, 14.23% (39/274) of SHH medulloblastomas exhibited 
fusions involving CCDC196:LINC02290 (Fig S2k). In contrast, among Group3 and Group4 
medulloblastomas, 27% (62/229) of group 3 and 54% (200/364) of group4 showed gene fusion 
in GJE:VTA1 , 6.9% (16/229)  showed gene fusion in PVT1:PCAT1, 4.8%(11/229) of group 3  
and 6.9% (25/364) of group4 showed gene fusion in TUBB2B:LMAN2L   and 28/364(7.69%) of 
group4 in ELP4:IMMP1L (Fig S2l-o) 

RNAseq clustering recapitulates Age-Driven Segregation of SHH Tumors, Consistent with 
Multi-Omics subtyping 

With our reference landscape established, we applied various clustering techniques, including 
density-based spatial clustering of applications with noise (DBSCAN), k-means, hierarchical 
clustering, and Gaussian Mixture Models (GMM), to uncover patterns and relationships among 
the samples (Fig S3a-c). Notably, Sonic Hedgehog (SHH) tumors formed a distinct cluster 
within the landscape, further segregating into three subclusters based on patient age: S1, with a 
median age of 25 years; S2, with a median age of 6.3 years; and S3, with a median age of 1.6 
years (Fig. 3a). 

Cavalli et al.9 previously identified four distinct SHH medulloblastoma subtypes by integrating 
genome-wide DNA methylation and gene expression data (Fig. 3b). Remarkably, our approach, 
utilizing only RNA-seq data, achieved similarly clear segregation of SHH tumors based on age, 
with S1 corresponding to SHH delta, S2 to SHH alpha, and S3 to SHH beta and gamma. 
Consistent with Cavalli et al.’s findings, we confirmed that S2 (SHH alpha) exhibited a high 
frequency of 9p amplifications, 9q deletions, and 10q deletions compared to S1 and S3 (Fig 
S3d). This demonstrates that our RNA-seq-based method is comparable to the subtyping 
accuracy of more complex, multi-omic approaches. 

Additionally, we observed that patients in S2 with a copy-neutral status for 9q had significantly 
better survival rates compared to those with 9q deletions (p = 0.0029, Fig. 3c). S1 also showed a 
higher percentage of 14q deletions compared to S2 and S3. Across all SHH tumors, we identified 
distinct pathways that were uniquely upregulated in this subtype, distinguishing them from other 
medulloblastoma subtypes. Specifically, pathways involving Gli protein binding to promoters, 
RUNX3 regulation of YAP1-mediated transcription, ribosome-related processes, and B-
lymphocyte signaling were prominently upregulated in SHH tumors (Fig. 3d-g, Fig S3e-j). We 
also noted additional upregulated pathways, such as protein kinase C activity, metabolic 
processes, wound healing, nonsense mediated decay, and T-cell activation (Fig. 3g-I, Fig S3e-j). 
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Fig. 3. SHH Medulloblastoma Clustering by Patient Age 

(A) UMAP showing SHH medulloblastoma clusters S1, S2, and S3. (B) UMAP colored by 
subtype classification according to Cavalli et al. (C) Survival analysis for S2 based on the copy 
number profile of 9q. (D-I) Pathways upregulated in SHH medulloblastoma compared to Group 
3 and Group 4 medulloblastoma samples. 

 

Group3 and Group4 medulloblastoma subtypes from RNASeq are consistent with multi-
omics subtyping 

Group 3 and Group 4 medulloblastoma samples form the final major cluster within our reference 
landscape. Cavalli et al. previously subdivided these tumors into six distinct subgroups. Our 
approach similarly identified six subclusters within the Group 3 and Group 4 samples, with 
strong consensus across all clustering techniques used (Fig. 4a, Fig S4a-c). Specifically, Group 3 
tumors were divided into three subgroups—C1, C2, and C4—while Group 4 tumors were 
subdivided into C3, C5, and C6.  

Consistent with what was reported by Cavalli et al, C2 showed a pronounced upregulation of 
MYC compared to C1 and C4 (Fig 2 e), gain of chromosome 8 (56.45% for 8p and 61.29% for 
8q, Fig 4b, Table S2). Additionally, C1 was characterized by a gain of chromosome 7(20% for 
7p, 33.7% for 7q), loss of chromosome 8 (38.2% for 8p and 29.21% for 8q), and gain of 14q 
(55%),Conversely, subgroup C3 showed a loss of both chromosome 8p and 8q (78.43% and 
80.39% respectively). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.21.619495doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.21.619495
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Subgroup C4 revealed notable survival differences based on gender, with males in C4 exhibiting 
significantly worse survival outcomes compared to females (p = 0.015). Furthermore, patients in 
C4 with copy number deletions in chromosome 4p demonstrated better survival rates than those 
who were copy number neutral for 4p (p = 0.032, Fig. 4c). Isochromosome 17 presented distinct 
copy number patterns across all six subtypes, with 17q gained in C1 (20%), C2 (24.19%), C3 
(52.9%), C4 (11.9%), C5 (55.19%) and C6 (72.9%)  , while 17p was lost in C1 (16.85%), C5 
(20.96%),C4 (25.49%),  C4 (2%), C5 (37.1%%), and C6 (65.116%) (Fig. 4b, Table S2). 

The Group 4 subgroups (C3, C5, and C6) displayed distinct pathway regulation compared to the 
Group 3 subgroups. Specifically, the MYC-amplified Group 3 subgroup C2 was enriched for 
pathways related to translation, Wnt signaling, phototransduction activation, TERT pathway, and 
voltage-gated channels (Fig. 4d, e, Fig S4d-h). In contrast, Group 4 subgroups showed 
upregulation in pathways such as NTRK2 signaling, STAT5 activation, signaling by leptin, 
IL22BP pathway, KIT signaling, and presynaptic depolarization and calcium signaling (Fig. 4f-I, 
Fig S4i-l). 

 

Fig. 4. Group 3 and Group 4 Medulloblastoma Subtypes with Distinct Molecular Profiles 
Identified by RNA-Seq 

(A) UMAP showing Group 3 dividing into subtypes C1, C2, and C4, and Group 4 dividing into 
subtypes C3, C5, and C6. (B) Copy number profiles for all six subclusters. (C) Survival analysis 
for C4 based on gender and copy number status of 4p. (D-I) Pathways upregulated in Group 3 
and Group 4 medulloblastoma subtypes. 
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Clustering Reveals Two Distinct Ependymoma Subgroups with distinct gene fusions, kinase 
expression and pathway regulation  

While RNAseq-based clustering of medulloblastomas aligns with previous reports, RNAseq 
distinguishes ependymomas into two novel groups, EPN-E1 and EPN-E2 (Fig. 5a), using 
multiple clustering algorithms (Fig S5a-c), diverging from prior classifications. EPN-E1 is 
predominantly composed of supratentorial ependymomas (ST-EPNs), accounting for 77% 
(105/136) of the samples, followed by 11% (6/136) ependymoma NOS, 3.67% (5/136) PF-EPNs, 
3.67% (5/136) Anaplastic EPNs and 2.20% (3/136) spinal EPNs. The EPN-E2 is primarily 
dominated by PF-EPNs (55% ,.129/234) followed by 12% (29/234) ST-EPNs ,25% (60/234) 
ependymoma NOS samples, 3.85% ( 9/234) myxopapillary EPNs and 2.56% (6/236) Anaplastic 
EPNs (Fig. 5b). Tumors diagnosed as myxopapillary ependymomas are exclusively localized 
within or near the EPN-E2 cluster, whereas spinal and anaplastic ependymomas were distributed 
across both EPN-E1 and EPN-E2 (Fig. 5b). 

Ependymomas are thought to be driven by gene fusions, and forced expression of these gene 
fusions can induce formation of ependymomas in mice23. While looking at the gene fusion 
profile for EPN-E1 and EPN -E2 we found that the EPN-E1 cluster was predominantly 
characterized by ST-EPNs harboring the RELA-ZFTA fusion (87%, Table S3a). By 
contrast,12.29% (29/234)% of the EPN-E2 cluster  were ST-EPNs, with 31.03% ( 9/29) having a 
YAP1:MAMLD1 gene fusion, while another 27.58%( 8/29) harbored a ZFTA:RELA  a gene 
fusion. (Fig. 5c, Table S3b). The data suggests that relying solely on this fusion to categorize ST-
EPNs may not fully capture their molecular diversity. Further analysis of the ST-EPNs in EPN-
E2 with the RELA-ZFTA fusion revealed no other significant recurrent gene fusion patterns 
(Table S3c). All five of the Anaplastic EPNs in EPN-E1 showed a gene fusion in ZFTA:RELA 
(Table S3d) whereas the six anaplastic which landed in EPN-E2 did not report any RELA-ZFTA 
gene fusion or any other recurrent gene fusion (Table S3e) 

The EPN-E2 showed distinct gene fusions compared to ST-EPNs - specifically SALL2:METTL3 
(29%, 38/129), FRMPD2:PTPN20CP (17.82%, 23/129), TIAM2: SCAF8 (13.95%, 18/129) , 
NEDD1:CFAP54 (10.07%, 13/129), ZIC5:ZIC2 ( 6.97%, 9/129) (Table S4a). The five PF-EPNs 
found in EPN-E1 did not show any recurrent gene fusions (Table S4b).  Due to the limited 
number of samples for PF-A (n=17) and PF-B (n=4), we were unable to identify trends in gene 
fusions specific to these subtypes (Table S4c,d). However, it is noteworthy that 35% (6/17) of 
PF-A cases reported a gene fusion in TIAM2:SCAF8. Additionally, 7/9(77%) Myxopapillary 
EPNs reported a gene fusion in RNU6-9:SCARNA11(Table S4e) 

By contrast, the medulloblastoma samples exhibited a higher frequency of gene fusions per 
sample compared to ependymomas (Fig S5d) and differed markedly from that of the 
ependymomas (Fig. 3d, e). GJE1:VTA1 was the most abundant gene fusion in Group4(54%) and 
group3( 27%) tumors followed by EOMES:ADGRV1 ( 41% in group3 and 26% in group4) ( Fig 
5f, Fig S5e, Table S5).  We also observed gene fusions specific to SHH , such as NDUFA4L2 
:R3HDM2 (24%), EP400:ZNF471(30%) and DCP2:COMT (16%) among others (Table S5a) 
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Fig. 5. Ependymoma segregate into two clusters EPN-E1 and EPN-E2 

(A) UMAP displaying the two clusters, EPN-E1 and EPN-E2. (B) Bar plot illustrating the 
composition of EPN subtypes within EPN-E1 and EPN-E2. (C) UMAP showing the distribution 
of commonly studied gene fusions in ependymoma: ZFTA-RELA (purple), YAP1-MAMLD1 
(black), other YAP1 fusions (blue), and other ZFTA fusions (brown). (D) Dot plots showing the 
gene fusions and their frequencies in EPN-E1 and EPN-E2, as well as across medulloblastoma 
subtypes. 

 

Distinct Gene and Pathway Regulation in EPN-E1 and EPN-E2 subgroups  

Differential gene expression analysis between EPN-E1 and EPN-E2 revealed 106 kinases were 
upregulated in EPN-E1 and another 105 kinases were up-regulated in EPN-E2 (Fig. 6a, 
highlighted in pink). These included tyrosine receptor kinases,  such as oncogenic driver 
MERTK and EPHB4  which were up-regulated in EPN-E1 (Fig 6b) and (Table S6a) and  
NTRK2/3 (Fig 6b) up-regulated in EPN-E2, which play an oncogenic role in adult glioma29 and 
several other cancer types30 . The gene expression profiles of E2 ZFTA-RELA tumors are 
significantly different from the E1 ZFTA-RELA tumors (Fig S6a). Notably, the E1 non-ZFTA-
RELA tumors show greater similarity to E1 ZFTA-RELA tumors than to E2 ZFTA-RELA tumors 
(Fig S6b). 

Several synaptic genes which are critical for neuronal communication, neurodevelopment and 
cognitive development31 were also differentially up-regulated in EPN-E1 compared to EPN-E2, 
such as  GRIN1, CHRNB1, CACNA1G, CACN1B and P2RX5 (Fig S6c-g).  On the other side, 
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EPN-E2 also had a distinct set of up-regulated synaptic markers such as GABRA5, DRD1, 
SCN4B and P2RX7 (Fig S6h-k).   

Further analysis revealed distinct pathway regulation between the EPN-E1 and EPN-E2 groups. 
EPN-E1 showed upregulation of pathways involved in Notch signaling, the TP53 pathway, RAS 
signaling, and interferon gamma (IFNG) signaling (Fig. 6c,d, Table S7a). Additionally, 
pathways related to chromatin maintenance and G1/S-specific transcription were upregulated in 
EPN-E1. In contrast, EPN-E2 exhibited upregulation of pathways associated with hyaluronan 
biosynthesis, dopamine receptor signaling, voluntary skeletal muscle contraction, and antigen 
processing and presentation (Fig. 6c,d, Table S7b ).  

 

Fig. 6. Contrasting Differences Between EPN-E1 and EPN-E2 

(A) Volcano plots showing differentially expressed genes in EPN-E1 (pink) and EPN-E2 (green), 
with differentially regulated kinases highlighted in blue, the top tyrosine kinase receptors are 
labeled in black. (B) Gene expression levels of tyrosine receptor kinases: NTRK2, NTRK3, 
MERTK, and EPHB4. (C) UMAP showing GSVA scores for pathways regulated in EPN-E1. (E) 
UMAP showing GSVA scores for pathways regulated in EPN-E2. (D) Dot plot illustrating 
pathways upregulated in EPN-E1 and EPN-E2. 

Projecting New Patients onto a Pre-existing UMAP Reference Landscape 

Our established UMAP landscape has clearly delineated distinct biological regions 
corresponding to different disease types and subtypes. This landscape can also be leveraged to 
overlay new patients entering the clinic, aiding in the prediction of their disease subtype and 
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ruling out misdiagnosis. To demonstrate this concept, we utilized an algorithm previously 
developed in our lab18 to project new patient data onto the reference landscape. 

One of the primary data sources for our landscape is the Children’s Brain Tumor Network 
(CBTN), which includes 77 ependymoma and 93 medulloblastoma samples among 23 different 
pediatric tumor types. Of the 93 medulloblastoma samples, 10 were classified as Group 3, 38 as 
Group 4, 24 as SHH, 9 as WNT, and 12 as NOS. We employed a nearest neighbors algorithm to 
overlay 12 new patient samples (A-L; Table S8, Fig. 7a) onto our landscape. The results showed 
that patients H and I co-embedded within the EPN-E2 group, while patient F clustered with the 
WNT medulloblastomas. Patients A and G aligned with the MYC-amplified Group C2, and 
patient L corresponded with C1. Patient C localized to C4, whereas patients B and D were 
clearly situated within Group 4 (C6 and C5). Additionally, patients K, E, and J were positioned at 
the boundary between Group 3 and Group 4, within C5 and C3. 

To validate the accuracy of our algorithm, we examined the molecular profiles of tumors that 
overlapped with the Group 3/4 clusters. For instance, the median MYC expression value in C2 is 
7.5 (log2(TPM)). Patients A, G, J, and L, all of whom fell within the MYC-amplified region, 
exhibited MYC expression levels of 6.56, 7.33, 7.28, and 6.25, (log2(TPM)) respectively (Fig. 
S7). Additionally, patient A showed a gain of chromosome 8q, consistent with the profile of 
Group 3 subtypes. Patients C and K, located at the boundary between Group 3 and Group 4 
tumors, also displayed elevated MYC expression (6.21 and 4.9, respectively), with patient K 
showing a gain of 8q. 

Similarly, the Group 4 subclusters C6 and C5 are characterized by high EOMES expression, with 
a median expression value of 6.17 and 5.31 (log2(TPM)) respectively. Patients B, D, and E 
exhibited elevated EOMES expression (6.37, 4.10, and 6.4, (log2(TPM)) respectively). Patient B 
also demonstrated a gain of 17q, aligning with the Group 4 subtype profile. We recalculated the 
UMAP with the 12 medulloblastoma NOS samples included and found that the predicted 
placement based on the nearest neighbors algorithm (shown in black) precisely matched the 
ground truth (red) in terms of their positioning on the landscape. (Fig S7) 

Overlaying new patient data onto the landscape can also inform therapeutic decisions. For 
example, within the C2 group, characterized by high MYC expression, we found that stratifying 
patients based on MYC levels revealed poor prognosis in patients with elevated MYC expression 
levels, as reported previously32(p = 0.012, Fig 7b,c). This subgroup also exhibited upregulation 
of pathways involved in translation (Fig. 7d). EIF4EBP1 is a known negative regulator of 
translation initiation, and its elevated levels have been linked to drug resistance33. Notably, 
EIF4EBP1 was similarly overexpressed in C2, mirroring the MYC expression pattern. When we 
further stratified patients based on EIF4EBP1 expression, those with high levels of EIF4EBP1 
had poorer survival compared to those with lower expression (p = 0.081 , Fig 7e,f). Therefore, if 
a new patient, such as patient A (Fig. 7), falls into a region associated with high EIF4EBP1 
expression, they may be at increased risk for drug resistance. 
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Fig. 7. Integrating New Patient Data onto the Reference Landscape 

(A) Using the k-nearest neighbors algorithm to assign subtypes to 12 NOS medulloblastoma 
samples. (B) UMAP colored by MYC gene expression. (C) Survival analysis for C2 based on 
MYC gene expression levels. (D) UMAP displaying GSVA scores for eukaryotic translation 
pathways. (E) Gene expression levels of EIF4EBP1 on the UMAP. (F) Survival analysis for C2 
based on EIF4EBP1 gene expression. 

 

DISCUSSION  
 

Over the past decade, the emergence of single-cell atlases (Shendure et al.) and bulk RNASeq 
derived reference landscapes (Arora et al., Thirimane et al.) aimed at molecularly characterizing 
various diseases has become increasingly prevalent. Though landscapes derived from single-cell 
RNA sequencing (scRNA-seq) reveals cellular heterogeneity, it demands significant resources, 
time, and complex analysis. In contrast, landscapes developed from publicly available bulk 
RNA-seq datasets offer a cost-effective and efficient alternative for building reference 
landscapes. Leveraging publicly available data enables rapid construction of robust landscapes, 
facilitating exploration of molecular targets and disease subtypes, and accelerating research and 
discovery. 

The landscape approach to studying a disease has significant advantages. Firstly, the 
comprehensive nature of our landscape, built from a large number of samples across various 
tumor types, uncovers novel tumor biology. Through our analysis, we have uncovered new gene 
fusion events, pathway regulation that contribute to our understanding of disease mechanisms 
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and could serve as new therapeutic targets. For example, the up-regulation of translation in SHH, 
STAT5 and NTRK2 signaling in Group4 and up-regulation of TERT pathway and WNT pathway 
in Group3, underscores the potential of these landscapes in refining disease classification and 
improving our understanding of tumor heterogeneity.   

Secondly, our study identifies distinct clustering patterns, such as the EPN-E1 and EPN-E2 
clusters in ependymomas.  The 2 clusters, validated by multiple clustering approaches show 
distinct gene fusions and pathway regulation. These patterns help delineate subtypes of diseases, 
offering valuable insights into the underlying biology. For example, we observed distinct 
synaptic genes and tyrosine receptor kinases upregulated in each of the clusters. While several 
tyrosine receptor kinases are now actionable targets in precision oncology, synaptic genes are 
also increasingly being viewed as therapeutic targets. Drugs that modulate synaptic function, 
such as those targeting neurotransmitter receptors or synaptic proteins may offer treatments for 
diseases. These findings suggest the presence of distinct tumor-neuron synaptic signaling 
pathways in EPN-E1 and EPN-E2, which have not yet been explored in ependymomas. 

Thirdly, these landscapes offer significant clinical value, particularly in the context of 
constructing clinical trials. By overlaying new patient data onto the reference landscape, 
clinicians can assess a patient’s molecular profile based on their nearest neighbors  within the 
landscape, helping to refine and infer diagnoses. This approach is especially useful when 
traditional diagnostics are inconclusive or in cases of atypical disease presentations. Additionally, 
integrating new patient data into these landscapes can help identify potential misdiagnoses, 
ensuring that patients receive the most accurate and effective treatment based on their specific 
disease subtype 

Lastly, by making the landscape available as a freely accessible online tool, researchers are 
provided with a toolbox to explore genes of interest within the context of our reference 
landscape, facilitating the discovery of new biomarkers and enhancing the broader scientific 
community's ability to conduct hypothesis-driven research. By providing this resource, we aim to 
empower researchers with the tools necessary to uncover novel insights into disease biology, 
ultimately contributing to the development of more effective treatments. 

In conclusion, our study highlights the value of bulk RNA-seq-derived reference landscapes as a 
cost-effective and powerful tool for disease characterization, diagnostic refinement, and the 
identification of novel molecular features. As the field continues to evolve, integrating such 
landscapes into both research and clinical settings will be crucial in advancing our understanding 
and treatment of complex diseases. 

MATERIALS AND METHODS 
 

Collection of publicly available RNA Sequencing data 

Raw RNA sequencing data for medulloblastoma and ependymoma samples were retrieved from 
various public data repositories, as detailed in Table S1. The Heidelberg dataset was obtained 
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from the data repository of the Department of Neuropathology at the University Hospital 
Heidelberg.  

RNA-Seq data processing and visualization 

Quality assessment of the raw RNA sequencing data was performed using FastQC (v0.11.9) in 
conjunction with MultiQC (v1.9) to generate comprehensive reports. The RNA sequencing reads 
were then aligned to the Gencode GRCh38.primary_assembly reference genome using STAR34 
(v2.7.7a). Gene-level quantification was conducted with HTSeq35 (v0.11.0) using Gencode36 V39 
primary assembly annotations. The raw gene counts from all datasets were subsequently 
aggregated and batch effects were corrected using the ComBat-seq function from the R package 
“sva”37. Normalized gene expression values were calculated and expressed as VST from 
“DESeq2”38 package. Dimensionality reduction via Uniform Manifold Approximation and 
Projection (UMAP) was applied to the normalized expression data from protein-coding genes to 
construct the medulloblastoma and ependymoma reference landscape. UMAPs were generated 
using the “umap” R package (https://cran.r-project.org/web/packages/umap/index.html). 

Clustering  

Multiple clustering algorithms were employed in R, including k-means, hierarchical clustering, 
and Gaussian Mixture Models (GMM) to validate and refine the clusters identified by UMAP39.  

Gene Fusion Detection from RNA-Seq 

Gene fusions were identified using the Arriba19 tool (v2.1.0) on RNA-Seq reads aligned via 
STAR's two-pass method. Fusion analysis was restricted to high-confidence fusions as flagged 
by Arriba. Only gene fusions involving at least one protein-coding gene, as determined using 
gencode.v39.annotation.gtf.gz from the hg38 release 44 (GRCh38.p14) annotation, were selected 
for further analysis.  

Copy Number Alterations (CNA) Detection from RNA-Seq 

Large-scale copy number alterations, including chromosome arm-level changes, were inferred 
for all tumors using the CaSpER20 package applied to bulk RNA-Seq data. BAFExtract, 
including its source code, genome list, and genome pileup directory, was obtained from 
https://github.com/akdess/. Cytoband and centromere data for the hg38 reference genome were 
sourced from the UCSC Genome Browser. 

Kaplan-Meier Survival Analysis 

Kaplan-Meier survival curves were generated using the recurrence data for each sample, 
focusing only on tumors with known recurrence status and known time to recurrence or last 
follow-up. Kaplan-Meier curves were plotted, and p-values were calculated using the R package 
“survival” (v3.5.7). 

Differential gene expression analysis 
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Differential expression analysis was performed using DESeq238. Significantly regulated genes in 
each comparison were identified based on FDR (< 0.05) and log 2fold change (> 0.3) or fold 
change of 25% 

GSVA Pathway Analysis 

Pathway gene sets from KEGG40, Biocarta41 , Reactome42 pathways and Gene Ontology 
Biological Processes were sourced from the Molecular Signatures Database (MSigDB) version 
7.2 (https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp). Gene Set Variation Analysis 
(GSVA)43 was performed on batch-corrected VST  counts for all samples. The resulting GSVA 
scores, ranging from 1 to -1 for each sample, were visualized using ggplot244. 

 Placing new patients on UMAP reference map –  

VST counts for the 12 medulloblastoma NOS samples were calculated and used as test data. The 
VST counts for all remaining samples were used as training data.  The k-nearest neigbors 
algorithm, developed in Thirimane et al18, which overlays new patient data onto an existing 
UMAP based on its nearest neighbors was used to predict the location of the test samples on the 
reference umap. The obtained UMAP coordinates were then added to the existing UMAP object 
and plotted using ggplot2 in R.  

Oncoscape integration 

Matrix and clinical data were prepared for Oncoscape by converting them to cBioPortal formats 
(cbioportal.org). Custom settings, including colorings and precalculated views to match the 
paper’s figures, were stored in JSON in an Oncoscape updates.txt file. 
See https://github.com/FredHutch/OncoscapeV3/blob/master/docs/upload.md for details. 

List of Supplementary Materials 
 

Fig S1. Dimension Reduction and Normalization Techniques Applied to RNA-seq Data (A-
C) Dimension reduction techniques applied to non-batch corrected log2(TPM+1) data: (A) PCA, 
(B) t-SNE, (C) UMAP. (D-F) Dimension reduction techniques applied to batch-corrected 
log2(TPM+1) data: (D) PCA, (E) t-SNE, (F) UMAP. (G-I) Different normalization methods 
applied to batch-corrected data: (G) CPM normalization, (H) RPKM normalization, (I) VST 
normalization. 

Fig S2. Further Validation of the Reference Landscape and Subtypes of Medulloblastoma 
and Ependymoma (A-J) Validation based on gene expression patterns across different 
medulloblastoma and ependymoma subtypes. (K-0) Validation based on gene fusions identified 
in the different subtypes. 

Fig S3. Clustering Methods validate Shh clusters (A-C) Different clustering methods applied 
to SHH medulloblastoma: (A) Gaussian Mixture Models (GMM), (B) k-means clustering, (C) 
hierarchical clustering, each showing three distinct clusters. (D) Copy number profiles for cluster 
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S1, S2 and S3. (E-J) GSVA scores for pathways regulated in SHH medulloblastoma, visualized 
on the UMAP. 

Fig S4. Clustering Methods Validate Group 3 and Group 4 Medulloblastoma Clusters (A-
C) Different clustering methods applied to Group 3 and Group 4 medulloblastoma: (A) Gaussian 
Mixture Models (GMM), (B) k-means clustering, (C) hierarchical clustering, each showing six 
distinct clusters. (D-L) GSVA scores for pathways regulated in Group 3 and Group 4 
medulloblastoma, visualized on the UMAP. 

Fig S5. Clustering Methods Validate EPN-E1 and EPN-E2 Subtypes (A-C) Different 
clustering methods applied to ependymomas: (A) Gaussian Mixture Models (GMM), (B) k-
means clustering, (C) hierarchical clustering, each showing two distinct clusters. (D) Gene fusion 
frequencies across all ependymoma and medulloblastoma samples. (E) Gene fusions specific to 
EPN-E1, EPN-E2, and medulloblastoma subtypes colored in over the reference landscape 

Fig S6. Copy Number Profiles for ST-EPNs and PF-EPNs (A) Volcano plot showing DEGs 
upregulated in E1 containing ZFTA:RELA gene fusions vs E2 containing ZFTA:RELA gene 
fusions. (b) Volcano plot showing DEGs upregulated within E1 containing ZFTA:RELA vs those 
that did not contain ZFTA:RELA gene fusion (C-K) Synaptic genes upregulated in EPN -E1 and 
EPN-e2 respectively  

Fig S7. Validation of New Patient Data Overlay on the Reference Landscape Validation of a 
new patient overlayed on the reference landscape, based on gene expression and copy number 
patterns. 
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Figures  

Fig. 1. Generation of the Medulloblastoma and Ependymoma Landscape with Clinical and 
Genomic Metadata (A) UMAP visualization colored by dataset source. (B) UMAP colored by 
disease type. (C) UMAP colored by subtypes for both medulloblastoma and ependymoma. (D) 
UMAP colored by subtypes within the posterior fossa. (E) UMAP highlighting supratentorial 
ependymomas (orange), with all other samples shown in grey. (F) UMAP colored by gender 
where available: Female (pink), Male (blue), and fetal samples (green). (G) UMAP colored by 
patient age at the time of tumor sample acquisition. (H) UMAP colored by age of forebrain 
samples. (I) UMAP colored by age of hindbrain samples. 

Fig. 2. Validation of the reference landscape through copy number, gene fusions and gene 
expression patterns (A-C) UMAP colored by copy number alterations to validate 
medulloblastoma subtypes: (A) 9q, (B) 17p, (C) 17q (red for gains, blue for deletions). (D-F) 
UMAP colored by gene expression levels: (D) ATOH1, (E) MYC, (F) KCNA1. (G-H) UMAP 
colored by gene fusions to confirm ependymoma subtypes: (G) ZFTA-RELA , (H) YAP-
MAMLD1. (I-L) UMAP colored by copy number patterns in ependymomas: (I) 9p, (J) 1q, (K) 
6q, (L) 22q. (M-O) UMAP colored by gene expression levels in ependymomas: (M) WNT5A, 
(N) TGFB1, (O) IGF2. 

Fig. 3. SHH Medulloblastoma Clustering by Patient Age 

(A) UMAP showing SHH medulloblastoma clusters S1, S2, and S3. (B) UMAP colored by 
subtype classification according to Cavalli et al. (C) Survival analysis for S2 based on the copy 
number profile of 9q. (D-I) Pathways upregulated in SHH medulloblastoma compared to Group 
3 and Group 4 medulloblastoma samples. 

Fig. 4. Group 3 and Group 4 Medulloblastoma Subtypes with Distinct Molecular Profiles 
Identified by RNA-Seq 
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(A) UMAP showing Group 3 dividing into subtypes C1, C2, and C4, and Group 4 dividing into 
subtypes C3, C5, and C6. (B) Copy number profiles for all six subclusters. (C) Survival analysis 
for C4 based on gender and copy number status of 4p. (D-I) Pathways upregulated in Group 3 
and Group 4 medulloblastoma subtypes. 

Fig. 5. Ependymoma segregate into two clusters EPN-E1 and EPN-E2 

(A) UMAP displaying the two clusters, EPN-E1 and EPN-E2. (B) Bar plot illustrating the 
composition of EPN subtypes within EPN-E1 and EPN-E2. (C) UMAP showing the distribution 
of commonly studied gene fusions in ependymoma: ZFTA-RELA (purple), YAP1-MAMLD1 
(black), other YAP1 fusions (blue), and other ZFTA fusions (brown). (D) Dot plots showing the 
gene fusions and their frequencies in EPN-E1 and EPN-E2, as well as across medulloblastoma 
subtypes. 

Fig. 6. Contrasting Differences Between EPN-E1 and EPN-E2 

(A) Volcano plots showing differentially expressed genes in EPN-E1 (pink) and EPN-E2 (green), 
with differentially regulated kinases highlighted in blue, the top tyrosine kinase receptors are 
labeled in black. (B) Gene expression levels of tyrosine receptor kinases: NTRK2, NTRK3, 
MERTK, and EPHB4. (C) UMAP showing GSVA scores for pathways regulated in EPN-E1. (E) 
UMAP showing GSVA scores for pathways regulated in EPN-E2. (D) Dot plot illustrating 
pathways upregulated in EPN-E1 and EPN-E2. 

Fig. 7. Integrating New Patient Data onto the Reference Landscape 

(A) Using the k-nearest neighbors algorithm to assign subtypes to 12 NOS medulloblastoma 
samples. (B) UMAP colored by MYC gene expression. (C) Survival analysis for C2 based on 
MYC gene expression levels. (D) UMAP displaying GSVA scores for eukaryotic translation 
pathways. (E) Gene expression levels of EIF4EBP1 on the UMAP. (F) Survival analysis for C2 
based on EIF4EBP1 gene expression. 

Table S1. Datasets from North America and Europe were combined to generate the 
medulloblastoma UMAP 

Table2 S2 Copy number profiles for each subtype of Group3 and Group4 medulloblastoma  

Table S3 Top recurrent gene fusions in ST-EPNs in EPN-E1 

Table S4 Top recurrent gene fusions in PF-EPNs in EPN-E2 

Table S5 Top recurrent gene fusions in medulloblastoma subtypes 

Table S6 Kinases upregulated in EPN-E1 and EPN=E2 

Table S7 Pathways upregulated in EPN-E1 and EPN-E2 
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Table S8 Mapping of 12 NOS medulloblastoma samples from CBTN as shown in Figure 7 
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