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Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder

that affects approximately 1% of the population and causes significant

burdens. ASD’s pathogenesis remains elusive; hence, diagnosis is based

on a constellation of behaviors. Structural magnetic resonance imaging

(sMRI) studies have shown several abnormalities in volumetric and geometric

features of the autistic brain. However, inconsistent findings prevented most

contributions from being translated into clinical practice. Establishing reliable

biomarkers for ASD using sMRI is crucial for the correct diagnosis and

treatment. In recent years, machine learning (ML) and specifically deep

learning (DL) have quickly extended to almost every sector, notably in

disease diagnosis. Thus, this has led to a shift and improvement in ASD

diagnostic methods, fulfilling most clinical diagnostic requirements. However,

ASD discovery remains difficult. This review examines the ML-based ASD

diagnosis literature over the past 5 years. A literature-based taxonomy of the

research landscape has been mapped, and the major aspects of this topic

have been covered. First, we provide an overview of ML’s general classification

pipeline and the features of sMRI. Next, representative studies are highlighted

and discussed in detail with respect to methods, and biomarkers. Finally,

we highlight many common challenges and make recommendations for

future directions. In short, the limited sample size was the main obstacle;

Thus, comprehensive data sets and rigorous methods are necessary to check

the generalizability of the results. ML technologies are expected to advance

significantly in the coming years, contributing to the diagnosis of ASD and

helping clinicians soon.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by early deficits in social interactions
and communication and restricted and repetitive activities and
interests (American Psychiatric Association, 2013). As its name
suggests, rather than a single condition, ASD includes a wide
range of symptoms (Tanu and Kakkar, 2019) that reflect an
overarching diagnostic category that, before the fifth edition
of the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5), was comprised of multiple separate disorders, such
as Autistic disorder, Asperger’s syndrome, and other pervasive
developmental disorders (American Psychiatric Association,
2013). Language difficulties, epilepsy, and other problems may
come with ASD (Yasuhara, 2010; Sivapalan and Aitchison,
2014). The prevalence of ASD in the United States has grown
from 1 in 110 to 1 in 69 over 4 years (from 2008 to 2012) (Lee
and Meadan, 2021). Approximately 1% of the world’s population
was diagnosed with ASD, and its prevalence among males is four
times higher than among females (World Health Organization,
2013; Gao K. et al., 2021). ASD’s etiology is still elusive, but
genetics and the environment may play a role (Chaddad et al.,
2017).

Early diagnosis and effective intervention improve the
quality of life for autistic individuals (Pagnozzi et al., 2018).
The gold standard for diagnosing most mental disorders,
including ASD, is observation and visual analysis of behavior,
such as interviews (Zhang L. et al., 2020; Jarraya et al.,
2021). These instruments, however, have limits. A child’s
apparent inability to cope with their environment is usually
diagnosed at 3 years old (Wang et al., 2018). Interpretive coding
of children’s observations is time-consuming (Eslami et al.,
2021). Comorbidities and other disorders that share prominent
features with ASD may hinder diagnostic evaluation (Gargaro
et al., 2011). Clinical training, tools, and cultural context may
influence a clinician’s subjective observations (Eslami et al.,
2021). These limitations necessitate more optimal diagnosis
methods, such as biomarker-based diagnosis.

In the 1990s, MRI techniques such as structural MRI
(sMRI) and functional MRI (fMRI) evolved significantly (Libero
et al., 2015; Eslami et al., 2021). Each modality gives unique
information about the brain (Ozonoff et al., 2011; Wang et al.,
2018). sMRI can dissect brain structures in different images,
such as T1 and T2 weighted, and T2-weighted Fluid Attenuated
Inversion Recovery (FLAIR) (Mostapha, 2020; Eslami et al.,
2021). sMRI also tracks brain growth over time in longitudinal
studies, showing early life risk factors (Li et al., 2019a). fMRI
tracks changes in blood flow to brain regions that stimulate
neurons (Mostapha, 2020). The two main forms of fMRI are
rs-fMRI and task fMRI (Xu et al., 2021).

Numerous studies have explored brain abnormalities in the
cerebellum (Sivapalan and Aitchison, 2014), gray matter (GM)
volumes (Rojas et al., 2006), and brain functional connectivity

(FC) (Nomi and Uddin, 2015), and others using statistical
methods (Polsek et al., 2011). However, the interdependency
between diverse brain regions has been neglected (Libero et al.,
2015; Eslami et al., 2021). In addition, group differences are
not individual differences, so results from research cannot be
directly translated into clinical practice (Rojas et al., 2006;
Xu et al., 2021). Machine learning (ML) models and deep
learning (DL) techniques have recently become attractive to be
applied in the diagnosis of diseases like Parkinson’s (Manzanera
et al., 2019) and epilepsy (Abbasi and Goldenholz, 2019).
Conventional ML methods facilitate the exploration of complex
abnormal imaging patterns and consider the relationships
between different brain regions (Xu et al., 2021). Thus, it can
greatly enhance the role of statistical methods. Computer-aided
diagnostic (CAD) systems are also a low-cost method that
reduces healthcare expenditure compared with other methods.
They’re simple enough that even computer scientists with
no prior training in psychiatry can analyze data and extract
insights (Manzanera et al., 2019; Eslami et al., 2021). In ML,
the key features are usually extracted manually and then tell
the algorithm how to make a prediction or classification by
consuming more information. For problems with complex
nonlinear relationships, the DL algorithm is better suited
because it learns features automatically and its performance is
superior in image analysis fields, such as object detection and
image classification (Zhang et al., 2021). However, the diagnosis
of ASD remains a formidable challenge, as studies based on ML
have shown different results that may reflect the diversity of
behavioral symptoms of the disorder and its proposed etiology,
often linked to the brain (Sivapalan and Aitchison, 2014).

Several publications (Zhang L. et al., 2020; Zhang et al., 2021;
Quaak et al., 2021) have reviewed the classification of ASD using
only ML or DL algorithms. Some representative examples of
previous reviews are listed in Table 1.

However, these publications often cover many human
tissues or diseases (Quaak et al., 2021). Thus, this survey
focuses on ASD and brain imaging only. We should note that
besides MRI techniques, other forms of brain data, such as
electroencephalography (Ibrahim et al., 2018), and computed
tomography (Hashimoto et al., 2000), are utilized to investigate
ASD. However, MRI is the safest method due to its low radiation
(Sivapalan and Aitchison, 2014). Given the high anatomical
accuracy of sMRI and its availability in clinics, it is considered
the most feasible method available to contribute to clinical
practice (Kim and Na, 2018). In addition, capturing sMRI
images requires less time and effort from patients and clinicians
than other MRI methods such as fMRI (Kim and Na, 2018).
We collected research on the conventional ML and/or DL
directions for classifying ASDs. Unlike most published papers,
ours discusses current research findings from two perspectives:
medical (related to sMRI-based biomarkers associated with
ASD) and technical (related to learning models, accuracy, and
methods used to extract and analyze data). 45 research papers
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TABLE 1 ASD application review papers based on ML and DL methods with sMRI data.

References No. papers
reviewed

Years covered Methods covered Diseases/disorders

Arbabshirani et al. (2017) 200 2001–2015 ML on sMRI, fMRI, Diffusion MRI, and
positron emission tomography

Schizophrenia, mild cognitive
impairment, Alzheimer’s disease,
depressive disorders, ASD, and

ADHD.

Pagnozzi et al. (2018) 123 2007–2018 ML and non-ML on sMRI ASD

Tanu and Kakkar (2019) 48 2007–2018 ML and DL: Invasive and non-invasive
diagnosis approaches

ASD

Nogay and Adeli (2020) 46 2009–2020 ML and DL on sMRI, fMRI ASD

Khodatars et al. (2021) 82 2016–2020 DL on different autism diagnosis and
rehabilitation approaches

ASD

Zhang et al. (2021) 74 2011–2021 ML and DL on different neuroimaging data Alzheimer’s disease, Parkinson’s,
major depressive disorder,

schizophrenia, ADHD, and ASD.

Eslami et al. (2021) 75 2010–2020 ML and DL on different neuroimaging data ADHD, and ASD.

were reviewed to assess ML and DL methods for classifying ASD
using sMRI. Articles were collected from abstract searches in
the Web of Sciences, Scopus, and PubMed databases between
January 2017 and January 2022 using the following formula:
autism∗ AND (imaging OR MRI OR sMRI) AND (machine
Learning OR deep learning) AND (classif∗ OR predict∗ OR
diagnosi∗).

The survey taxonomy describes the methods, scan
techniques, and features that are based on brain classification
for ASD diagnosis (see Figure 1). This study looks at the age
and number of subjects, features/biomarkers, types of scan
modalities, datasets used, preprocessing tools, classification
algorithms, and evaluation measures.

After the introduction, there are six sections in this
article. Section 2 discusses the sMRI features and methods
of extracting them. In Section 3, the general pipeline for ML
and algorithms common in ASD research is described. In
Section 4, ML/DL’s recent applications for diagnosing ASD
using sMRI are presented, along with a description of the
most consistent discriminatory biomarkers for diagnosing ASD
across studies. Before concluding, we will evaluate the present
research’s limits and discuss future directions that we believe will
help researchers decide which studies to conduct. The review
also provides a tabular summary of all articles, allowing readers
to evaluate the area swiftly.

In summary, the purpose of this review is (a) to demonstrate
ML/DL progress in brain ASD classification and (b) to identify
open research challenges for developing effective ML/DL
classification methods for the autistic brain.

Structural magnetic reasoning
imaging and features extraction

Including MRI, all medical imaging techniques are
diagnostic in themselves. It generates non-invasive

visual representations of the body’s interior that are
utilized to extract insights for clinical evaluations
and describe pathological processes (Zhang L. et al.,
2020).

Various MRI modalities, such as sMRI, fMRI, and diffusion
tensor imaging (DTI) (see Figure 2), have been employed in
studies to capture the effect of ASD on the brain from a range
of perspectives (Ahmad et al., 2014).

sMRI is commonly used to examine brain morphology
because of its high contrast sensitivity, spatial resolution, and
the fact that it does not need exposure to ionizing radiation; this
is especially significant for children and adolescents (Ali et al.,
2022). sMRI delivers various sequences of brain tissue (e.g., T1,
T2, and FLAIR) created by altering excitation and repetition
durations to view multiple brain regions (Eslami et al., 2021).

With the explosion in data in medical imaging of
various types, medical image analysis and the extraction
of clinically relevant information have become a major
challenge. AI technologies are needed to enhance health
care outcomes by boosting sophisticated analytical skills.
Medical imaging research on CAD is expanding quickly.
Because items such as organs may not be represented
accurately by a simple equation; thus, medical pattern
recognition requires “learning from examples” (Suzuki,
2013). One of the most popular uses of ML is the
classification of objects such as brains into certain classes
(e.g., healthy or autistic) based on input features (e.g., GM
volume).

In CAD systems, the sMRI image undergoes steps like
acquisition, image enhancement, feature extraction, the
region of interest (ROI) definition, result interpretation,
etc. Feature extraction conducts scientific, mathematical,
and statistical operations or algorithms to discover
quantifiable features/biomarkers from an sMRI image
which can be used as inputs to ML models to detect brain
disorders. Morphometric features and morphological
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FIGURE 1

A literature-based taxonomy for ML-based ASD classification.

networks are the two main types of features that can be
extracted from sMRI.

This section discusses the most used methods for defining
features from sMRI data.

Morphometric features

Morphometric features include two main types, geometric
and volumetric features, which can be employed for the
MRI-based diagnosis of ASD. Geometric features are two-
dimensional surface features associated with the cerebral cortex,
such as curvature, surface area, and thickness (Ali et al., 2022).
While volumetric features usually refer to the size of the
subcortical structures [e.g., white matter (WM) volume] (Ecker
et al., 2010). Some tools, such as FreeSurfer, and Statistical
Parametric Mapping (SPM), can easily extract morphometric
features (Shen et al., 2017).

Morphological networks

This method connects morphological data from various
brain regions (Eslami et al., 2021).

Depending on the spatial scale, features can be produced in
one of three ways: voxel-based, region-based, or network-based
(Xu et al., 2021).

Researchers can use pre-defined regions and extract data
specifically from voxels within those regions to find specific
findings in brain scans. This is called an ROI-based analysis
(Chen et al., 2011). Experts manually or semi-manually identify
brain regions, which takes a long time. This type of research
is also limited by the number of brain regions that can be
examined. By increasing the number of voxels in a target
ROI, the statistical power increases (Chen et al., 2011). ROI
detection algorithms fall into four categories: (1) based on
changes in voxel values, like edge detection algorithms; (2) based
on human-computer interaction. (3) those that use human
visual characteristics, such as color detection algorithms; (4) DL-
dependent, like Recurrent Attention Model (RAM) and Class
Activation Mapping (CAM) (Ke and Yang, 2020).

In contrast, voxel-based approaches can detect statistically
significant tissue density differences between the two groups
(Seyedi et al., 2020). It is more appropriate given the lack
of consensus on which brain areas are important in ASD
(Eslami et al., 2021). Voxel-wise techniques include voxel-based
morphometry (VBM), surface-based morphometry (SBM),
and tensor-based morphometry (TBM) (Chen et al., 2011;
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FIGURE 2

Different MRI modalities.

Chen T. et al., 2020). VBM’s main characteristics are the density
and volume of GM, WM, and cerebrospinal fluid (CSF) (Chen
et al., 2011). TBM, unlike VBM, does not compute volume
information for various tissue types separately (Chen T. et al.,
2020). On the other hand, SBM research focuses on cortical
topographic measurements like thickness, curvature, and area
(Chen et al., 2011). The SBM method excludes ASD-linked
subcortical regions like the basal ganglia (Chen T. et al.,
2020). Neurological disease can damage multiple brain regions,
making voxel-based or region-based approaches ineffective
(Islam, 2019). Network-based methods are used to extract global
features like voxel or ROI interaction patterns (Eslami et al.,
2021).

General machine learning pipeline
and common algorithms for
classification of autism spectrum
disorder

In 1959, Samuel coined the term “machine learning”
(ML), which is a subfield of artificial intelligence (AI) that
allows machines to learn from data without being explicitly
programmed (see Figure 3A; Samuel, 2000; El Naqa and
Murphy, 2022). ML has three broad categories: supervised,
unsupervised, and semi-supervised learning algorithms (Eslami
et al., 2021). Deep learning (DL) is a subset of ML that is based
on artificial neural networks inspired by the way human neurons
communicate (Eslami et al., 2021).

Most conventional ML algorithms required human
intervention to extrapolate specific data features and patterns

before consuming them to learn from Eslami et al. (2021).
Handcrafted feature extraction is an expensive procedure
(Nogay and Adeli, 2020). DL can automatically detect and
extract representations (features) with strong discriminatory
power from input data (Liu et al., 2020).

After DL’s success in the ImageNet challenge in 2012,
it only took 5 years for the first DL algorithm for medical
imaging (Krizhevsky et al., 2012). A deep neural network (DNN)
(Misman et al., 2019) has one or more hidden layers between
the input and output layers. Each layer is made up of layers
of nodes known as artificial neurons (see Figure 3B). Each
layer’s representation is transformed into the most abstract
and composite layer. The purpose of hidden layers is to
automatically collect valuable features from input and apply
them in the classification stage (Liu et al., 2020). Figure 4
represents the difference between ML and DL.

Therefore, the application of ML models that also include
DL to diagnose disorders has increased rapidly in recent years.
So, in the next section, we focus on describing ML models and
the general framework for their application in ASD diagnostic
studies to make them accessible to neuroscientists.

A general machine learning based
framework for classification of autism
spectrum disorder

Figure 5 illustrates a generic pipeline for establishing an ML-
based ASD diagnosis. ASD classification may be broken down
into four components: (a) data collection and preprocessing; (b)
feature extraction and selection/reduction; (c) model training;
and (d) model testing and performance evaluation.
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FIGURE 3

(A) Branches of Artificial Intelligence Science. (B) An artificial neuron’s architecture. Each input × is associated with a weight w. The sum of all
weighted inputs is passed onto an activation function f that leads to an output.

Data acquisition and preprocessing
The first step in building a good classification framework is

always to obtain the right data that represents the entire field of
interest, is suitable for the learning objective, and is consistent,
complete, and adequate.

Preprocessing is then mainly used to enhance the visual
impression of an image. Due to the complex structure of
neuroimaging data, failure to preprocess them might have
a negative impact on the final diagnosis (Wujek et al.,
2016; Khodatars et al., 2021). There are two layers to the
preprocessing of neuroimaging data: low-level processing
and high-level processing. Low-level processing steps such
as brain extraction, normalization, spatial smoothing, and
atlas registration [e.g., automated anatomical labeling (AAL),
Harvard Oxford Atlas (HO)] are frequently repeated across
studies and are typically performed with pre-built toolboxes
[e.g., FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012),
iBET (Dai et al., 2013), and SPM (Khodatars et al., 2021) to

minimize processing time and improve a study’s reproducibility
(Khodatars et al., 2021)]. High-level processing [e.g., data
augmentation (DA) (Eslami et al., 2019), and sliding window
(Li X. et al., 2018)] is applied to the data following typical
preprocessing methods to increase the accuracy of ASD
detection. It is difficult to implement and repeat complex
processing steps in neuroimaging, so pipelines such as Nipype
or LONI have been found that combine the power of analytical
tools with the speed of data processing as well as facilitate the
repetition of the same steps between different studies (Khodatars
et al., 2021).

Feature extraction, selection/reduction
A feature is any measurable property extracted from

the source dataset regarding the class. Through features
engineering, neuroimaging data is transformed into trustworthy
and biologically relevant features that greatly influence data
separation (Xu et al., 2021). The “dimensionality curse” problem
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FIGURE 4

Differences between (A) ML-based studies workflow and (B) DL-based studies workflow.

FIGURE 5

The components of typical DL-based methods for diagnosing ASD (Khodatars et al., 2021).

is quite common in medical imaging analysis because the sample
density decreases exponentially as the number of features
increases. Some of these features may be redundant or irrelevant
to the prediction; removing them does not result in a significant
loss of information (Xu et al., 2021). If there are too many
features compared to the number of samples, then more training
samples will be required; otherwise, there is a risk of model
“overfitting,” which causes the model to perform well on training
data but badly on unseen or new data; such models are deemed
non-generalizable (Kim and Na, 2018).

The most efficient technique for avoiding the curse of
dimensionality is feature selection/reduction, which reduces
noise and redundant features and facilitates the understanding
of neural mechanisms of diseases by preserving the most
discriminant features while increasing model accuracy and
generalizability (Kim and Na, 2018). There are two basic ways
to feature selection: supervised and unsupervised. Supervised

approaches need the training label to choose informative
and discriminative feature dimensions and exclude others
(e.g., exclude irrelevant variables) (Saeys et al., 2007). This
strategy has three subtypes: filter, wrapper, and embedding
(Xu et al., 2021). In contrast, unsupervised approaches, such
as principal component analysis (PCA) build low-dimensional
feature representations by combining the original features in
linear or non-linear ways without requiring the training label
(Kim and Na, 2018; Xu et al., 2021).

Model training
The model and a suitable training method are chosen

depending on the learning goal and data requirement. The
hyperparameters that determine the model’s architecture
(e.g., number of neurons, activation function, batch size,
etc.) are then optimized for optimum performance, model
generalization, and loss function reduction (Kim and Na, 2018;
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Xu et al., 2021). Hyperparameter tuning/optimization is
the process of determining the optimal combination of
hyperparameter values to get maximum data performance
in an acceptable amount of time (Rojas-Domínguez et al.,
2017). Hyperparameters differ amongst models and must be
established before entering the training phase since they do
not change and are not learned during training. Unfortunately,
there is no mechanism to determine “what is the best approach
to setting the model’s hyperparameters to minimize loss?”
Thus, research and experiment are used to find the optimal
option. In general, this process entails the following steps:
defining a model, determining the range of possible values for
all hyperparameters, sampling hyperparameter values by any of
the different techniques to search for the ideal model structure,
such as GridSearchCV and RandomizedCV, determining
prediction error and other evaluation criteria to evaluate the
model (Ali et al., 2021; Eslami et al., 2021). The prediction
error is computed by applying the loss function to the expected
value and the underlying truth. The choice of loss functions
depends on the nature of the problem and the desired outcome.
Mean squared error and mean absolute error are widely used
in regression problems, while cross-entropy loss is utilized for
classification (Eslami et al., 2021).

Model testing and performance evaluation
The model usually performs well in the training phase,

but generalization requires further investigation in the testing
phase. Test data should not be used during the training phase
to avoid bias. Since most clinical data contains small samples
that may lead to an insufficient model for training, unbiased
cross-validation (CV) is frequently used to validate the model’s
effectiveness and assess the data’s predictive capability. K-fold
CV is a common validation method. To use it, the data set is
divided into K subsets (also called folds) and used k times. The
training process is initially performed on the K-1 subset, saving
the remaining subset for later use as a test set and ensuring
that the test and training sets do not overlap throughout each
iteration (Xu et al., 2021).

Common confusion matrix-based quantitative measures
of model performance are accuracy (ACC), sensitivity (Sen),
specificity (Spe), positive predictive value (PPV), and negative
predictive value (NPV). Whereas positive samples are autistic
individuals and negative samples are healthy controls (HCs),
true positive (TP), and true negative (TN) rates refer to the
number of correctly classified positive and negative instances,
respectively, while false positive (FP) and false negative (FN)
rates refer to the number of incorrectly classified positive and
negative instances, respectively (Uddin et al., 2017; Mostapha,
2020).

In statistics, accuracy is the proximity of repeated
measurement results to the true value. It is also known as
“diagnostic effectiveness” (Kong et al., 2019). The proportion
of ASD disorders that were correctly diagnosed is referred

to as sensitivity. “Specificity” is the proportion of typical
developmental people whose ASD disorder was precisely
excluded (Mostapha, 2020). The PPV of a test answers the
question: “How likely is it that a patient who provided a positive
test result has ASD?” While the NPV of a test provides an
answer to the question: “How likely is it that a patient who gives
a negative test result will not have ASD?”

Each metric describes a different aspect of the model’s power
(Xiao et al., 2017). The receiver operating characteristic (ROC)
curve is also widely used (Xu et al., 2021). This graph depicts
the true positive rate (Sen) vs. false positive rate (1-Spe). The
ROC curve is used to establish the appropriate cut-off point
for both specificity and sensitivity. All possible combinations of
Spe and Sen achievable by varying the test cut-off value can be
summed up by utilizing the area under the receiver operating
characteristic curve (AUC) parameter. AUC, or the area under
the ROC curve, can never be more than 1, and the bigger it is,
the more accurate the test is (Li H. et al., 2018). The F1 score
is calculated by averaging the PPV and Sen scores. Therefore,
this score takes both FP and FN into account (Panja et al., 2018;
Wang et al., 2021).

ACC =
TP

TP + TN + FP + FN
× 100 (1)

Sen =
TP

TP + FN
× 100 (2)

Spe =
TN

TN + FP
× 100 (3)

PPV =
TP

TP + FP
× 100 (4)

PPN =
TN

TN + FN
× 100 (5)

F1 – score =
2∗TP

2∗TP + FP + FN
× 100 (6)

Common conventional machine
learning and deep learning algorithms
in autism spectrum disorder diagnostic
research

In the last 5 years, several ML/DL models have been used in
ASD research. Support Vector Machine (SVM), Random Forest
(RF), Decision Tree (DT), Logistic Regression (LR), Naïve Bayes
(NB), Boosting, and k-Nearest Neighbors (KNN) were among
the most popular conventional ML algorithms (see Figure 6).

SVM aims to find the best decision boundary that increases
the margin between classes in a high-dimensional space (Cortes
and Vapnik, 1995). In SVM’s final discrimination function, only
the data points (support vectors) closest to the hyperplane
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FIGURE 6

Schemes of conventional ML algorithms commonly used in MRI-based studies to diagnose ASD (A) SVM: support vector machine; (B) RF:
random forest; (C) DT: decision tree; (D) KNN: k nearest neighbor.

control the movement of the hyperplane that splits the data
(Xiao et al., 2017). The kernel tricks of SVM can handle
nonlinear classification, but they make the model harder to
interpret (Panja et al., 2018). SVM is not influenced by outliers
and is not sensitive to overfitting, but it is not optimal for a large
number of features (Cortes and Vapnik, 1995; Xiao et al., 2017).

DT is a rooted directed tree with a flowchart-like structure
that depicts the different consequences of a set of decisions.
A DT contains branches that represent the data set’s features
and leaf nodes that represent the outcome or decision (Liu
et al., 2020). DT has good interpretability as it can approximate
complex decision areas through a set of straightforward
decision-making rules (Xu et al., 2021).

RF is made up of DT ensembles. RF uses random sampling
with replacement (bootstrapping) to create many DTs during
training. The forest is determined by the majority vote of

the trees; hence, RF may give more accurate predictions than
learning with a single DT (Uddin et al., 2017; Yin et al., 2020).

LR is a probabilistic method for estimating the statistical
importance of features. Its purpose is to determine the values
of the parameters that reflect all input variables. LR employs a
logistic function in its most basic form to represent a binary
dependent variable. It may also be modified to simulate many
event classes (Uddin et al., 2017; Liu et al., 2020).

NB classifiers are based on Bayes’ theorem with high
predictor independence. The NB classifier assumes that
the effect of a predictor (x) on a particular category
(c) is independent of the other predictors’ values.
Despite its simplicity, NB classifiers often outperform
more complex classification methods, especially for
large data sets (Xiao et al., 2017; Bilgen et al., 2020;
Chen T. et al., 2020).
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In KNN, the data is categorized into several specified groups.
It is carried out in such a way that all data points within the
group are classified as homogeneous or heterogeneous when
compared to data from other groups (Dekhil et al., 2021).

The boosting algorithm is an ensemble algorithm that
transforms weak learners into strong ones. Weak learners have
a weak connection to correct categorization. A strong learner is
closely related to true classification (Bilgen et al., 2020).

For DL, there are several models such as Convolutional
Neural Networks (CNN), deep generative models [e.g.,
Autoencoders (AE), Deep Belief Networks (DBN), and
Generative Adversarial Networks], Multi-layer Perceptron
(MLP), Recurrent Neural Networks (RNN), and Graph
Convolutional Networks (GCN) that have been employed in
various areas like computer vision, natural language processing,
and speech recognition (Zhang L. et al., 2020; Khodatars et al.,
2021). The first four were mostly used in reviewed ASD studies
(see Figure 7).

MLP belongs to the class of feedforward neural networks
with the same number of input and output layers but may have
multiple hidden layers. MLP forward data from one layer to the
next after linear and non-linear transformations (Libero et al.,
2015; Mellema et al., 2019).

A basic AE requires two networks: an encoder network E
and a decoder network D (see Figure 7A; Mostapha, 2020).

The first network encodes the input data x into the low-
dimensional space z, which is then used to decode and
reconstruct the x data (Mostapha, 2020). Various types of AE,
including contractive, sparse, and denoising AEs, were used in
research for dimension reduction and to investigate the highly
discriminative representations from neuroimaging data, but the
spatial structure of data is often discarded (Kong et al., 2019).
Stacking AEs, such as the stacked sparse AE (SSAE) is possible
(see Figure 7B). Stacked AEs can learn faster than a single
autoencoder (Zhang L. et al., 2020).

On the other hand, CNN can leverage the spatial
information of sMRI data and deal with complex image
processing problems. A standard CNN has multiple layers that
process and extract features from data, as shown in Figure 7C.
A CNN has many convolutional layers with multiple filters
to perform the convolution operation. A filter (also called a
kernel) determines the presence of certain features or patterns
in the input. Next comes the Rectified Linear Unit to perform
operations on the elements and produce a feature map (or
activation map). The feature map is then fed to a pooling layer.
Pooling is a down-sampling process that reduces the dimensions
of a feature map. This makes the learning process relatively less
expensive. Max and average pooling are the most widely used
pooling techniques. The pooling layer flattens the 2D arrays
of the pooled feature vector to create a single long vector by

FIGURE 7

Schemes of DL algorithms are commonly used in MRI-based studies to diagnose ASD. (A) AE: autoencoder; (B) Stacked Autoencoder; (C) CNN:
convolutional neural network.
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flattening it. The fully connected layer comes last, and it contains
some hidden neural network layers. This layer classifies the
image into different categories (LeCun et al., 2010; Ozonoff et al.,
2011).

In the context of sequential data, RNNs are particularly
beneficial since each neuron may retain the result of the previous
stage in its internal memory and pass it to the current stage as
input (Dua et al., 2020). This means RNNs can capture long-
term relationships between input symbols (Mittal and Umesh,
2021). But training these RNNs is very costly (Dua et al., 2020).
Moreover, early RNNs had simple recurring layers but they had
a vanishing gradient problem and didn’t work for long data
sequences (Dua et al., 2020). Long-short-term memory (LSTM)
is the most prevalent architecture of RNNs used to solve these
problems (Eslami et al., 2021; Quaak et al., 2021).

Highlighted research

Recent advances in neuroscience and brain imaging and
their combination with ML techniques using the methods
described above allow us to understand the brain and the
different regions implicated in ASD and their interaction. In
this section, first, we summarize recent research on possible
sMRI-based ASD biomarkers. Part 2 includes studies that only
used conventional ML algorithms. Then we look at studies that
benefited from DL algorithms.

Identification of the potential autism
spectrum disorder biomarker from
structural magnetic resonance imaging

Whole brain volume and cortical lobes
Although the etiology of ASD remains unclear, for decades,

an abnormally rapid increase in head circumference has been
observed in some children with autism (Kanner, 1943; Pagnozzi
et al., 2018). In light of the substantial correlation between
head circumference and total brain volume (TVB), various
volumetric studies have studied brain volume as a quantitative
measure retrieved from sMRI (Pagnozzi et al., 2018). Atypical
brain development in infancy may be used as an early ASD
biomarker. Based on research by Hazlett et al. (2012), ASD
children aged 2–4 had a larger brain than their peers, and in
the next study (Hazlett et al., 2017), showed that ASD’s high-risk
family members (HR) (Those who had a sibling with autism)
at 6–12 months of age showed significantly higher cortical
surface area (SA) growth compared to HCs, followed by an
enlargement of TVB at 24 months of age as correlated with the
severity of social autism. The SA growth rate increased mainly
in the left and right middle occipital gyri, right lingual gyrus
area, and right cuneus (Hazlett et al., 2017). Differences in the
right occipital lobe are consistent with other studies (Irimia

et al., 2018; Landhuis, 2020) that explain visual perception
differences between ASD patients and HCs. This appears to
correlate with a report by Irimia et al. (2018) that discovered
the ASD group had higher areas and connectivity densities in
the cuneus, occipital lobes, and the superior and transverse
occipital sulci than the HC group. The ventral frontal lobe of
ASD patients and HCs differs significantly (Irimia et al., 2018).
The superior temporal gyrus curvature appeared smaller in
ASD males than in ASD females, consistent with other results
on ASD sex differences and their memory processing ability
(Xiao et al., 2017) findings. Some studies link ASD to biological
sexual differentiation, which might also explain the disparity in
reported brain volume anomalies (Hazlett et al., 2012; Irimia
et al., 2018). Adult autistic brain GM/WM volumes increased
differentially and decreased across distinct areas, in contrast to
early childhood increases in global volume measures (Akhavan
Aghdam et al., 2018; Gorriz et al., 2019). This may be due to
autism’s heterogeneity and potential subtle structural impacts or
VBM’s limits, as VBM is sensitive to many artifacts, such as brain
structure misalignment, which may mislead statistical analysis
(Pagnozzi et al., 2018). In Dekhil et al. (2020) reported that
changes in the size and shape of the cerebral cortex leading to
an altered arrangement of WM fibers and changes in GM/WM;
this, on its part, is relevant to identifying circuit abnormalities
associated with autism. In Akhavan Aghdam et al. (2018), some
differences exist in GM volume, particularly in the frontal and
temporal regions, hippocampus, caudate nucleus, or other parts
of the basal ganglia, amygdala, as well as the cerebellum. These
areas include most of the TVB. TVB or intracranial volume
(ICV) are essential factors for volumetric analyses of the brain
(Kijonka et al., 2020). TVB = GM + WM (Hazlett et al., 2017).
ICV is the sum of TVB and CSF volumes (Gorriz et al., 2019).

Cortical shape
Cortical thickness (CT), SA, the gyrification index (GI), and

the sulcal morphology of the cerebral cortexes are all ROIs when
investing in volume changes connected to ASD (Pagnozzi et al.,
2018). The observed differences among studies are accentuated
by the lack of agreement in designating ROIs. The CT is the
shortest distance between the GM/WM border and the pial
surfaces (Xiao et al., 2017). SA is the surface area of the WM. To
find the cortical volume, multiply the SA by the CT (Xiao et al.,
2017). CT levels in various brain regions have risen or fallen
in different studies (Grimm et al., 2015; Raamana and Strother,
2020).

Motivated by evidence that regional CT measures can
indicate cortical maturation and cortical-cortical connectivity
and that ASD is characterized by delayed development, some
studies (Moradi et al., 2017; Zheng et al., 2019) have supported
CT scores as an ASD biomarker. For example, in Moradi et al.
(2017) authors demonstrated a positive association between
Autism Diagnostic Observation Schedule (ADOS) test-derived
symptom severity and CT measurements. They also noted
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that age could affect CT and that the severity of the disorder
determines age-related change. Their results also revealed a
greater importance of the right hemisphere for predicting
ASD severity than the left hemisphere. In Itani and Thanou
(2021), the CT was higher in ASD than HCs in all ROIs
identified at work. A statistically significant difference is shown
in the superior frontal gyri, bilateral middle temporal gyri,
right pars orbitalis, right insula, entorhinal cortex, and left
superior temporal gyrus. Irimia et al. (2018) revealed similar
findings in CT of the temporal lobes and superior temporal
gyri. In contrast, Xiao et al. (2017) indicate that the left
hemisphere is superior in distinguishing ASD. The left caudal
anterior cingulate, the left parahippocampal, the left pars
triangularis, and the left precuneus all have the same predictive
value for ASD patients in the left hemisphere. According to
Xiao et al. (2017), with neuroimaging data, the thickness-
based classification of ASD performs better than both volume-
based and SA-based classification. Broca’s area contains a part
of the inferior frontal gyrus known as the Pars triangularis
that contributes to language and social interaction difficulties.
The caudal anterior cingulate is part of the social brain
and mirror system hypothesis and cognitive regulation of
behavior, including working memory, attention management,
and decision making. The parahippocampal gyrus is critical for
memory encoding and retrieval (Xiao et al., 2017). Thinning
of the cerebral cortex within this region may affect the neural
basis for risk disregard in autistic people (Xiao et al., 2017).
Self-relevant mental images are identified in the anterior part
of the precuneus, with posterior regions implicated in episodic
memory visuospatial imagery, episodic memory retrieval, and
self-processing operations. In summary, disruption in those four
areas may be connected to ASD social issues and repetitive
behaviors.

Cerebrospinal fluid
CSF is a fluid that surrounds the entire surface of the brain

and the spinal cord and flows between the brain membranes.
Although CSF is not technically a part of the human brain, it
circulates nutrition, removes waste items generated by cerebral
metabolism, and protects the brain from harm. However, CSF
volume may be an indirect indicator of tissue loss in brain
regions (Pagnozzi et al., 2018) and thus may be an important
biomarker of ASD-induced brain-related changes. In young
autistic children, an abnormal elevation of CSF can also occur,
including movement, communication, and ASD status (Shen
et al., 2017; Mostapha, 2020).

Cerebellum
The prefrontal cortex and cerebellum (Gao et al., 2022;

Wang et al., 2021) and the temporal cortex (Wang et al.,
2021) help classify structural covariance brain networks. Basic
conscious motions are physically and functionally linked to
the prefrontal cortex, and its abnormality is associated with

ASD’s emotional and social domain. Studies have indicated that
the superior temporal gyrus and the medial temporal cortex
have direct connections that promote the memory for sound
detection.

In addition, the cerebellum is essential for cognitive
functions, memory, emotion, and language (Gao et al., 2022).
The ASD and HC groups differed significantly in the choroid
plexus, cuneus, left putamen, and cerebellar cortex (Pinaya et al.,
2019).

Hippocampus and amygdala
The medial temporal lobe houses the hippocampus and

amygdala, two interconnected subcortical structures. The
hippocampus helps develop associative, spatial, episodic, and
declarative memory. Similarly, the amygdala is involved in
emotion and fear control and the recognition of facial
expressions (Pagnozzi et al., 2018).

The amygdala and hippocampus have been linked with
ASD-related deficits, including social cognition, eye-gaze
direction perception, and emotion (Li et al., 2019b).

Researchers found that the ASD group had significantly
less parahippocampal volume than the HC group (Irimia et al.,
2018). As for the interaction with sex, autistic females had a
larger right parahippocampal gyrus volume than autistic males.

Utilizing ML, another study found that the hippocampus
plays a role in ASD (Fu et al., 2021). By comparing their findings
with previous work on Alzheimer’s disease, they conclude that
the overall severity of ASD-related morphological changes in the
hippocampus is less pronounced or that the abnormality is more
distributed in hippocampus areas.

In Li et al. (2019b), ASD was associated with significant
enlargement of the amygdala and CA1-3 of hippocampal
volumes in the right and left hemispheres. CA1-3
expansion could represent upregulation, reinforcing fear
of communicating with the environment or others.

Basal ganglia, thalamus, and other proximal
structures

The basal ganglia (BG) are neurons, also called nuclei,
located in the depths of the cerebral hemispheres of the brain.
In addition to coordinating postural muscle movements, the
BG is involved in many regular behaviors and routines, such as
the grinding of teeth, eye movements, and emotion. Although
few studies have examined the role of BG in ASD symptoms,
structural and strategic evidence suggests that ASD is linked
to subcortical regions, including BG (Sivapalan and Aitchison,
2014; Pagnozzi et al., 2018; Ke et al., 2020). According to Irimia
et al. (2018), those with ASD exhibited larger areas and volumes
in some limbic structures such as the cingulate gyrus and the
pericallosal sulcus. The temporal lobe, corpus callosum, middle
cerebellar peduncle, caudate, and cingulate nucleus were the
most relevant regions identified for predicting ASD in Guo et al.
(2021).
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Conventional machine learning-based
autism spectrum disorder classification
applications

Several researchers have developed ML algorithms
employing sMRI (Moradi et al., 2017) or multimodal data
(Eill et al., 2019) to diagnose ASD or uncover novel biomarkers
for it (Table 2, summarizing all ML-based studies). SVM has
been extensively evaluated, with ACCs ranging from 45 to 94%
on various ASD datasets (Morris and Rekik, 2017; Squarcina
et al., 2021). In addition, various additional conventional ML
models, such as NB (Xiao et al., 2017), KNN (Yassin et al., 2020),
AdaBoost (Bilgen et al., 2020), and RF (Devika and Oruganti,
2020), have been examined. With an ACC = 94.29%, SVM was
the most accurate of the ASD classification models, despite
having the smallest data set (n = 35) (Devika and Oruganti,
2020). Zheng et al. (2019) use SVM and a multi-feature network
to differentiate between ASD and HC. Their ACC is 78.63%.

Individual variations in ASD symptom severity require
individualized therapy based on associations between brain
structure and clinical assessments of ASD risk, such as the
ADI-R (Xiao et al., 2017) and ADOS (Moradi et al., 2017;
Dekhil et al., 2021). Despite their limited scope, these studies
are still noteworthy. In one study, RF, NB, and SVM were
applied to 46 participants with ASD and 39 participants with
developmental delay (Xiao et al., 2017). This study employed
many differentiating features to increase classification accuracy:
CT, cortical volume, and SA. The RF model was the most
accurate, derived from the CT of 20 significant brain regions.
Moradi et al. (2017) estimated ASD symptoms using ABIDE
data and ADOS severity scores generated from CT measures.
The authors suggested a method for creating a common
space within various datasets to reduce inter-site heterogeneity
called “domain adaptation.” At 51%, this research had the
lowest ACC rate across studies. Dekhil et al. (2021) created a
personalized CAD system using sMRI, rs-fMRI, and ADOS.
The system produces a report for each subject that highlights
ASD-affected regions. RF utilizing only rs-fMRI data produced
75% ACC, sMRI data produced 79% ACC, and combining
the two produced 81% ACC. In another work (Dekhil et al.,
2020), only sMRI and fMRI features were used to research
brain region changes between ASD and HC groups to present
a CAD system to help target therapeutic interventions. The
system achieved good ACC (sMRI 0.75–1.00; fMRI 0.79–
1.00) on a relatively large population using KNN and RF
models.

Most research uses binary categorization. Some articles have
many experiments. Gorriz et al. (2019), for example, divided
participants into four groups based on gender and condition to
compare ASD and HC brains. All binary categories “MH vs. FH,”
“FH vs. FA,” and “MH vs. MA” (MH: male healthy, FH: female
healthy, FA: female autism, MA: male autism) were developed

to study gender differences in the diagnosis of ASD using SVM.
Also, this article shows an example of different applications
where binary classification applications of MH, FH, FA, and MA
estimates were made twice; each time a distinct feature, either
WM or GM volumes, was used to see which one could be most
distinct in diagnosing ASD.

Like most previous research (Irimia et al., 2018), it suffers
from the over-aggregation of features on insufficient sample size.
Using MRI and DTI data, the study evaluated the applicability
of SVMs for studying the relationships between an ASD
diagnosis and gender. They demonstrated excellent ACC, but
their findings cannot be generalized.

Network neuroscience is mostly focuses on fMRI-derived
or DTI-derived FC features, which may neglect inter-regional
morphological changes (Chen et al., 2011; Heinsfeld et al.,
2018). Morphological brain networks (MBNs) may simulate this
morphological connection between ROI pairs, in which the link
between two regions encodes their morphological difference
(Bilgen et al., 2020). The study (Morris and Rekik, 2017)
employed SVM to evaluate the connectivity of cortical MBN
collected just from sMRI. By concatenating low- and high-order
network features, the authors extract features that are novel but
lack biological value. Soussia and Rekik (2018) applied SVM and
ensemble classifiers to complex MBNs, which represent shape-
to-shape relationships between pairs of ROIs. Each network is
associated with unique cortical features such as sulcus depth,
curvature, and CT. But they didn’t apply any feature selection
strategy. These studies also used specific ML approaches, leaving
a large spectrum of methods unexplored for detecting ASD. To
address this, a Kaggle competition was held to develop a suite
of ML algorithms for diagnosing ASD utilizing MBN (Bilgen
et al., 2020). The efforts of 20 teams were evaluated based on
preprocessing, dimensionality reduction, and learning models.
The two highest teams achieved ACCs of 70 and 63.8% using
a powerful clustering algorithm called gradient boosting. Eill
et al. (2019) also used a conditional RF ensemble algorithm and
reported a high classification ACC of 92.5%.

Fu et al. (2021) postulate that prior studies on ASD
classification using large datasets had low accuracy rates because
they only considered SBM as scalar estimates (e.g., CT and SA)
and neglected geometric information between features. Their
application of the GentleBoost ensemble classifier to surface
features of the bilateral hippocampus of male participants with
ASDs and HCs. achieved an 80% ACC.

It has also been established that feeding an RF classifier
with MRI and personal characteristics data improves ASD
classification (Mishra and Pati, 2021).

Gao K. et al. (2021) developed a method for predicting
the disease in 24-month-old infants utilizing sMRI and an
XGBoost model. Some investigations used a histogram of
oriented gradients (HOG) to analyze the gradient information
of the aberrant region within the medical image (Ghiassian et al.,
2016). Chen T. et al. (2020) found ASD biomarkers in children
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TABLE 2 Summary of 20 ML-based ASD classification studies.

References Modality Biomarkers #Subjects Age Preprocessing
tool

Method used Dataset Best acc Limitation

Xiao et al. (2017) T1-w sMRI Regional CT, cortical
volume, and cortical SA

ASD = 46
Persons with DD

= 39

ASD: 27± 4
DD:28± 4

months

FreeSurfer SVM; NB; RF Private data CT: 75.6% Small sample size. Children with
developmental problems are used

as HCs, which may result in
deviations in the results.

Moradi et al.
(2017)

T1 sMRI CT ASD = 156, HC =
0

8–40 years CIVET pipeline SVM ABIDE I 51% Continuation in regression models
is inaccurate. The domain
adaption becomes more

challenging as the number of
shared sites increases.

Morris and
Rekik (2017)

T1w sMRI Morphological brain
connectivity using a set of

cortical attributes

ASD = 59, HC =
43

− FreeSurfer SVM ABIDE I 61.76% Unknown is the age range of the
participants. Small sample size. No

comparison with deep learning.

Soussia and
Rekik (2018)

T1-w MRI Morphological brain
connectivity

ASD = 155,
HC = 186

ASD: 16.9± 6.3,
HC: 16.6± 6.1

years

FreeSurfer Ensemble classifier, SVM ABIDE I Avg left
Himesphere:57.9%,

Avg right
Himesphere:61.6%

Imbalanced data. Using Pearson
correlation to examine the link

between ROIs may have ignored
the non-linear nature of the

relationship. Not investigated is
the link between revealed cortical
regions and non-cortical regions.
No feature selection approach was

employed.

Irimia et al.
(2018)

sMRI and DTI Thickness, area, volume,
and curvature of GM,

WM connectivity density

ASD = 110, HC =
83

ASD = 12.74±
2.79, HC = 13.04
± 2.95 years

LONI Pipeline,
TrackVis, FreeSurfer

SVM Private data 93.26% The models are lacking in
transparency.

Eill et al. (2019) fMRI, sMRI, and
DWI

ROI-based FC and set of
anatomic features

ASD = 46, HC =
47

13.6± 2.8 years FreeSurfer, FSL and
AFNI

Conditional random
forest

Private data CRF on top 19
variables: 92.5%

Small sample size. In tiny samples,
cohort effects cannot be ruled out.

Zheng et al.
(2019)

T1 sMRI Seven morphological
features (e.g., CT, SA,

GM, Local gyrification
index, sulcus depth, gyrus

height), and elastic
network

ASD = 66, HC =
66

ASD = 27± 8,
HC = 27± 7

years

FreeSurfer, and
SPM12

SVM ABIDE I 78.63% Only high-functioning ASD adults.
The characteristics of participants
vary considerably. In addition, the
absence of key areas, such as the
amygdala, may have significantly
impacted categorization ability.

Gorriz et al.
(2019)

T1 sMRI GM; WM HC = 60
ASD = 60

18–49 years SPM12 and CAT12
toolbox

SVM Private dataset GM:69.47%,
WM:66.16%

A small sample size.

Graa and Rekik
(2019)

T1-w sMRI Multi-view morphological
brain networks based on
the maximum principal
curvature, the CT, the
sulcal depth, and the

average curvature.

ASD = 50, HC =
150

ASD mean age =
18.14 years,

HC mean age =
17.91 years

FreeSurfer SVM ABIDE I Left Hemisphere−4
views: 60%, Right
Hemisphere−4

views: 59.5%

A small sample size consisting only
of men.

Utilizing a supervised classifier
inhibits the framework’s scalability.

Bilgen et al.
(2020)

T1-w sMRI Cortical morphological
networks

ABIDE I: ASD =
100

, HC = 100

− FreeSurfer Voting Classifier, Bagging
Classifier, RF, AdaBoost,

NB, Gradient boost,
XGBoost, LR, SVM, DT,
LDA, KNN, Quadratic
Discriminant Analysis

ABIDE I and
private dataset

1st team:70% Only conventional ML models.
No cross-validation is used.
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TABLE 2 (Continued)

References Modality Biomarkers #Subjects Age Preprocessing
tool

Method used Dataset Best acc Limitation

Devika and
Oruganti (2020)

sMRI (T1 +T2) Three cortical measures CT,
CA, and Cortical GM

Volume

ASD:20, HC:15 1–4 years FreeSurfer LDA, RF, and SVM with
Radial

Bias Function (SVM-RBF)

ABIDE II Without over-sampling (SVM
and CA:94.28, SVM and

CT:92.86, RF and CGMV :94.29)
With over-sampling (SVM and
CA:94.29, SVM and CT:94.28,

RF and CGMV :94.29)
SVM-RBF and CA:94.29

Very small dataset. Insufficient
discussion of the study results.

Each feature is analyzed
independently from the others.

Chen T. et al.
(2020)

sMRI 3D HOG ASD = 119
, HC = 131

5.2–34.8 Years MRIcron, SPM12 NB + SVM 4 datasets from
ABIDE II

Each dataset had an AUC of at
least 75%, with the greatest AUC

of 0.849 occurring at the ETH
location.

Heterogeneous datasets. The
contribution of features to the
classification result is the same

whether they are 0 or 1.

Raamana and
Strother (2020)

sMRI CT-based networks ASD = 100
HC = 100

ASD: 17.27±
7.68, HC: 15.82±

5.93 years

FreeSurfer SVM Preprocessed
ABIDE I

AUC = 0.6 The SVM classifier alone was
utilized. There was just one atlas

used. Dataset is small and
unbalanced. Only AUC is utilized as

a performance metric.

Yassin et al. (2020) T1-w sMRI CT, SA, and subcortical
features

Schizophrenia =
64, ASD = 36, HC

= 106

Schizophrenia:
14–60 years,

ASD: 20–44 years,
HC = 16–60 Years

FreeSurfer: recon-all
pipeline + Enhancing

Neuroimaging
Genetics

6 Classifiers, including,
SVM, DT, AdaBoost, RF,

KNN, and LR

Private data Multiclass classification: LR
using CT features = 69.

Binary classification: ASD and
schizophrenia all classifiers

performed well (70 ≥)

ASD patients were only males. Small
sample size.

Itani and Thanou
(2021)

rs-fMRI +sMRI Temporal and functional
connectivity

ASD = 201, HC =
251

6–18 years old C-PAC pipeline DT Preprocessed
ABIDE I

74.8± 9.5% Small and heterogeneous sample.
A simplistic definition of brain

topology.

Squarcina et al.
(2021)

T1 sMRI Regional CT ASD = 40, HC =
36

9.5± 3.4 years FreeSurfer SVM Private data 84.2% small sample size. No independent
test data.

Fu et al. (2021) sMRI Surface morphological
features of bilateral

hippocampus

ASD = 364, HC =
381

6–34 years FIRST tool from FSL Ensemble classifiers
(boosting, subspace,

bagging) + DT

ABIDE I GentleBoost: > 80% Cannot visualize the selected features
and reduces understandability of this

pipeline. Only used patch-based
features. High level of heterogeneity

Mishra and Pati
(2021)

T1-w sMRI 40 surface morphometric
features + phenotype

information such as age,
VIQ, and FIQ

ASD = 26, HC =
24

− recon-all workflow of
FreeSurfer

DT and RF ABIDE I RF and 10-fold
Cross-validation :88%

No information about the
participant’s age. Very limited

sample size.

Yalçin and Rekik
(2021)

Rs-fMRI + sMRI Multimodal brain graphs Rs-fMRI:
ASD = 254, HC =

272,
sMRI: ASD = 155,

HC = 186

- fMRI: SPM + rs-fMRI
data analysis toolkit.

sMRI: FreeSurfer

LDA and SVM ABIDE I Multimodal classification model
in several nodes in template
graph = 20 with depth-based

alignment and soft
correspondence: 53.73%

The model is unexplainable. It must
establish an appropriate threshold
value for each modality in hand.

sMRI, structural MRI; fMRI, functional MRI; rs-fMRI, resting-state functional MRI; DWI, diffusion-weighted imaging; DTI, Diffusion-tensor imaging; ASD, Autism Spectrum Disorder; HC, healthy control; DD, developmental delay; GM, gray matter;
WM, white matter; CT, cortical thickness; SA, surface area; CA, cortical area; FC, functional connectivity; LR, Logistic Regression; SVM, support vector machine; KNN, k-nearest neighbor; DT, decision tree; NB, naïve bayes; RF, random forest; LDA, linear
discriminant analysis; M, male; F, female; HOG, histogram of oriented gradients.
#Number of subjects.
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using a two-level morphometry classification framework based
on the 3D HOG approach and NB model. Four ABIDE II
locations achieved 0.75 AUC.

Deep learning-based autism spectrum
disorder classification applications

Recently, DL approaches outperformed conventional ML
methods and were hailed as a major AI accomplishment. Unlike
conventional ML algorithms, DL can automatically extract
hierarchical features from incoming data and intelligently
categorize them inside the model (Mostapha, 2020). In
medicine, DL frameworks have been used to classify ASD from
sMRI data alone (Hazlett et al., 2017) or with other modalities
(Dekhil et al., 2021; Table 3 a summary of studies on DL).

In Ali et al. (2021), a framework is presented that uses a
recursive feature elimination method to select features and then
trains linear, ensemble, and artificial neural network (ANN)
models using them. ANNs enhanced categorization accuracy by
up to 82%.

Several studies (Akhavan Aghdam et al., 2018; Sen et al.,
2018; Mellema et al., 2019; Rakic’ et al., 2020) used sMRI and
fMRI as inputs to the DL model. ASD disrupts FC between brain
regions so many studies use FC neural patterns to distinguish
ASD from controls. young autistic children were classified using
the ABIDE I and II datasets and the DBN model (Akhavan
Aghdam et al., 2018). The model achieved a maximum ACC
(65.56%) combining three types of data (rs-fMRI + GM + WM).

Mellema et al. (2019) evaluated 12 classifiers using 915
IMPAC challenge dataset participants (Toro et al., 2018).
These models comprise six non-linear shallow ML, three linear
shallow, and three DL. For a fair comparison, the authors
optimized each model’s hyperparameter using random search.
To ensure that each model has the same training opportunity,
random cross-validation was used. The dense feedforward
network model achieves 80% AUC.

The reviewed studies employed various AE forms. In Sen
et al. (2018), the authors utilized sMRI and rs-fMRI data to
evaluate three ADHD and ASD learners. Learner 1 captures
sMRI features using SAE-generated 3D texture-based filters
and a CNN. Second learner computes non-stationary fMRI
components. The final learner combines the structural and
functional features of learners 1 and 2 and sends them to an
SVM classifier, obtaining an ACC of 67.3% on ADHD data and
64.3% on ABIDE data, demonstrating that multimodal features
can boost upset prediction accuracy.

Unlike fMRI, which is difficult to apply to infants, sMRI
has gained interest for early ASD identification. sMRI is faster
and contains infant-specific procedures, such as BCP (Howell
et al., 2019; Gao K. et al., 2021). Deep generative algorithms
were first utilized to predict ASD in infants using longitudinal
data by Peng and others (Peng et al., 2021). Hazlett et al. (2017)

developed a three-stage SAE model to diagnose infants with
autism before the onset of behavioral signs. In contrast to
most classification studies, which utilize cross-sectional data,
a longitudinal dataset was used due to the relevance of a
developmental approach to imaging, since ASD symptoms and
implications may fluctuate over time (Lord et al., 2015). Despite
the encouraging results in Hazlett et al. (2017), this multi-stage
technique is inapplicable in clinical practice because it requires
two scans at two different ages for tissue segmentation. An
end-to-end and single scan-based method is used in Mostapha
(2020). In Mostapha (2020), tissue segmentation was calculated
automatically using a fully CNN.

MBNs that measure intracortical GM similarity are useful
in the study of neurological disorders (Kong et al., 2019;
Wang et al., 2021). The brain can be represented as a single
view representation network or as a multi-view representation
network (Graa and Rekik, 2019). Each view depicts a distinct
morphological feature. Kong et al. (2019) used SSAE to learn
low-dimensional brain connectivity patterns between each pair
of ROIs from sMRI to build an individual brain network.
Using only the 3,000 top F-scores features, the classifier had
a 90.39% ACC. However, they used a small data set and
did not depict potential biomarkers. The study (Gao et al.,
2022) addressed this issue by identifying a biomarker using
a Res-Net and gradient-weighted class activation mapping
(Grad-CAM) on individual structural covariance networks.
However, like most approaches to ASD diagnosis that have
focused on features recovered from a separate ROIs, non-
local relationships that are contradict brain network evidence
have been ignored. In addition, Grad-CAM still has gradient
saturation and pseudo-confidence issues (Wang et al., 2021).
In Wang et al. (2021), a transformer-based DL architecture for
more stable self-attention is presented; this self-attention DL
model employs individual MBNs instead of raw MRI to identify
ASD. Grad-CAM heat maps are hierarchical, like CNN’s simple-
to-complex feature extraction algorithm (Gao et al., 2022).
However, in Wang et al. (2021), the maps of self-attention
coefficients in the first and second layers are similar, indicating a
consistent diagnosis. In Leming et al. (2021), the authors verified
their suggested approach for classifying individuals with ASD
and age-, motion-, and intracranial-volume-matched HCs by
feeding a CNN the symmetric similarity matrix from regional
histograms of estimated GM volumes. They also used graph-
theoretic metrics on output CAMs to determine CNN’s favorite
categorization regions, focusing on hubs.

To address biases and outliers in training samples, a system
based on two data selection tools was presented: an AE to
discover outliers and a confounding index (CI) to identify
sample variables that can complicate the learning process and
mislead categorization (Ferrari et al., 2020). This technique
doesn’t require costly computations or access to the true feature
distribution. With the CI, the authors looked at how three
categorical variables (gender, hands, and acquisition modality)

Frontiers in Neuroinformatics 16 frontiersin.org

https://doi.org/10.3389/fninf.2022.949926
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-949926
Septem

ber22,2022
Tim

e:15:6
#

17

B
ah

ath
iq

e
t

al.
10

.3
3

8
9

/fn
in

f.2
0

2
2

.9
4

9
9

2
6

TABLE 3 Summary of 25 DL-based ASD classification studies.

References Modality Biomarkers N
participants

Age Preprocessing Method
used

Dataset Acc Limitation

Hazlett et al.
(2017)

sMRI Regional SA, CT, sex, and volume of
intracranial

ASD-
HR = 34, HC =

145

6–12 months AutoSeg, CIVET 3-stage DNN: SAE
+SVM

NDAR: IBIS 94% Small sample and multi-stages
approach

Demirhan (2018) T1-w sMRI Four different feature sets of
morphometric measures

ASD experiment:
ASD = 325, HC =

325

17.9± 7.4 years FreeSurfer SVM, KNN, and
ANN

For ASD: ABIDE I SVM:52± 7% Subjects under the age of 10 are not
included. The ABIDE dataset

required additional iterations and
time for SVM to reach convergence.

Dekhil et al.
(2020)

sMRI + fMRI 8 structural features, and FC ASD = 561, HC =
521

Different ages FreeSurfer KNN, RF ABIDE I sMRI: 78–100
fMRI: 79–100

Neglect of ASD heterogeneity.
Need to test different

neurodevelopmental conditions with
ASD.

Dekhil et al.
(2021)

sMRI + rs-fMRI +
ADOS report

Spatial features: cortical volume
(CV), CT, SA, and FC

ASD = 72, HC =
113

ASD males’ mean age =
13.07

years, and females mean age
= 13.53 years HC males’

mean age = 13.04 years, and
females’ mean age = 12.81

years.

FreeSurfer SVM, KNN, RF,
NB, and ANN

NDAR RF: 80.8% Data from multiple sources were
used, which may restrict their utility

in constructing a customized
medicine model. This research may

only apply to adults with
high-functioning ASD who are

between the ages of 8–18.

Akhavan Aghdam
et al. (2018)

rs-fMRI, sMRI Regional-based mean time series +
GM + WM

ASD = 116, HCs
= 69,

5–10 years SPM 8 DBN of depth 3 +
LR ABIDE I and

ABIDE II

65.56% Small sample size, Raw data is not
used as input data due to high data
dimensions and limited computer

resources. The model is complex and
consumes significant computational
time and resources for the training

phase

Regional based mean time series +
GM

DBN of depth 3 +
LR

65%

Regional-based mean time series +
WM

DBN of depth 3 +
LR

62.5%

WM DBN of depth 3 +
LR

59.72%

GM DBN of depth 3 +
LR

63.89%

Regional-based mean time series +
GM + WM

DBN of depth 2 +
LR

63.03%

Regional-based mean time series +
GM

DBN of depth 2 +
LR

61.94%

Regional-based mean time series +
WM

DBN of depth 2 +
LR

63.89%

WM DBN of depth 2 +
LR

61.11%

GM DBN of depth 2 +
LR

63.06%

Sen et al. (2018) sMRI and fMRI Structural textures and 45 FC features ASD = 538, HC =
573

7–64 years SPM8 and in-house
MATLAB code

AEs +CNN+
linear SVM

17 sites from
ABIDE I

64.31% Current results are not yet clinically
relevant. Only used imaging data.

Li G. et al. (2018) T1 sMRI Several patches were extracted from
several discriminative landmarks

ASD = 55, HC =
209

24-months In-house tool Multi-channel
CNNs

NDAR 76.24% Small sample size. Only for 24-month
age. One train /test splitting for

cross-validation.
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TABLE 3 (Continued)

References Modality Biomarkers N
participants

Age Preprocessing Method
used

Dataset Acc Limitation

Kong et al. (2019) T1-w sMRI Connectivity features between each
pair of ROIs

ASD = 78, HCs =
104

The average age is about 15
years old

FreeSurfer DNN: SSAE NYU from ABIDE
I

90.93% Only bi-level (ASD/HC) classification
was performed. Small sample size,

imbalanced classes.

Mellema et al.
(2019)

sMRI and fMRI 15 different feature sets: FC Matrix +
anatomical volumes

ASD = 418HC =
497

− − SVM, RNN, CNN,
GCN, DT, LR, RF,

MLP

IMPAC MLP: AUC = 80% Sensitivity, and specificity metrics
have not been evaluated.

Mostapha (2020) sMRI CT, SA, Shape Complexity Index and
EA-CSF

ASD = 38HC =
149

6-months FSL-BET, CIVET, and
ANTs

MLP + CNN NDAR: IBIS 89.7% Small sample size

Ke et al. (2020) sMRI Different structural features YUM:40 high
SCQ, 33 = low

SCQ. ABIDE: ASD
= 946, HC = 1,046.

ASD = 29.4± 11.6 HC =
30.1± 5.3

years

SPM8 (1)3D input
+2D/3D CNN,

(2)2D/ 3D input
+2D/3D

CNN+2D/3D
STN, (3)3D

input+2D/3D
CNN+ 3D STN

+RNN, (4)2D/3D
input +2D/3D

CNN+2D/3D +
CAM, (5)3D
input+ RAM

Private data
(YUM), ABIDE I

+ABIDE II

ABIDE:2D Input
+

2D CNN + 2D
STN

59%. 2D Input +
3D CNN + 2D

STN
< 50%. 3D Input
+ 2D CNN + 3D

STN 57%. 3D
Input + 3D CNN
+ 3D STN 60%.

3D
Input + 2D CNN
+ 3D STN + RNN
55%. 3D Input +
3D CNN + 3D

STN+ RNN 56%.
2D

Input + 2D CNN
+ CAM < 50%.

3D
Input + 3D CNN

+ CAM 56%.

Inadequate accuracy to reach the
level of clinical utility

Shahamat and
Abadeh (2020)

sMRI Normalized raw image ASD = 500, HC =
500

7–64 years FSL software 3D-CNN ABIDE I 3D-CNN:70%,
3D-CNN +
GABM:73%

Check the effect of different subsets
of the regions that give different brain

masks. Only one atlas is used to
identify the knowledgeable brain

regions; there need to try multiple
atlases.

Ke and Yang
(2020)

sMRI Subcortical tissues ASD = 30, HC = 9 − − DDPG-RAM,
PER-RAM

NYU of ABIDE I DDPG-
RAM:85.6%,

PER-RAM:87.4%

Only one site of ABIDE was used.
Unbalanced dataset. The

combination of DDPG and RAM
necessarily increases several

parameters, resulting in a decrease in
processing speed.

Ferrari et al.
(2020)

sMRI 296 brain morphometric features
related to the global and subcortical

features and the cortical features

ASD = 1,060, HC
= 1,166

5–64 years FreeSurfer AEs + LR ABIDE I and II On 86 subjects:
AUC = 0.79

The evaluation of the CI was limited
only to 4 pairs of samples from

ABIDE.

(Continued)
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TABLE 3 (Continued)

References Modality Biomarkers N
participants

Age Preprocessing Method
used

Dataset Acc Limitation

Zhang M. et al.
(2020)

fMRI and sMRI CT, SA, cortical volume, and singular
values of fMRI connectome matrix

ASD = 537, HC =
590

17.01± 10 years FreeSurfer and FSL Discriminative
learning +

CNN

IMPAC2 69± 5.5% Adopted only one type of CNN models

Rakic’ et al. (2020) fMRI and sMRI FC, and volumetric correspondences
between cortical parcels’ GM volumes

ASD = 368, HC =
449

Mean age 14 years FreeSurfer Stacked AEs + MLP ABIDE I Combined data:
85.06± 3.52%

Exclude more than 100 subjects from
ABIDE I dataset because did not meet

the required preprocessing criteria.

Zhang and Wang
(2020)

fMRI and sMRI Brain surface morphometry and FC ASD = 484, HC =
514

7–64 Years FreeSurfer and ABIDE
Preprocessed

Connectome Project
based on the C-PAC

protocol

Geometric deep
learning

ABIDE I 68.0± 03.8% No cross-validation.

Gao K. et al. (2021) T1w sMRI Features from the segmentation and
parcellation maps + sex information

IBIS: (ASD:52, HC
= 195) ACE (ASD =

22, HC = 13)

IBIS (ASD = 24± 0.7, HC = 2
4± 0.89) ACE (ASD = 25±

1.5, HC = 24± 1.9) years

iBEAT V2.0 Cloud CNN+SNN NDAR: IBIS+ ACE NDAR:91.5,
ACE:82.9

Small number of 24- month-old
subjects. Specific cortical surface

features that accurately quantify early
brain development were overlooked

(i.e., mean curvature)

Ali et al. (2021) sMRI Set of morphological features ASD = 505, HC =
530

6–64 years FreeSurfer LR, RF, SVM,
AdaBoost, Passive

Regression, and
ANN

Preprocessed
ABIDE I

ANN: 82%
SVM:72%

No cross-validation. Un clear the final
number of subjects in each class.

Unclear which biomarkers contribute
to models’ decision

Chen et al. (2021) T1 sMRI and
rs-fMRI

Brain networks ASD = 481, HC =
526

− C-PAC +Computational
Anatomy Toolbox

(CAT)

GCN for feature
extraction+ MLP
for classification

17 sites from
ABIDE I

72.7% Need to try using more ASD datasets to
verify the robustness of the model.

Wang et al. (2021) sMRI Individual-Level MBN ASD = 518, HC =
567

7–64 years DRAMMS Self-Attention
Neural Network

Classifier

ABIDE I 72.48% Accuracy can be improved to be
suitable for clinical use.

Gao et al. (2022) sMRI Individual-Level MBN ASD = 518, HC =
567

7–64 years DRAMMS CNN ABIDE I 71.8% Not mention any harmonization
process to solve the heterogeneity issue.

Tummala (2021) T1 sMRI Raw data ASD = 112, HC =
102

ASD: 21± 8.7 HC:28.9± 8.5
years

FSL SNN and
Pre-trained
ResNet50

ABIDE I 99% Small sample size. A contrastive loss
function was used. However, triple loss

and quadrupole loss may perform
better.

Guo et al. (2021) (MRI including
Axial T1, T2,

FLAIR, and sagittal
T1/T2) +ADC

MRI sequences ASD = 151HC =
151 Test

= 45 1–6 Years - CNN based on
ResNet 18

architecture

Private data On validation set
&DSM: 85.5% On

test set &DSM: 84.4

It was a retrospective study. Need to
explainable approach. No

cross-validation. Only children younger
than 7 years old. Without abnormalities
in MR imaging. The mechanism of the

FLAIR and ADC sequences for
diagnosing ASD remains unknown.

Peng et al. (2021) T1-w and T2-w
sMRI

− ASD = 289, HC =
180

6–12 months − GAN NDAR: IBIS 69% For training purposes, the technique
requires paired longitudinal data from

the same individual. The method is
computationally expensive and requires

high resources.

Gao K. et al. (2021) sMRI Cortical meshes and vertex-wise
cortical shape metrics. In addition to

sex

Human
Connectome

Project: female =
505, male =

606/ABIDE = 1,994
subjects

Different ages FreeSurfer Pretrained
ResNet-50,
pretrained

DenseNet-121 and
XGboost models

Human
Connectome

Project dataset,
ABIDE I, and

ABIDE

ResNet = 63.04%
II

Cerebellum and subcortical regions are
not involved in the analysis.
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e. and two continuous variables (age and FIQ) influenced
the classifier. Gender, age, AM, and FIQ affected ASD/HC
categorization, not hands.

Using 3D-CNN on the entire ABIDE dataset, an ACC
of up to 70% was achieved (Shahamat and Abadeh, 2020).
A genetic algorithm-based brain masking technique (GABM)
was also developed to visualize the classifier’s function. The
GABM approach enhanced the classifier’s final performance
while making the model more easily interpretable.

Representations of features at the whole-brain level are
not always effective in describing early structural changes in
the brain. Therefore, several patch level features have been
proposed, which are an intermediate measure between voxel
level and ROI level to reflect the structural characteristics of the
brain pathology diagnosis. In Li G. et al. (2018), the authors’
multichannel CNN with patch-level data expansion has been
proposed to detect ASD in infants. The accuracy achieved was
24% better than 3D-CNN.

Graph convolutional networks (GCN) enable graph
embedding by representing graph nodes, edges, and subgraphs
as low-dimensional vectors. GCN can also learn graph
topological structure information, which is essential for
studying population brain networks (Chen et al., 2021).
Research using GCN to classify autistic individuals under two
distinct graph definition categories has been conducted (Parisot
et al., 2018; Chen et al., 2021). The first establishes edges
between subjects through phenotype information, including
age, gender, and acquisition locations, together with the
imaging-based node features (Parisot et al., 2018). The second
type considers each subject as a graph (Chen et al., 2021).
However, these two studies relied on single-modal MRI. To
bridge the gap, Chen et al. (2021) developed an Attention-based
Node-Edge GCN method that integrates sMRI and rs-fMRI
data while concurrently modeling nodes and edges in graphs.
Also, a gradient-based model interpretation technique was
utilized to detect putative ASD biomarkers. Finally, an MLP
model categorized the sequential feature maps. Zhang M. et al.
(2020) suggests another multi-modal learning method that uses
discriminative learning and CNN to classify ASD.

In several papers, multiple approaches have been compared.
In Ke et al. (2020), an end-to-end training system was proposed
using 14 distinct models that are mixtures of various network
architectures, such as a static method (e.g., CNN), a sequential
learning model (e.g., RNN), a Spatial Transformer Network
(STN), a sequential feature learning model, or a feature
visualization method (such as CAM). The 2D/3D CNN and
RAM fared the best overall. Using both MRI (containing
sagittal T1/T2 sequences, FLAIR, and T1/T2 axial sequences)
and apparent diffusion coefficient (ADC) approaches, Guo
et al. (2021) created a set of DL algorithms. The algorithms
were trained using the ResNet-18 model, which had a “spatial
channel” block to enhance feature identification. There are
five single-sequence models, one dominant-sequencing model,
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and one all-sequencing model. The dominant sequence model
had an ACC of 84.4%. Although the paper demonstrates an
improvement in FLAIR and ADC sequencing performance, the
sequencing process for diagnosing ASD remains unclear.

One study (Ke and Yang, 2020) developed a RAM-based
approach for identifying ASD using sMRI data. To improve
the convergence of the Policy Gradient approach used in
conventional RAM, they developed a Deep Deterministic Policy
Gradient-RAM (DDPG-RAM) model and a Gaussian sampling-
based priority experience replay (PER) algorithm. This strategy
increased ACC to 87.4% while enhancing accuracy and stability.
The authors, however, used a small sample of 39 patients.

SNN is rarely employed in ASD research. S. Tummala
applied SNN and a pre-trained ResNet model to 1,070 pairs of
positive and negative images (Tummala, 2021). Table 3 provides
a summary of the performance metric outcomes for each of the
studies analyzed. Table 4 provides a summary of the assessment
matrices utilized in ML and DL-based ASD investigations.

Magnetic resonance imaging datasets

Listed below are the publicly available datasets in the
reviewed publications (see Table 5).

(1) Autism Brain Imaging Data Exchange Initiative
(ABIDE):

It has combined functional and structural neuroimaging
data from several laboratories to further the knowledge of the
neurological underpinnings of autism (de Belen et al., 2020). It
has two collections: ABIDE I and ABIDE II.

(a) ABIDE I was co-constructed by 17 international sites.
With this effort, a total of 1,112 records (sMRI + fMRI) were
created for participants comprised of 539 autistic people and
573 non-autistic individuals (7–64 years old) (Di Martino et al.,
2014).

(b) ABIDE II was created to enhance brain neural network
discovery in ASD. It covered 19 international sites with 1,114
subjects’ records from 521 autistic people and 593 from non-
autistic individuals for sMRI (5–64 years old) (Di Martino et al.,
2017).

The ABIDE dataset has been criticized for being collected
from different locations using different imaging devices that may
affect the output. However, after investigating the confounding
effects of scanners on images, it was found that robust results
still exist. Furthermore, ABIDE offers a unique opportunity to
analyze a large sample of females with ASD, as this was not
possible with other datasets and is partly due to differential
prevalence rates between males and females (Richards et al.,
2020). The ABIDE site displays scan techniques, settings, and
participants’ inclusion and exclusion criteria for each site (Guo
et al., 2021).

(2) National Database for Autism Research (NDAR): It is
a National Institutes of Health-funded research data repository

(Payakachat et al., 2016). It offers neuroimaging datasets from
different ages and modalities (Dekhil et al., 2021). The data
comes from George Washington University and California
University’s Center for Autism. NDAR’s imaging data is
anonymized and linked to other records (diagnostic, behavioral,
demographic, etc.) (Li G. et al., 2018). The Infant Brain Imaging
Study (IBIS) and Autism Centers of Excellence (ACE) studies
from NDAR were most utilized (Hall et al., 2012; Payakachat
et al., 2016).

(3) Imaging Psychiatry Challenge: predicting autism
(IMPAC): More than 2,000 participants submitted sMRI and
fMRI scans. The general group has images of 1,150 people (601
HC, 549 ASD), 920 males, and 230 females. The test group
consisted of 1,003 people (758 men and 245 females) (591
HC, 412 ASD). Participants were of various ages. sMRI was
processed using FreeSurfer, and FSL describes gray matter
volume, area, and thickness. fMRI is a time series taken from
different atlases (Dukart et al., 2016; Tate et al., 2020).

Discussion and limitations

ML-aided MRI classification has offered new psychiatric
and neurological research possibilities. First, biomarkers can
enhance behavioral-based diagnosis. Second, understanding
the indicators can assist locate the defect and thus target it
with medications and treatments. Third, biomarker testing on
children and infants can help doctors treat and support them
earlier and more effectively.

Figure 8 shows a rise in the number of papers published
in this area over time. From 2017 onward, the “PubMed by
Year”1 project has generated a graph showing the number of
articles published each year that meet the formula used to list
previous studies in our review in over 26,000 journals around
the world (see Figure 8A). However, the simple count is no
longer a credible metric of research progress due to the growing
literature. On the other hand, the graph in Figure 8B represents
the number of papers published, reviewed here, by year.

ML/DL shows promise in neuroimaging-based ASD
diagnosis despite its early use. All studies confirm structural and
functional ASD anomalies. However, the current taxonomic
literature’s inconsistency, especially in structural features,
suggests it cannot capture disease diversity and should be
interpreted cautiously. When evaluating the literature, research
parameters may constrain assumptions about ASD with respect
to population wide. Because of this, study results are rarely
reproducible. The age of participants, ML algorithm type,
behavioral variability, and total sample size all contribute
to these disparities. It is unfair to compare a technique that
tested 1,000 people and had low classification accuracy to one

1 https://esperr.github.io/pubmed-by-year/

Frontiers in Neuroinformatics 21 frontiersin.org

https://doi.org/10.3389/fninf.2022.949926
https://esperr.github.io/pubmed-by-year/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-949926 September 22, 2022 Time: 15:6 # 22

Bahathiq et al. 10.3389/fninf.2022.949926

TABLE 4 Summary of evaluation matrices used in ML and DL-based ASD studies.

References Test type Accuracy Sensitivity Specificity AUC PPV NPV F1 score

ML-based ASD studies

Xiao et al. (2017) 3-fold cross
validation

75.6% 80± 3% 69.7% 0.8 − − 77.8%

Moradi et al.
(2017)

10-fold cross
validation

51% − − − − − −

Morris and
Rekik (2017)

leave-one-out
cross validation

61.76 − − − − − −

Soussia and
Rekik (2018)

5-fold cross
validation

Left Hemisphere: 57.1%

Right Hemisphere: 61%

10-fold cross
validation

Left Hemisphere: 58.3%

Right Hemisphere: 62%

Irimia et al.
(2018)

10-fold cross
validation

93.26% 97.17% 91.67% − − − −

Eill et al. (2019) − 92.5 97.8 87.2 − − − −

Zheng et al.
(2019)

Leave-one-out
cross-validation

78.63% 80.0% 77.27% 0.83 − − −

Gorriz et al.
(2019)

Leave-one-out
cross-validation

GM:69.47% − − − − − −

WM:66.16%

Graa and Rekik
(2019)

Stratified 5-fold
cross-validation

Left Hemisphere−4
views: 60%

− − 0.6899 − − −

Right Hemisphere−4
views:59.5%

0.6848

Bilgen et al.
(2020)

− 70% 72.5% 67.5% − − − −

Dekhil et al.
(2020)

Customized
cross-validation

sMRI 75–100; fMRI
79–100

sMRI 73–100;
fMRI 78–100

sMRI 78–100;
fMRI 79–100

Smri 0.79–1.00;
fMRI 0.82–1.00

− − −

Devika and
Oruganti (2020)

Leave-One-Out-
Cross-Validation

Without oversampling:
SVM and CA:94.28%

−−

SVM and CT:92.86% − − − − − −

RF and CGMV:94.29% − − − − − −

With over-sampling
SVM and CA:94.29%

− − − − − −

SVM and CT:94.28% − − − − − −

RF and CGMV:94.29% − − − − − −

SVM-RBF and CA:
94.29%

− − − − − −

Chen T. et al.
(2020)

10-fold stratified
cross-validation

− − − 0.75 in each
dataset

− − −

Raamana and
Strother (2020)

Repeated nested
split-half

cross-validation

− − 0.6 − − −

Yassin et al.
(2020)

10-fold
cross-validation

Multiclass classification:
LR using CT features =

69%

− − − − − −

Binary classification
(ASD and

schizophrenia): All
features

+LR = 70%. All features
+SVM = 75%. All

features
+KNN = 75%.

Subcortical features +RF
= 75%. CT features
+Adaboost = 85%

(Continued)
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TABLE 4 (Continued)

References Test type Accuracy Sensitivity Specificity AUC PPV NPV F1 score

Itani and Thanou
(2021)

Leave-one-out
cross-validation

74.8± 9.5% − − − − − −

Squarcina et al.
(2021)

Leave-one-out
cross-validation

84.2% 80% 88.9% − − − −

Fu et al. (2021) 10-fold cross
validation

83± 0.07% 80± 0.1% 85± 0.06% – 84± 0.06% 82± 0.08% −

Mishra and Pati
(2021)

5-fold
cross-validation

RF:86% − − 0.91 − − −

10-fold
cross-validation

RF:88% 0.90

Yalçin and Rekik
(2021)

5-fold
cross-validation

fMRI brain network with
non-linear similarity

network fusion: 58.18%

49.1% 66.1% − − − −

Morphological brain
network

with averaging method:
57.63%

42.72% 69.89% − − − −

Multi-modal classification
model in number of nodes

in template graph = 20
with depth-based

alignment and soft
correspondence: 53.73%

45.68% 61.03%

DL-based ASD studies

Hazlett et al.
(2017)

10-fold cross
validation

94% 88% 95% − 81% 97% −

Demirhan (2018) 5-fold cross
validation

52± 7% − 0.54 − − − −

Dekhil et al.
(2021)

4-fold cross
validation

80.8% 84.9% 79.2% 81.92% − − −

Akhavan Aghdam
et al. (2018)

10-fold cross
validation

65.56% 84% 32.96% − − − 74.76%

Sen et al. (2018) 5-fold cross
validation

64.31% 60% 68.32% − − − −

Li G. et al. (2018) 10- fold cross
validation

76.24% − − − − − −

Kong et al. (2019) 10-fold cross
validation

90.39% 84.37% 95.88% 0.9738 − − −

Mellema et al.
(2019)

3-fold stratified
cross-validation

− − − 80 − − −

Mostapha (2020) 10-fold cross
validation

89.7% 78.3% 92.5% − 80.2% 95.2% −

Ke et al. (2020) 10-fold cross
validation

2D Input + 2D CNN + 2D
STN
59%

− − − − − −

2D Input + 3D CNN + 2D
STN

!50%

− − − − − −

3D Input + 2D CNN + 3D
STN
57%

− − − − − −

3D Input + 3D CNN + 3D
STN
60%

− − − − − −

3D Input + 2D CNN + 3D
STN

+ RNN 55%

− − − − − −

3D Input + 3D CNN + 3D
STN

+ RNN 56%

− − − − − −

2D Input + 2D CNN +
CAM !

50%

− − − − − −

3D Input + 3D CNN +
CAM
56%

− − − − − −

(Continued)
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TABLE 4 (Continued)

References Test type Accuracy Sensitivity Specificity AUC PPV NPV F1 score

Shahamat and
Abadeh (2020)

5-fold cross
validation

3D-CNN :70% − − − − − −

3D-CNN + GABM:73% − − − − − −

Ke and Yang
(2020)

5-fold cross
validation

DDPG-RAM:85.6% 93.2% 65.7% 0.830 87.7% 78.9% −

PER-RAM:87.4% 93.7% 69.9% 0.937 89.7% 80% −

Ferrari et al.
(2020)

10-fold
cross-validation

− − − 0.79 − − −

Zhang M. et al.
(2020)

8-fold
cross-validation

0.690± 0.055 0.790± 0.049 0.689± 0.048 0.733± 0.051 − − −

Rakic’ et al. (2020)
Leave-one-site-

out
cross-validation

over 70% for all ABIDE I
studies but the CMU

center, where the accuracy
was 60%

10-fold cross
validation

fMRI +ensemble of
classifiers:

74.90%

74% 76%

sMRI +ensemble of
classifiers:

78.69%

78% 79%

Combined data + an
ensemble of

5 functional and 5
structural data

classification models =
85.06± 3.52%

81% 89%

Zhang and Wang
(2020)

− 0.680± 0.038 − − 0.617± 0.044 − − −

Gao K. et al.
(2021)

10-fold cross
validation

NDAR :91.5% 86.5% 92.8% 0.91 − − −

ACE :82.9% 81.8% 84.6% 0.86%

Ali et al. (2021) – SVM:72%
NN: 82%

− − − − − −

(Chen et al., 2021) 10-fold cross
validation

72.7% 67.8% 76.6% – – – –

Avg :69.42% – – – – –

Wang et al. (2021) − 72.48 75.81 68.09 0.74 − − 0.7581

Gao J. et al. (2021) 10-fold
cross-validation

71.8% 81.25% 68.75% 67% 0.6868

Tummala (2021) 5-fold stratified
cross-validation

99% − − − − − 0.99

Guo et al. (2021) 3D CSResNet-18 on
Validation
set: 85.5%

84.2% 86.8% 0.896 − − −

3D CSResNet-18 on Test
set:

84.4%

85.0% 84.0% 0.898 − −

Peng et al. (2021) 4- fold
cross-validation

69.9% − − 0.671 − − 0.694

Gao K. et al.
(2021)

10-fold
cross-validation

ResNet = 63.04% 52.40% 72.51% 0.6756 − − −

DenseNet = 63.64% 55.80% 70.62% 0.6725 − −

ResNet (transfer) = 65.89% 60.28% 70.90% 0.6996 − −

DenseNet (transfer) =
65.59%

57.29% 72.99% 0.7018 − −

ResNet (2-stage) = 67.70% 62.73% 72.13% 0.7199 − −

3DenseNet (2-stage) =
67.85%

61.66% 73.36% 0.7237 − −

that tested fewer than 100 people and had high classification
accuracy (Devika and Oruganti, 2020). Models with a small
sample tend to be overfitted, resulting in a pattern susceptible
to outliers and biases. Sadly, there is no universally applicable
framework for algorithms and classifiers used in disease

research. This is in line with the “no free lunch” principle (Tate
et al., 2020), which states that no algorithm works better than
another for all problems. Figure 9 depicts the large variance
between studies. Figure 9A shows a variety of ML and DL
approaches used to diagnose ASD.
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TABLE 5 Summary of publicly brain MRI datasets used in ASD studies.

References Dataset
name

Date
released

Num of images
/classes

Link Used in

Di Martino et al.
(2014)

ABIDE I 2012 539 ASD (360 M,179 F), 573
non-ASD (403 M, 170 F)

(Ages 7–64 years, mean age
14.7 years across groups)

http://fcon_1000.projects.nitrc.org/
indi/abide/abide_I.html

Moradi et al., 2017; Morris
and Rekik, 2017; Akhavan

Aghdam et al., 2018;
Demirhan, 2018; Sen et al.,

2018; Soussia and Rekik,
2018; Gorriz et al., 2019; Graa
and Rekik, 2019; Kong et al.,

2019; Zheng et al., 2019;
Bilgen et al., 2020; Dekhil
et al., 2020; Ferrari et al.,

2020; Ke and Yang, 2020; Ke
et al., 2020; Raamana and

Strother, 2020; Rakic’ et al.,
2020; Shahamat and Abadeh,
2020; Zhang and Wang, 2020;

Ali et al., 2021; Chen et al.,
2021; Fu et al., 2021; Itani
and Thanou, 2021; Mishra

and Pati, 2021; Gao K. et al.,
2021; Gao et al., 2022;

Tummala, 2021; Wang et al.,
2021; Yalçin and Rekik, 2021

Di Martino et al.
(2017)

ABIDE II 2017 521 ASD (414 M, 73 F), 593
non-ASD (382 M,175 F)
(Age range: 5–64 years)

http://fcon_1000.projects.nitrc.
org/indi/abide/abide_II.html

Akhavan Aghdam et al.,
2018; Devika and Oruganti,

2020; Chen T. et al., 2020; Ke
et al., 2020; Ferrari et al.,
2020; Gao K. et al., 2021

Payakachat et al.
(2016)

NDAR 2016 In 2014: Data from over
77,000 subjects.

Multimodal-MRI: 4,745
subjects.

https:
//nda.nih.gov/about.html

Hazlett et al., 2017; Li G.
et al., 2018; Mostapha, 2020;
Dekhil et al., 2021; Gao K.

et al., 2021; Peng et al., 2021

Toro et al.
(2018)

IMPAC 2018 1,150 subjects in the public
set (601 HCs, 549 ASD).

1,003 subjects in the test set
(591 HC,412 ASD)

https://paris-saclay-cds.
github.io/autism_challenge/

Mellema et al., 2019; Zhang
L. et al., 2020

ABIDE, Autism Brain Imaging Data Exchange Initiative; NDAR, National Database for Autism Research; IMPAC, Imaging Psychiatry Challenge: predicting autism.

FIGURE 8

Publication by year. (A) Shows a rise in the number of papers published in the ASD diagnosis area from 2017 onward, according to the “PubMed
by year”; (B) represents the number of papers published, reviewed here, by year.
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FIGURE 9

Reviewed studies analysis. (A) Shows a variety of ML and DL approaches used to diagnose ASD. (B) Shows a different set of CV techniques.
(C) Shows the data sets used in the studies and their number. (D) Shows the imaging modality used to build the models.

In conventional ML, SVM is commonly used. Among the
various DL architectures, CNNs were found to be the most
popular, with the most promising results. Also, the AEs results
were positive. Figure 9C shows the data sets used in the studies
during our research and their number. The ABIDE dataset
received the lion’s share. Figure 9B shows a different set of CV
techniques. The last figure shows the imaging modality used
to build the models, with single modality models being the
most common. Because each research is unique, it may include
a variety of MRI techniques and clinical data. The different
methodologies and measurements used in the studies make
direct comparison difficult.

Nonetheless, these studies can provide valuable data for
future researchers. As shown in the analysis and Tables 2, 3,
most research uses volumetric measures to distinguish between
healthy and autistic brains. Studies have linked ASD-related
structural abnormalities to the temporal, occipital, and frontal
lobes. Several studies have found CT to be a critical ASD
biomarker. The high dependence on FC patterns is also an fMRI
main feature.

To date, sMRI-based biomarkers cannot replace clinical
assessments in diagnosis, but they may alter therapy objectives
and procedures. Inconsistently designating a biomarker that
occurs in some patients but not others is a concern. Clinicians
should educate families about their child’s biomarker without

compromising determinism, because a biomarker may indicate
an elevated potential for the disorder but is not necessary. AI-
assisted predictive modeling can predict a disease before clinical
symptoms appear. To establish the prediction power of early
identified brain characteristics, infants must be sampled. A few
studies applied ML to infant data (Hazlett et al., 2017; Xiao et al.,
2017; Li G. et al., 2018; Mostapha, 2020). Hazlett et al. (2017)
obtained a 94% ACC utilizing DL on 34 high-risk ASDs and 145
non-ASDs. Future studies should be longitudinal and sibling of
high-risk individuals.

There has been a recent movement toward integrating
diagnostic modalities such as fMRI, DWI, and sMRI. It
may improve prognosis accuracy by using complementary
information in the multimodal data (Eill et al., 2019; Chen et al.,
2021). Only one study combined non-imaging data (such as
demographic data and reports) with imaging data to enhance
classifier predictability and interpretability (Dekhil et al., 2021).
While this combination has been applied in studies of other
diseases (Guo et al., 2015; Dukart et al., 2016), developing such
ML frameworks for the automated diagnosis of ASD is advisable.
Using several imaging modalities and multiparametric features
does not always increase diagnosis performance (Akhavan
Aghdam et al., 2018). In addition, recently developed
unimodal MRI methods are comparable to state-of-the-
art multimodal approaches (Shahamat and Abadeh, 2020;

Frontiers in Neuroinformatics 26 frontiersin.org

https://doi.org/10.3389/fninf.2022.949926
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-949926 September 22, 2022 Time: 15:6 # 27

Bahathiq et al. 10.3389/fninf.2022.949926

Zhang and Wang, 2020). Multimodal methods are more
sensitive and give more information in general, but sMRI-based
CAD is more appealing because it is cheap, and widely available
in the clinic.

Tables 2–4 and Figure 10 indicate that research accuracy
reduces with more participants. Large populations have more
clinical phenotypic heterogeneity. Moreover, data from many
sites, such as ABIDE, can be hampered by heterogeneity due
to differences in scanner types, data collection and processing
techniques, demographics, and disease assessment. As a result,
classifiers learn site-specific variables, not crucial data. Building
precise and stable learning models from heterogeneous multi-
site data is still difficult. “Domain adaptation” approach
minimizes between-site heterogeneity. Also, preprocessing is
required to remove subject-specific variability. In studies using
a subset of multi-site datasets, heterogeneity is overlooked,
leaving model performance in other datasets uncertain. To
accurately diagnose ASD, these algorithms must be evaluated
on various datasets. Increasing sample size implies more reliable
results, as statistical significance should have enough power
with a bigger sample. However, there are important non-
statistical considerations, such as relative gaps in age and
sex representation in studied sample populations. Moreover,
negative results are likely to be overlooked in the articles due
to a bias toward reporting positive results, referred to as the
“file drawer problem.” Only (Ferrari et al., 2020; Ke et al., 2020)
articles have shown how ML can be used to categorize ASD
patients using the two large ABIDE databases. Here, too, we
must point out that only limited dataset repositories are available
to the public (with only two classes: ASD and HC or non-ASD)
and are adopted in most ASD research.

According to our research, ensemble classifiers outperform
individual classifiers. For example, when training on a small
dataset, several hypotheses can produce the same accuracy.
Averaging these hypotheses may help the ensemble solve this
problem. Second, ensemble learning decreases the learned
model’s sensitivity to the limited training data by merging many
classifiers, resulting in better generalization of the trained model.
Finally, using many linear classifiers rather than one non-linear
classifier allows for linearly inseparable data while keeping the
model simple (Fu et al., 2021).

Small training data sets promote “overfitting” in most
experiments. The models’ complexity exacerbates the issue.
Because ASD repositories had limited MRI data, researchers
used various ways of preventing overfitting. Regularization
(L1/L2, Drop-Out, and Batch Normalization) decreases model
complexity (Soussia and Rekik, 2018; Mellema et al., 2019).
Cross-validation also has been used in several research to
prevent overfitting when the model’s complexity or dataset size
cannot be modified (Moradi et al., 2017; Sen et al., 2018). Here,
one study used a single split of training and testing, which
resulted in an overly optimistic result that confuses comparisons
with other studies (Li G. et al., 2018). Because the ideal
practice for model generalization is to utilize an independently

gathered dataset as the test set, reporting a leave-one-out CV is
acceptable, as each site represents a separate dataset. This is not
currently standard practice, as most of the research has used data
from large multi-site databases, but only a few have reported
LOOCV (Gorriz et al., 2019). Due to the imbalance between
classes, Synthetic Minority Oversampling Technique (SMOTE)
is utilized in conjunction with LOOCV because of the imbalance
between them (Devika and Oruganti, 2020). When the sample
size is modest, this method of validation is appropriate.

Another drawback relates to the feature extraction time
because each participant must be analyzed separately. Usually,
neuroimaging data is stored in high-dimensional space; for
example, a 60 × 60 × 60 3D image can yield 216,000 features.
As a result, classifiers may be trained on small datasets;
thus, increasing the likelihood of ML overfitting. Therefore,
automated feature extraction is desirable. To address this, most
recent works leverage off-the-shelf pipelines or preprocessing
tools like FreeSurfer to extract features before feeding them
to ML models and reduce computing overhead (Raamana
and Strother, 2020). Pipelines also enable method comparison
(Khodatars et al., 2021). Compared to adult MRI pipelines,
just a few infant MRI pipelines exist now, such as infants
such as Infant FreeSurfer (Wang et al., 2018; Zollei et al.,
2020).

Several strategies have been used to reduce the number
of input dimensions, retain relevant information by assessing
each dimension’s value, and control the classifier’s complexity
to avoid overfitting (Gorriz et al., 2019). Existing methodologies
for reducing the dimensionality of features include feature
extraction, feature selection, and sparse learning methods.
F-score (Devika and Oruganti, 2020; Fu et al., 2021), Recursive
Feature Elimination (Ali et al., 2021; Fu et al., 2021), PCA (Irimia
et al., 2018), greedy selection (Squarcina et al., 2021), and AEs
(Sen et al., 2018) are examples of feature selection techniques.

Another issue in ML is a class imbalance that makes
“accuracy” meaningless, which means disproportionate samples
for each category, such as in medical data sets where controls
often outnumber patients. Due to the low rate of ASD, models
tend to favor the majority group, making it hard to improve
accuracy while reducing false positives and negatives (Eslami
et al., 2021).

The participants’ sex representation in the literature is
remarkably unbalanced. Until recently, most ASD classification
algorithms used only male (or mostly male) samples. The
relative absence of females hinders our understanding of ASD
in females. A few studies (Irimia et al., 2018; Gorriz et al., 2019)
trained and evaluated the classifiers using comparable sample
of males and females. However, there is emerging evidence
that biological sex differences impact ASD risk and contribute
to the reported 4:1 male bias in diagnosis. Including sexual
information in the model was one way to find differing male and
female development patterns. K-fold validation, re-sampling
the training set by over-sampling the smaller minority group,
under-sampling the larger majority group have been used to
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FIGURE 10

Shows relationships between the sample size and the accuracy of the studies.

mitigate the effect of the majority class on the final prediction
(Sen et al., 2018).

Age matters with determining ASD anatomical alterations.
The current age for the studies reviewed here ranges from 6
months to 64 years. This makes broader inferences more difficult
because of the brain’s plasticity and developmental potential
through the first years of life. This issue may be addressed
in typically developing children and through comparisons of
changes in anatomy with age in ASD. It would be beneficial
to gather more information on children under the age of eight
as they are not well-represented at this time. This age range
represents a pivotal time as children are first being diagnosed,
interventions and treatments are being prescribed, and the
brain is undergoing major developmental changes. It is worth
noting that most studies thus far have examined ASD in older
individuals diagnosed at a younger age and who have undergone
years of treatment, and education.

Finally, one should carefully consider the ASD subgroup
tested for a study before making larger inferences, as studies
generally include higher-functioning ASD individuals with
relatively normal IQ scores.

Future direction

There is still room to improve existing research studies
to increase diagnosis accuracy, uncover robust biomarkers,

and support clinical evaluation of ASD, which can help guide
treatment decisions and improve long-term outcomes. Here we
highlight some upcoming trends in this field.

(1) Potential biomarkers must meet certain criteria before
they can be used in clinical settings. Biomarkers must be distinct
to each ailment, not a general disease sign, and symptoms can’t
imply anything without them (Du et al., 2018). To achieve
the classifiers’ specificity, many samples with various diseases
must be evaluated. Also, studies on autism-related brain changes
identify regions scientifically associated to autism and others
with unrecognized roles or little implications. To improve ASD
diagnosis and gather solid biomarker information, undiscovered
regions must be studied using big data and 3T or 7T
scans.

(2) With the increased production of data, diagnostic
imaging has begun to take shape entirely in “big data,”
which is defined in a healthcare context as “biological,
clinical, environmental, and lifestyle information” collected
from individuals to large groups about their health and state
of health at one or more points in time (Sejdic and Falk,
2018). Finding ways to analyze big data applications and manage
security risks is an important future direction. Cyber-attacks
target healthcare data repositories and organizations to access,
change, delete or steal sensitive data. Every 39 seconds, a
vulnerability on the Internet is exploited to start malware
attack (Kumar et al., 2020). The dark web’s high cost of
healthcare information makes it a popular target for hackers
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(Kumar et al., 2020). Another problem with big data is that
it contains a huge amount of explicit and implicit knowledge
that adds great value to healthcare. However, effective search
for and use of this knowledge faces many challenges, such
as developing healthcare knowledge management systems
and possibly supporting them with ML algorithms to derive
systematic knowledge of different data at a higher level to
support diagnosis and treatment (Phan et al., 2022; Dicuonzo
et al., 2022).

(3) As clinical scientists and mental health experts remain
worried about AI interpretation concerns, ML/DL algorithms
must be made more transparent and trustworthy by supporting
both human and machine decision-making. Explainable AI
(XAI) has arisen as a critical international issue when
employed in medical decision-making (Ozonoff et al., 2011;
Pinaya et al., 2019). XAI investigates the rationale behind the
decision-making process, explains the system’s benefits and
limitations, and speculates on its future behavior (Yang et al.,
2022). A typical XAI feedback loop includes training, quality
assurance, deployment, prediction, A/B testing, monitoring, and
debugging (Pinaya et al., 2019).

(4) ML classifiers must also be stable in the sense that the
results do not change substantially when the training data is
modified. Classification research requires stability since unstable
classifier predictions might lead to difficulty repeating findings
(Uddin et al., 2017; Itani and Thanou, 2021). We should also
consider model reproducibility. Several proposed strategies,
such as the Brain Imaging Data Structure (BIDS) (Rojas et al.,
2006; Gorgolewski et al., 2016), try to standardize data structure,
description, and storage.

(5) Previous studies lacked adequate neuroimaging training
data. Using data-augmentation techniques to produce synthetic
data from the given training dataset is an effective way to
supplement data (Hussain et al., 2017; Shin et al., 2018).
Flipping, cropping, translating, adding Gaussian noise, and
blurring are data augmentation techniques (Shorten and
Khoshgoftaar, 2019). Few-shot and zero-shot transfer learning
techniques (Koch et al., 2015; Wu et al., 2020; Chen D. et al.,
2020) can also help. No study exploits this type of learning
to diagnose autism. In contrast, it has been applied to other
diseases such as Alzheimer’s (Cheng et al., 2017).

(6) Training on datasets from diverse sources may be
necessary to generalize better. It may be a promising method for
learning adaptive classifiers (Chen et al., 2021) or applying to
multitask learning that treats each site as a single task (Huang
et al., 2020) in future studies to reduce the impact of dataset
variability.

(7) There is an urgent need to gather and evaluate
data according to ASD subgroups to better diagnosis and
individualized therapy. We also advise focusing investigations
on geographical datasets as ASD prevalence is geographically
dependent (LeCun et al., 2010).

(8) Financial constraints stifle diagnostic innovation.
Although sMRI is less expensive than other MRI modalities, it
is still costly and unlikely to be used frequently outside densely
populated areas or big institutions (Tate et al., 2020). Other
neuroimaging methods (e.g., electroencephalography or near-
infrared spectroscopy) are more clinically applicable and should
be noted in the future.

(9) Furthermore, further research using different and
complementary features is needed to investigate them.
Effective and correct integration of different imaging
data is an increasing challenge when acquiring data from
different collection sites. However, it supports the idea that
incorporating them may achieve optimal accuracy and show
formal investigation (Mellema et al., 2019). In addition,
the integration model must identify useful features in the
classification.

(10) Finally, it should be noted that most high-performance
computing techniques and ML algorithms are developed for
2D images, however, MRI are 3D or 4D data. Expanding
ML architecture from 2D to 3D/4D increases parameters
and runtime, restricting progress in recognizing psychological
indicators. Big data and demands to interchange data from
various sources will necessitate new approaches to speed up the
ML journey. Of these scalable solutions are parallel algorithms
that consider the CPU-GPU or CPU-Accelerator architecture.
Parallel processing of MRI data and DL networks involved
with ASD diagnosis are necessary components of future high-
performance computing techniques. Although rarely used
to date, a few HPC approaches have been proposed to
analyze MRI data (Lusher et al., 2018; Eslami and Saeed,
2018).

Conclusion

ASD presents many challenges for clinicians and researchers
seeking to understand its biological basis and target it with
drugs and interventions. Recent research has indicated that
ML/DL algorithms and structural brain MRI data may diagnose
ASD. While these studies are promising, they have not
achieved the expected success in early and accurate diagnosis.
ASD’s intricacy and disparities across clinical and research
groups demand further work to develop diagnostic tools. More
practical feature extraction and selection techniques, more
data, and reliable, and interpretable ML or DL models are
needed. Nevertheless, the results of the studies are useful in
identifying dysfunctional brain regions and bring us closer
to understanding the biological basis of this predominant
disorder. While many critical issues remain to be addressed
in the future, we anticipate these technologies will improve,
provide better, more personalized diagnoses, and be available to
clinicians soon.
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