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HIV-specific CD8 T cells and broadly neutralizing antibodies (bNAbs) both contribute to
the control of viremia, but in most cases, neither can completely suppress viral replication.
To date, therapeutic vaccines have not been successful in eliciting HIV-specific CD8 T cell
or bNAb responses that are capable of preventing long-term viral rebound upon ART
cessation. These challenges suggest that a combinatorial approach that harnesses both
bNAbs and CD8 T cell responses may be necessary for long term control of viral
replication. In this study we demonstrate a synergistic interaction between CD8 T cells
and bNAbs using an in vitro model. Our data suggest that this combinatorial approach is
very effective at suppressing viral replication in vitro and should be considered in future
therapeutic studies.
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INTRODUCTION

There are more than 37 million people worldwide infected with human immunodeficiency virus
(HIV). Although access to antiretroviral therapy (ART) has reduced HIV-related morbidity and
mortality, it is not a cure. A vaccine or cure strategy is desperately needed to end the requirement for
life-long ART.

HIV infection is characterized by high levels of plasma viremia that can be controlled, to varying
degrees, by virus-specific immune responses. There are several lines of evidence that CD8 T cells
contribute to the control of HIV replication. There is a temporal association between the emergence
of HIV-specific CD8 T cells and the decline of viremia in primary infection (1, 2). There is an
overrepresentation of certain Class I MHC alleles in patients known as elite suppressors (ES) or
viremic controllers (VC) who control viral replication to low or undetectable levels without ART
(3, 4). Many of these subjects have more potent HIV-specific CD8 T cell responses than patients
known as chronic progressors (CP) who do not control viral replication without ART (4–8).
Further, in the simian immunodeficiency virus (SIV) macaque model of HIV infection, the
depletion of CD8 lymphocytes leads to rebound of SIV viremia in animals that had previously
controlled viremia (9). Additionally, the reappearance of SIV-specific CD8 T cells coincides with
reestablishment of viral control (10). Therefore, it is clear that optimal CD8 T cell responses to HIV
are essential for viral control.
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Broadly neutralizing antibodies (bNAbs) can also contribute
to HIV control and have dual functionality; the variable regions
neutralize the virus, whereas the constant domains can engage
Fc receptors on effector cells of the immune system (11). The
administration of bNAbs immediately after infection has been
shown to prevent infection and seeding of the latent HIV
reservoir (12). Additionally, in human trials, CD4 binding-site
(CD4bs) Abs have a transient effect on viral load in individuals
who are not on ART, and administration of bNAbs during
analytical treatment interruption (ATI) can delay rebound of
the virus (13–15).

The use of vaccines or other therapeutic strategies to boost
immune responses to the virus may eventually lead to long term
HIV remission. Therapeutic vaccines aim to either improve the
functional capacity of the host CD8 response to kill infected CD4
T cells or increase the potency of circulating antibodies able to
neutralize circulating viruses. Thus far, therapeutic vaccines have
proven to be unsuccessful, as previous vaccine strategies have
shown some induction of CD8 T cells or neutralizing antibodies,
but they have not led to long term control of viral replication
when ART is discontinued (16, 17). The challenges that have
arisen in the development of such a vaccine suggest that a
combinatorial approach may be necessary to harness both
neutralizing antibodies and sub optimal CD8 T cell responses
to suppress virus replication.

The goal of our study was to develop an in vitro model that
assessed whether suboptimal CD8 T cell responses and bNAb
treatment function synergistically or independently to suppress
HIV infection. Thus, we designed experiments to interrogate
how viral replication proceeds in the presence of CD8 T cells and
bNAbs, separately or in combination. Our results have
implications for HIV therapeutic and cure strategies.
METHODS

Subjects
Blood samples from HIV-negative and HIV-positive donors were
obtained with written informed consent and subsequently handled
in accordance with protocols approved by the Johns Hopkins
University IRB. HIV controllers are made up of two different
classes of subjects. An elite suppressor (ES) refers to a subject who
hasmaintained undetectable viral loads in the absence ofART (18).
A viremic controller (VC) refers to a patient who has maintained
viral loads below 1000 copies/ml in the absence of ART (19).

NL4.3-Delta-Env-GFP X4 Virus
A single round X4 tropic enveloped NL4-3 virus with GFP
engineered into env was generated as previously reported (20).
In brief, NL4-3 delta env backbone and a separate X4 envelop
plasmid were transfected into 293T cells using lipofectimine
following manufacturer’s recommendations. Virus supernatants
were collected 72h post transfection an ultracentrifuged to
concentrate and purify virus. Virus was reconstituted in R10
ON at 4.C and then assessed by p24 ELISA (Perkin Elmer) to
determine concentration. All virus stocks were test on healthy
Frontiers in Immunology | www.frontiersin.org 2
donor CD4s to determine effective concentrations to allow for
20-30% GFP positive CD4 T cells. The X4 envelop was derived
from the HIV-IIIB virus and considered to be highly sensitive to
neutralization, tier 1B (21–23).

bNAb IC50 Calculations
All broadly Neutralizing Antibodies (bNAbs) were obtained
from the NIH AIDs reagent bank, CD4bs: 3BNC117 (24, 25),
VRC01 (26), b12 (27–30); V1-V2: PG9 (31); V3: 2G12 (32–36);
MPER: 10E8 (37), 4E10 (38). PBMCs were collected from
healthy donor whole blood after Ficoll-Paque Plus gradient
centrifugation (GE Healthcare Life Sciences, Baltimore, MD)
and CD4+ T cells were negatively selected (CD4+ T cell isolation
kit, Miltenyi). Immune complex assays were setup as described in
detail below. In brief, 100ng of p24/100,000 cells of NL4.3-delta-
Env+X4 virus was incubated with a titration of each bNAb
(Figure 1C and Supplemental 1). Immune complexes were
allowed to form for 1 hr at 37°C and then added to CD4 T
cells in triplicate. CD4s were then spinoculated at 1200 xg for 2h
at 37°C (39), cells were reconstituted in 200ul of fresh media and
then incubated at 37°C for 72h. All samples were then assessed
for GFP expression by flow cytometry. IC50 Ab concentrations
were calculated when 50% GFP expression was suppressed by the
added bNAb (Supplemental Table 2). Each antibody was
titrated in isolation with concentrations starting at 100mg/mL
to as low as 0.00001mg/mL (Supplemental Figure 1), in an
attempt to create “S” shaped curves. In some cases we were
unable to achieve saturation on the high end of the curve due to
the amount of bNAbs available. Additionally, some bNAbs were
titrated on multiple donors due to variability in GFP
suppression. IC50s were determined based on the average IC50
for each donor (b12, 10E8, 4E10, 2G12, Supplemental Figure 1).
All calculated IC50s are listed in Supplemental Table 2, IC50
concentrations were used in all CD8 suppression assays.

Immune Complex, CD4 T Cell Infection,
and CD8 T Cell Suppression Assay
See Figure 1A for a detailed schematic of assay setup. Immune
complex and CD8 T cell suppression assays were performed as
previously described (40–42). In brief, 40ul of NL4-3deltaEnv+X4
virus (100ngofp24)was added to40ul of the calculated IC50of each
bNAb, Supplemental Table 2. All neutralization assays were setup
in independent wells, 15 wells per bNAb, 3 wells per effector-to-
target (E:T) ratio. This was done so that triplicate CD4 infections
could be completed per immune complex and E:T condition, and
allowed for the assessment of variability in GFP suppression for
each condition. Immune complexes were allowed to form for 1-2 h
at 37°C prior to addition to CD4 T cells. During the immune
complex assay incubation, PBMCs were isolated from patient
blood, CD8 T cells were positively selected (CD8 T cell Isolation
kit, Miltenyi), and CD4 T cells were isolated by negative selection
(CD4 T cell isolation kit, Miltenyi). The purity of the isolated CD4
and CD8 T cell populations was routinely 90-95%. 20ul of isolated
CD4 T cells (100,000 cells per well) were then added to the
immune complex wells for a total volume of 100ul. The CD4 T
cells were infected by spinoculation at 1,200 xg for 2h at 37°C.
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Post spinoculation, infected CD4 T cells were co-cultured with
autologous CD8 T cells at multiple E:T ratios (see Supplemental
Figure 3 for details on each subject’s ratios) for 3 days at 37°C.
Flow cytometry was then performed to assess the percentage of
GFP+CD4 T cells at day 3. All samples were gated on singlets (FSC
A vs FSCH) and then on lymphocyte sized cells (FSC A vs SSC A),
datanot shown.CD4TcellsweredeterminedbygatingCD3+ (clone
UCHT1) andCD8– (clone RPA-T8) cells (Figure 1B), GFP positive
cells were determined by gating CD3+/CD8-/GFP+ cells, an
uninfected control was used to set GFP+ gating (Figure 1B).
All samples were run on a BD LSR Fortessa and analysis was
completed using Flow Jo.

PercentGFP suppression calculations were completed using the
following formula: %GFP suppression = 100-[(%GFP+ CD4HIV

+treatment ÷%GFP+CD4HIVonly)*100] seeSupplementalTable 1 for
Frontiers in Immunology | www.frontiersin.org 3
examples. bNAb concentrations resulting in 50% GFP suppression
(bNAbIC50) or CD8:CD4 ratios in which 60% or less GFP
suppression occurred (CD8IC60) were used for the analysis of
GFP suppression with bNAbIC50 or CD8IC60 alone vs GFP
suppression with bNAbIC50+CD8IC60, and in Bliss calculations.
Additionally, we completed analysis to assess whether less potent
CD8 function, defined as the E:T ratio resulting in 0-40%
suppression by CD8 T cells (CD8IC40), could be rescued when
bNAbswere included. To select CD8IC40 E:T ratios for each subject,
we chose the E:T ratio from theCD8-only suppression experiments
which resulted in the least GFP suppression of the ratios tested, or
the highest E:T ratio to result in zero suppression (Supplemental
Figure 1, blue arrows).We comparedGFP suppression byCD8IC40
orbNAbIC50 alone toGFP suppressionbybNAbIC50+CD8IC40. Bliss
calculations were also completed for the same conditions.
A

B

DC

FIGURE 1 | Overview of bNAb+CD8 suppression assay experimental scheme. (A) A schematic of the overall assay design and analysis. (B) Representative FACS
plots demonstrating CD4 gating and GFP+ gating in the negative control (no infection), positive control (CD4 T cells alone), and experimental conditions (CD4 and
bNAb; CD4 and CD8; CD4, CD8 and bNAb), GFP+ percentages shown. (C) Displays the E:T ratios used for two representative subjects to show how E:T ratios
were chosen for each individual studied, CD8:CD4 ratios which resulted in less than 60% GFP suppression were used for suppression and Bliss analyses.
(D) Representative data of bNAb titrations completed to calculate IC50 concentrations for each bNAb to be used in the suppression assay.
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Statistics and Calculations
Statistical analyses comparing multiple groups were performed
using a 1-way ANOVA with Tukey’s multiple comparison test.
The Bliss independence model (43) was used to predict combined
suppression of bNAbIC50 and CD8IC60 as previously described (44,
45). Formulas and example calculations are listed in Supplemental
Table 1. In brief, experimental fraction unaffected (Fun) valueswere
calculated by dividing the percent GFP+ cells in the combined
condition (CD8IC60+bNAbIC50) by the percentage of GFP

+ cells in
the CD4+virus only well. Bliss Fun, the predicted value if the
treatments are working independently, is calculated by
multiplying the experimental Fun for each individual treatment,
bNAbIC50 only and CD8IC60 only. The calculated Bliss Fun value is
than compared to the experimental Fun value calculated for the
combined treatment. If Bliss Fun = experimental Fun, suggests
independence; if Bliss Fun > experimental Fun, suggests synergy; if
Bliss Fun < experimental Fun, suggests antagonism. Experimental
Fun and Bliss Fun comparisons were completed using paired T tests.
P values of less than 0.05 were considered significant.

Study Approval
This study was approved by the Johns Hopkins University
Institutional Review Board. Informed written consent was
obtained from both subjects prior to enrollment into the study.
RESULTS

Development of an Assay to Measure the
Effects of CD8 Effector T Cells and bNAbs
on HIV Infection and Replication
We developed a combination assay that uses autologous CD8 T
cells fromHIV controllers to suppress a heterologous infection of
autologous CD4 T cells by virus that has been previously allowed
to form immune complexes with bNAbs (Figure 1A). The goal
of the assay was to determine whether the addition of bNAbs
could enhance viral suppression by suboptimal CD8 T cell
responses. The CD8 component of the suppression assay has
been previously described (40–42), as have neutralization assays
using bNAbs (46). This is, to our knowledge, the first report of
CD8s and bNAbs being tested in combination in this assay. All
results were calculated based on a percent of infected (GFP
positive) CD4 T cells, as gated based on negative (CD4 T cells
only) and positive (CD4 T cells + virus only) controls (Figure 1B
and Supplemental Table 1). Percent viral suppression was
measured by a loss of GFP signal when CD8 T cells, bNAbs or
both were present during the infection, as shown in Figure 1B.
CD8:CD4 T cell ratios that resulted in 60% GFP suppression or
less (CD8IC60) were used for all analyses to model the effect of the
suboptimal CD8 T cell responses seen in chronic progressors
(CP) on ART (Figure 1C and Supplemental Figure 1).
Additionally, using CD8 T cell responses that only suppressed
up to 60% of the GFP signal allowed us to detect any increase in
suppression when bNAbs were also added into the culture. Given
different potency of CD8 T cells from different donors, optimal
CD8:CD4 T cell effector:target (E:T) ratios differed for different
Frontiers in Immunology | www.frontiersin.org 4
donors, ranging from 1:2 to 1:20. bNAbs were used at
concentrations based on calculated IC50s (Figure 1D and
Supplemental Figure 2) as listed in Supplemental Table 2.
IC50s were used so that only 50% of the GFP signal would be
suppressed in the Ab-only controls, which allowed for any
increase in suppression to be detected when autologous CD8 T
cells were also added into the culture. This assay allows us to
measure the suppressive effect of autologous CD8 T cells alone,
bNAbs alone, or both in combination to determine whether the
two arms of the adaptive immune system are working
synergistically, independently or antagonistically using the Bliss
independence model (43).

Combination of bNAbs and
Autologous CD8 T Cells Enhances
Heterologous Suppression
We measured CD8 T cell and bNAb suppression using CD4 and
CD8 T cells isolated from 8 subjects with natural control of HIV
infection (6 ES and2VC) and5 different bNAbs that target theCD4
binding site (CD4bs), the V1-V2, or the membrane-proximal
external region (MPER) of HIV Env (CD4bs: 3BNC117, VRC01,
b12; V1-V2: PG9; MPER: 10E8). We found that for every bNAb
tested, the addition of both CD8 T cells and bNAbs led to a
significant enhancement in suppression of viral replication
relative to either CD8 T cells or bNAbs alone (Figure 2). Notably,
although bNAb concentrations and E:T ratios were optimized to
result in 50%orup to 60%suppression, respectively, suppressionby
bNAbs or CD8s alone varied somewhat when T cells fromdifferent
subjects were used in this experiment. Suppression by 3BNC117,
VRC01, and 10E8 bNAbs alone was particularly variable, ranging
from 0-80% suppression.

Despite the variability observed in bNAb only and CD8 T cell
only suppression, there was still a significant difference when
comparing CD8 T cell only or bNAb only to CD8+bNAb
combinations. Suppression assays using CD4bs bNAbs, such as
3BNC117, VRC01 and b12, combined with autologous CD8 T
cells resulted in median suppression values of 80%, 82%, and
78%, respectively, compared to bNAb or CD8 T cells alone
conditions, which resulted in 25-42% suppression. Suppression
assays using V1-V2 specific bNAbs or MPER bNAbs, such as
PG9 and 10E8, combined with autologous CD8 T cells resulted
in median suppression values of 73% and 62% suppression,
respectively, compared to bNAb or CD8 T cell alone
conditions that resulted in 27-35% suppression. In all cases the
combination treatment median was more than twice that of the
individual treatment medians, with p values ranging from 0.04 to
0.002. Additionally, due to limited availability, we tested the
bNAbs 4E10 (MPER) and 2G12 (V3 glycan) using cells from a
single subject and found a similar trend (Supplemental
Figure 3). To assess the reproducibility of the assay, select
subjects were tested in two to three independent experiments
using the same bNAbIC50 concentrations, and E:T ratios selected
to achieve 60% or less suppression by CD8 T cells alone
(Supplemental Figure 4). We observed that in every case the
addition of bNAb and CD8 T cells in combination led to an
increase in suppression of viral replication despite some
July 2021 | Volume 12 | Article 708355
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variability in the bNAb or CD8 T cell conditions. Taken together,
the data presented here suggest that the combination of CD8 T
cells and bNAb is significantly more effective at suppressing viral
replication than CD8 T cells or bNAb alone.

CD4bs bNAbs and CD8 T Cells Act
Synergistically
We next investigated the interaction between CD8 T cell
suppression and bNAb suppression using the Bliss independence
model (43) (Figure 3 and Supplemental Table 1). This model can
be used to identify synergy or antagonismbetween inhibitors under
the assumption that the inhibitors have independent binding sites
and independent mechanisms of action. This assumption was
appropriate for these experiments since bNAbs primarily inhibit
viral entry, whereas CD8 effector T cells kill already-infected cells.
Fraction unaffected (Fun) values of all CD8+bNAb combinations
tested (experimental) were lower than values calculated using the
Bliss independence model from suppression by the same bNAbs
and CD8s tested individually, indicating that CD8 T cells and
bNAbs were functioning synergistically (Figure 3A, p=0.0002).
Additionally, we analyzed these data broken down by bNAb class
(CD4bs, MPER, and V1-V3 region). As when all bNAbs were
Frontiers in Immunology | www.frontiersin.org 5
analyzed together, we found that experimental Fun values were
significantly lower than Bliss Fun values for the CD4bs class of
bNAbs, indicatinga synergistic interactionbetweenCD8Tcells and
CD4bs bNAbs (Figure 3B, p=0.005). Therewas also a trend toward
lower experimental Fun values relative to Bliss calculated Fun values
forMPERbNAbsandCD8Tcell andV1-V3bNAbs andCD8Tcell
combinations, although these differences were not statistically
significant (Figures 3C, D), possibly due to the smaller number
of antibodies tested in these categories. Finally, we analyzed
experimental vs. Bliss comparisons for CD8 T cells +3BNC117,
VRC01, b12, PG9, or 10E8 bNAbs individually (Figure 4). There
was a trend towards lower experimental vs. Bliss Fun values for every
individual bNAb, demonstrating that they all behaved similarly in
combination with CD8 T cells. Taken together, these data
demonstrate that CD4bs bNAbs and CD8 T cells act
synergistically to inhibit HIV infection. There was no evidence of
antagonism between any bNAb and CD8 T cells.

bNAbs Act Synergistically With CD8 T Cells
at Lower E:T Ratios
Next, we sought to determine if the addition of bNAbIC50 to CD8
T cells at E:T ratios with low CD8 suppression, defined as 0-40%
FIGURE 2 | Combination of bNAbs and autologous CD8 T cells enhances heterologous suppression. CD4 T cells from 6 ES and 2 VC were infected with GFP-
NL4.3deltaEnv_X4 with and without bNAbIC50 and then co-cultured with multiple CD8:CD4 ratios. The E:T which resulted in 60% or less of suppression was used to
compare the levels of suppression in bNAb only well, CD8 only and CD8+bNAb wells. The combination of any CD8IC60+bNAbIC50 lead to enhanced suppression of
HIV infection in all assays. Each data point displays the average of three technical replicates performed for each condition. The line indicates the median, each
colored point represents data from one subject, and the value is calculated by averaging three technical replicates within the experiment. Statistical analysis was
performed using a 1-way ANOVA with Tukey’s multiple comparison test, *p < 0.05 and **p < 0.01.
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FIGURE 4 | Individual bNAbs and CD8 T cells act independently to suppress HIV replication. Experimental Fun values from each individual bNAb were compared
to the predicated Bliss Fun values. Each BLISS or Fun data point is calculated from the average of three technical replicates performed for each condition.
The line indicates median and each point indicates an independent experiment or predicated value, one color per subject. Statistical analysis was performed using
paired t tests.
A B

DC

FIGURE 3 | CD4 binding site bNAbs and CD8 T cells act synergistically to suppress HIV replication. Experimental Fun values from (A) all CD8+bNAb experiments,
n = 38, (B) all CD4bs CD8+bNAb experiments, n = 19, (C) all MPER CD8+bNAb experiments, n = 13, and (D) all V1-V3 CD8+bNAb experiments, n = 6, were
combined and compared to the predicted Bliss Fun values for the same conditions. Each Bliss or Fun data point is calculated from the average of three technical
replicates performed for each condition. The line indicates median and each point indicates an independent experiment or predicated value. Statistical analysis was
performed using paired t tests, **p = 0.005 and ***p = 0.0002.
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GFP suppression (CD8IC40), would also result in enhanced GFP
suppression. We found that for every bNAb tested, the
combination of both CD8IC40 and bNAbIC50 led to an
enhancement in suppression of viral replication relative to
either CD8IC40 or bNAbIC50 alone (Supplemental Figure 5).
However, the observed enhancements were no longer
significant, unlike CD8IC60 E:T ratios in combination with
bNAbIC50 (Figure 2).

Additionally, we investigated the interaction between lower
suppression CD8 T cell ratios and bNAbIC50 suppression using
the Bliss independence model (21) (Supplemental Figure 6 and
Supplemental Table 1). Fraction unaffected (Fun) values of all
CD8IC40+bNAbIC50 combinations tested (experimental) were
lower than predicted values calculated using the Bliss model,
indicating that CD8 T cells and bNAbs were functioning
synergistically even with very low CD8:CD4 T cell ratios
(Supplemental Figure 6A, p=0.005). Additionally, we analyzed
these data broken down by bNAb class (CD4bs, MPER, and V1-
V3 region). There was also a trend toward lower experimental
Fun values relative to Bliss calculated Fun values for the CD4bs
class of bNAbs (p=0.054, Supplemental Figure 6B) suggesting
that with a larger sample size, CD4bs bNAbs and lower
frequencies of CD8 T cells may act synergistically. Inhibition
by MPER bNAbs or V1-3 bNAbs in combination with lower
frequencies of CD8 T cells were not significantly different from
values calculated using the Bliss model (Supplemental
Figures 6C, D) as observed with CD8IC60+bNAbIC50
combinations (Figure 4).
DISCUSSION

In this study, we investigated the direct interaction between the
suppressive capacity of CD8T cells and neutralization by bNAbs in
HIV infection. CD8 T cell receptors recognize peptides presented
on MHC class I molecules and kill infected cells, whereas bNAbs
recognize various epitopes on the virus envelope protein to prevent
viral entry into CD4 T cells. Therefore, we asked whether the two
different arms of the adaptive immune system could work
synergistically to inhibit viral infection and replication. We
observed a significant enhancement in viral suppression when
autologous CD8s were used in combination with bNAbs.
Additionally, we used the Bliss model to formally assess the
interaction between the effector cells and bNAbs, demonstrating
that bNAbs worked synergistically with CD8 effector T cells to
suppress infection. These data suggest that a combination ofCD4bs
bNAbs and CD8 T cell responses could lead to enhanced
suppression of HIV infection.

Early clinical trials identified several challenges for bNAbs as a
therapeutic agent. These challenges included transient suppression
of viremia, even at high doses (30–40 mg/kg), frequent emergence
of resistance in rebound variants, suboptimal efficacy in preventing
cell-to-cell viral transmission, and unclear effects on the cell-
associated HIV-1 reservoir (47). However, despite these initial
challenges, newer strategies involving bNAb therapy have shown
promising results. Increasing the potency and half-life of bNAbs
may result in a more durable viral suppression (48–50) and the
Frontiers in Immunology | www.frontiersin.org 7
combined use of bNAbs targeting non-overlapping epitopes have
been shown to lead to longer-lasting control and prevention of the
development of resistance (51–56). Additionally, manipulation of
bNAb size to promote access to the virological synapse (53, 57) or
the utilization of Abs that target CD4 or coreceptors may prevent
viral entry and inhibit of cell-to-cell transmission (58, 59).
Furthermore, recent studies have also shown that early and
prolonged treatment with bNAbs may affect the size of cell-
associated HIV reservoir (12, 60). However, the latent HIV
reservoir is in a quiescent state and may not actively express viral
antigens recognized by antibodies. Therefore, combinatorial
approaches that involve bNAbs and latency reversal agents
(LRAs) may be necessary to determine the ability of bNAbs to kill
infected cells. In a humanized-mousemodel ofHIV, itwas reported
that the combination of LRAs and bNAbs interfered with the
establishment and maintenance of the HIV reservoir (61). An
additional study showed that the bNAb PGT121, together with a
Toll-like receptor 7 (TLR7) agonist, delayed viral rebound in SHIV-
infected monkeys, potentially due to a reduction in the viral
reservoir (62). These data suggest that combination therapy
utilizing bNAbs and LRAs may have utility in reducing the size of
the reservoir HIV infected individuals.

In contrast to ART, bNAb therapy has also been shown to
promote the emergence of HIV/SIV specific CD8 T cell
immunity. There are several studies that suggest that bNAb
therapy may help to induce CD8-specific responses and are also
effective at delaying viral rebound during ATI (56, 60, 63, 64).
However, the mechanism responsible for this observation has yet
to be determined. Chronic Progressor (CP) CD8 T cell responses
are not effective at controlling viral replication and of more than
30 clinical trials with therapeutic vaccination, none have led to
sustained control of viral replication in a substantial number of
subjects when ART was discontinued (16, 17). One study
suggested that this may be due to the fact that the HIV-specific
CD8 T cell responses that were generated were not as effective as
those found in HIV controllers (65). Our data suggest that the
combination of these enhanced but suboptimal CD8 T cell
responses generated by therapeutic vaccination and CD4bs
bNAbs could have synergistic antiviral effects. This may be
particularly effective in shock and kill strategies when maximal
eradication of infected CD4 T cells is needed during defined
periods of latency reversal. Several clinical trials have shown that
the combination of an LRA with either a therapeutic vaccine (66,
67), or bNAbs (68) have not led to extended remission in the
majority of subjects. Our results suggest that a combination of
bNAbs and therapeutic vaccination to enhance CD8 T cell
responses may lead to better control after treatment with LRAs.

It should be noted that the effect of bNAbs in vivo may be
mediated by the formation of immune complexes which
subsequently leads to enhanced antigen uptake and presentation
by antigen presenting cells. This indirect effect would not be seen in
our system since we did not include any antigen presenting cells in
our experiments. Our data do suggest that there is synergy between
bNAbs andCD8T cells, whichwasmost clearly demonstrated with
CD4bs bNAbs. Synergy has been observed with classes of
antiretroviral drugs that inhibit HIV infection through
independent mechanisms (45). The fact that bNAbs and CD8 T
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cells act independently to suppress HIV replication in vitro may
potentially partially explain the observed synergy. However, the
exact mechanisms responsible for this synergistic effect are
unclear and warrant further investigation. Additionally, our study
focused on CD8 T cells from a small cohort of HIV controllers.
Interestingly, it appeared that ES CD8 T cells were more effective
than VC CD8 T cells at controlling virus replication which is
consistent with prior observations of differences in T cells from
these two groups of controllers (19). It would be beneficial to
determine if bNAb therapy can also enhance suppression by CP
CD8 T cells. In a prior study we showed that ES CD8 T cells were
more effective than CD8 T cells from viremic CP who were not
on ART at suppressing virus replication in this assay (69).
However, given the challenges of infecting CD4 T cells from CP
onART in thepresenceof residual intracellular antiretroviral drugs,
we were unable to investigate whether synergy would also be
seen in these patients. Finally, further in vivo studies are needed
to determine whether these combined treatments will result in the
reduction of the size of the HIV reservoir.

In this study, we have demonstrated that combination of bNAbs
andCD8T cells enhances suppression ofHIV infection. These data
suggest that this approach may be particularly effective in
combination with LRAs and shock and kill strategies, when
maximal eradication of infected CD4 T cells is needed. This
approach should be considered in future therapeutic studies.
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