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Type-I and Type-II LacNAc are Gal-GlcNAc disaccharides bearing a b1,3- or b1,4-linkage
respectively. They exist as the backbones of Lewis antigens that are highly expressed in
several cancers. Owing to the promise of developing carbohydrate-based anti-cancer
vaccines, glycan synthesis at a large scale is indeed an important task. Synthesis of Type-I
and Type-II tandem repeat oligomers has been hampered by the presence of GlcNAc
residues. Particularly, N-protecting group plays a determining role in affecting glycosyl
donor’s reactivity and acceptor’s nucleophilicity. This review discusses several
representative studies that assembled desirable glycans in an efficient manner, such as
chemoselective one-pot synthesis and chemoenzymatic methods. Additionally, we also
highlight solutions that have been offered to tackle long-lasting problems, e.g., prevention
of the oxazoline formation and change of donor/acceptor reactivity. In retrospect of
scientific achievements, we present the current restrictions and remaining challenges in
this less explored frontier.

Keywords: aglycon transfer, chemoenzymatic, chemoselective, glycosylation, one-pot synthesis, oxazoline,
relative reactivity value, tumor-associated carbohydrate antigen
INTRODUCTION

Glycobiology has become a burgeoning field in cancer research in the past two decades (1–4). In
comparison with traditional methods for cancer therapy (including chemotherapy, radiation and
surgery) which still suffer from major adverse effects (5, 6), vaccine treatment to induce the self-
immune system appears more beneficial because of its effective and safe approach (7–9). Intensive
efforts have been made to develop carbohydrate-based anti-cancer vaccines. Several glycan vaccines
are currently examined for clinical evaluations (10–12).

Cancer cells often display differential expression levels of unique carbohydrate epitopes that are
not present in their normal counterparts. Noteworthily, altered glycosylation patterns in tumor cells
have also been pinpointed as a hallmark of cancer (13–15). Aberrantly expressed glycans on cancer
cells are known as tumor-associated carbohydrate antigens (TACAs), recognized as biomarkers to
distinguish between malignant and normal cells (16–22). TACA can be classified into two classes: (i)
glycoprotein antigens such as Tn, Thomsen-Friedenreich and sialyl-Tn; (ii) glycolipid antigens
org February 2022 | Volume 13 | Article 8588941
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including Globo series, gangliosides and blood group
determinants (e.g., Lewis X (Lex), Lewis Y (Ley), and their
sialylated derivatives) (23).

Lewis-type antigens contain a fucosylated backbone
composed of a l t e rna t ing ga l ac tose (Ga l ) and N -
acetylglucosamine (GlcNAc) residues. Based on the glycosidic
linkage between Gal and GlcNAc, Galb1,4GlcNAc is defined as
Type-II LacNAc, existing as the backbone of Lex and Ley. In
contrast, Galb1,3GlcNAc is called Type-I LacNAc (or Lacto-N-
biose), constituting Lea and Leb (24, 25). Significantly, these
Lewis-type antigens also exist in glycosphingolipids, known to
accumulate and overexpress in breast, prostate, lung, colon and
ovary cancers (26).

TACA-based antitumor vaccines have shown great potential
and high specificity in cancer immunotherapy. Initially, these
carbohydrate antigens were isolated from tumor cells only,
instead of normal cells (23, 27, 28). To explore the biological
significance of tumor-associated antigens or any endogenous
glycans, acquiring a sufficient quantity of desirable carbohydrates
represents an important task. However, the immense complexity
and heterogeneity of most natural glycans has not only made it
impossible to isolate/extract desirable glycans from natural
sources, but also impeded investigations to understand their
binding modes and related mechanisms. To produce desirable
glycans at a reasonable level, it is a pivotal demand to develop
efficient, economic and scalable synthetic methods. As a
consequence, this minireview places an emphasis on the
synthetic methodology for Type-I and Type-II Lewis antigens.
Meanwhile, we also discuss encountered problems and
challenges, as well as future aspects about how scientists can
provide satisfying solutions by standing upon the shoulders
of giants.
SYNTHESIS OF TYPE-II LacNAc-
REPEATING OLIGOSACCHARIDES

Glycosphingolipids (GSLs) play a crucial role in cell growth,
infections, immune response and cancers (29, 30). Many GSLs
containing the Lex structure also play a role as TACAs (26).
These antigens are highly expressed in tumors and identified as
useful cancer markers (7, 24, 31, 32). To study potential
applications for the prognostic and diagnostic usage, many
GSLs of the Globo series that consist of the Type II backbone
were synthesized, such as sialyl Lex ceramide (33–35). The total
synthesis of monomeric Lex was first reported in 1987. To form
the linkage of Galb1,4GlcNAc, the glycosylation employed an
acceptor containing GlcNAc-3,4-diol (36). However, there were
two existing problems, such as low regioselectivity (resulting
from the similar reactivity of the diol) and the low coupling yield
(caused by the disarmed nature of the glycosyl donor). Nicolaou
and coworkers accomplished the total synthesis of the tumor-
associated Lex family of GSLs in 1990 (Scheme 1) (37). The
monomeric, dimeric and trimeric Lex (Figure 1) were
synthesized by using a two-stage activation approach. The
synthesis began with glycosyl fluoride 1 that reacted with
Frontiers in Immunology | www.frontiersin.org 2
NPhth thioglucoside 2 to obtain disaccharide 3. After selective
deprotection of the allyl group, the resulting acceptor was
subjected to the orthogonal glycosylation with fucosyl fluoride
4, leading to the formation of a-fucosyl trisaccharide. Further
transformation steps generated the key building block (5),
including the first stage activation– anomeric fluorination,
removal of the benzyl groups by hydrogenation and the
subsequent acetylation.

To avoid the aforementioned low glycosylation yield arising
from a ceramide acceptor, Schimidt’s procedure using 2-
azidosphingosine was applied for the preparation of acceptor 6.
The azide was found effective to prevent the formation of
intramolecular hydrogen bonding (38). Further glycan
elongation from the reducing end to nonreducing end was
accomplished by glycosylation of 6 with 5 to produce
pentasaccharide 7 . Product 7 was elongated to give
octasaccharide 8 after the removal of monochloroacetate and
the subsequent glycosylation with 5. Likewise, undecasaccharide
9 was generated in the same manner. Interestingly, although 3-
and 4-hydroxyl groups at the nonreducing Gal of 7 and 8 were
unmasked at the same time, the next step of glycosylation
occurred at 3-OH with exclusive regioselectivity, which was
attributed to the steric hindrance of the axial 4-OH. Products
7-9 were subjected to the same procedure to give monomeric,
dimeric and trimeric Lex, respectively, in excellent overall yields.
The procedure was to remove all the protecting groups installed
in hydroxyl groups, to convert the azide (in the ceramide moiety)
to the desirable acyl amide, and transform the NPhth (at C2 of
Gal) to NHAc.

Koeller reported a chemoenzymatic approach to prepare
sialyl-trimeric-Lex (Scheme 2) (39). Glycosylation of acceptor
10 with glycosyl donor 11 was promoted by trimethylsilyl
trifluoromethanesulfonate (TMSOTf) to give b1,4-linked
disaccharide 12 (50%) and the b1,3-linked regioisomeric
product (8%). Notably, no a-linked product was isolated
because of the neighboring group participation of 2-OAc of
donor 11. Moreover, several steps were carried out to produce
disaccharide donor 13-D, including deacetylation of 12,
silylation of the Gal 6-OH, deprotection of the anomeric TBS
ether, and the subsequent conversion to the trichloroacetimidate
(13-D). The two following steps, attachment of 13-D with allyl
alcohol and incomplete Zemplen deacetylation (NaOMe in
MeOH), led to the formation of acceptor 13-A. The coupling
of 13-D and 13-A afforded tetrasaccharide product that was
subjected to acetylation for the purpose of product purification
and characterization. The tetrasaccharide product (14) was
obtained after incomplete Zemplen deacetylation. A similar
approach was conducted to yield tri-LacNAc hexasaccharide
15, including [2 + 4] glycosylation between donor 13-D and
acceptor 14, peracetylation, and global deprotection.

To prepare sialyl-trimeric-Lex, the remaining glycosylation
steps utilized an enzymatic method to incorporate the necessary
sialic acid and L-fucose residues. Enzymatic sialylation was
performed by using recombinant human a2,3-sialyltransferase
in the presence of CMP-NeuAc to introduce sialic acid to 3-OH
of the nonreducing Gal. Human a1,3-fucosyltransferase VI was
February 2022 | Volume 13 | Article 858894
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SCHEME 1 | Nicolaou’s two-stage activation strategy for total synthesis of the tumor-associated Lex family of glycosphingolipids.
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applied to attach L-fucose to 3-OH of three GlcNAc units where
3 equivalents of GDP-fucose were present. This combination of
chemical and enzymatic synthesis greatly simplified the
preparation of this complex decasaccharide.

Furthermore, Wong and coworkers established relative
reactivity values (RRVs) to index the reactivity of glycosyl
donors (40). The measurement relied on an HPLC-based
competition assay. The resulting database collects the RRVs of
hundreds of various thioglycosides. The computer software
“OPTIMER” was thus developed to dissect glycan synthesis,
which appeared useful to design an efficient one-pot synthesis.
That is to say, a desirable glycan is analyzed by OPTIMER to
come up with a plausible, high-yielding one-pot synthesis where
the glycan can be assembled by consecutive coupling of suitable
thioglycosides (their RRVs listed in the database). However, the
capability of the OPTIMER is confined by the limited number of
verified RRV’s building blocks. In 2018, Wong and coworkers
further developed an algorithm for hierarchical one-pot
synthesis called “Auto-CHO” (41). Based on the machine
Frontiers in Immunology | www.frontiersin.org 3
learning, Auto-CHO can predict more than 50,000 virtual
building blocks (with predicted RRVs) from 50 to 154 real
building blocks (with verified RRVs). Both OPTIMER and
Auto-CHO have made glycan synthesis to be performed in a
designed and analytical manner. In the synthesis, the most
reactive thioglycoside reacts with the second most reactive
thioglycoside and this process can be repeated by coupling of
the resulting product (that then serves as the donor) with another
thioglycoside (acceptor) in the order of decreasing anomeric
reactivity (reducing RRV), elongating glycans from the
nonreducing to the reducing end (Scheme 3). This
development has several advantages. One is to simplify
typically tedious procedures in carbohydrate synthesis without
purification of intermediate products. The operation of one-pot
synthesis greatly speeds up the synthesis and increases the
overall yield.

Wong and Mong then applied the reactivity-based
chemoselective glycosylation strategy to synthesize Ley

hexasaccharide 21 (Scheme 4) (42). Through the retrosynthetic
February 2022 | Volume 13 | Article 858894
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FIGURE 1 | Structure of monomeric, dimeric and trimeric Lex.
 

SCHEME 2 | Koeller’s chemoenzymatic synthesis of Sialyl-Trimeric-Lex 16 (TCAI, trichloroacetimidate; TBS, tert-butyldimethylsilyl; TBDPS, tert-butyldiphenylsilyl;
Troc, 2,2,2-trichloroethoxycarbonyl).
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SCHEME 3 | General scheme for reactivity-based one-pot glycosylation.
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analysis and consultation of the RRV database, Ley 21 can be
divided into three basic units: thiotoluenyl fucoside 17 (RRV =
7.2 x 104), thiotoluenyl disaccharide 18 (RRV = 1.2 x 104) and
disaccharide 19 containing a linker in the reducing end (RRV =
0). Sequential one-pot synthesis was carried out by coupling 17
of the highest RRV with the less reactive acceptor 18, followed by
reaction with the least reactive reducing-end acceptor 19. Fully
protected Ley hexasaccharide 20 was obtained in 44% yield.

Another representative example of Wong’s programmable
one-pot synthesis was to integrate chemical and enzymatic
glycosylations. The target glycan contained three Type-II
LacNAc-repeating units that were attached with an additional
mannose at the reducing end and sialic acid at the nonreducing
end (Scheme 5) (43). Three thioglycoside building blocks (22–
24) with RRVs of 263, 51 and 0, respectively, were prepared for
the subsequent [2 + 2 + 2] one-pot synthesis, leading to the
SCHEME 4 | Wong’s and Mong’s reactivity-based one-pot synthesis of Ley hexasa

Frontiers in Immunology | www.frontiersin.org 5
formation of fully protected hexasaccharide 25 in 60% yield.
Further global deprotection steps afforded compound 26,
including sequential removals of all of the N-phthaloyl groups,
acetyl groups and benzyl ethers, and acetylation of the resulting
amines. Lastly, the enzymatic incorporations of galactose and
sialic acid residues were successfully achieved by using b1,4-
galactosyltransferase and a2,3-sialyl transferase to give 27 and
both reactions were carried out in good yields.

The RRV database covers a wide range of thioglycosides with
various protecting groups, thus paving the way for simplifying
complex carbohydrate synthesis in a one-pot manner. When
using Galb1,3/4GlcNAc-derived disaccharides to assemble Type-
I or Type-II LacNAc-repeating glycans, the effect of neighboring
group participation plays a role in forming b-glycosidic linkage
exclusively. Therefore, N-protecting group installed at
glucosamine residues appears to be crucial to determine the
ccharide 21.

February 2022 | Volume 13 | Article 858894
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SCHEME 5 | Preparation of octasaccharide 27 by the combined programmable one-pot synthesis and enzymatic extension of galactose and sialic acid.
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reactivity and stereoselectivity at the same time. In addition to
the factor of donor reactivity, the acceptor’s nucleophilicity also
plays an important role in impacting the stereoselectivity and
glycosylation yield. Generally, an electron-rich glycosyl acceptor
(protected by electron-donating groups) favors b-glycosylation,
whereas an electron-poor acceptor (protected by electron-
withdrawing groups) tends to display a-selectivity (44).
Moreover, to match between donor’s reactivity and acceptor’s
nucleophilicity is another challenging issue. Once the donor’s
glycosidic bond is cleaved in a typical glycosylation reaction,
the acceptor needs to react with the resulting intermediate and
form a new glycosidic linkage. If the donor is highly active or the
acceptor is a weak nucleophile, the reaction usually gives a low
yield or no formation of the desired product. Romano reported
an interesting investigation towards the glycosylation reactivity
of lactosamine disaccharides by using various N-protecting
groups in the donors and protecting groups in the acceptors
(Scheme 6) (45).
Frontiers in Immunology | www.frontiersin.org 6
The NHTroc-protected lactosamine showed the lowest yield
(20% by 1st generation acceptors and 78% by 2nd generation
acceptors), assuming acceptors 31 and 32 had the same reactivity
(i.e., the remote N-protecting group in the reducing glucosamine
residue did not affect the reactivity). Likewise, acceptors 33 and 34
were considered to be equally reactive. In contrast, the NHTFA-
protected lactosamine displayed the highest glycosylation reactivity
(40% by 1st generation acceptors and 94% by 2nd acceptors) with no
oxazoline formation. Moreover, the benzylated acceptors (the 2nd

generation) significantly produced higher yields, as compared to
the peracetylated acceptors (the 1st generation). Gratifyingly, the
result was well explained by the fact that benzylated acceptor has
higher reactivity than the acetylated ones, which was in agreement
with that obtained by Wang and coworkers (46). Owing to the
electron-withdrawing feature of ester-type protecting groups, the
reduced nucleophilicity indeed decreased the glycosylation yields
(see the reactions using acceptors 31 and 32, vs. 33 and 34 in
Scheme 6). As a consequence, to optimize glycosylation conditions,
February 2022 | Volume 13 | Article 858894
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selection of different protecting groups appears to be critical to tune
donors’ reactivity and acceptors’ nucleophilicity.
SYNTHESIS OF TYPE-I LacNAc
REPEATING OLIGOSACCHARIDES

In comparison with naturally prevalent Type-II LacNAc, Type-I
LacNAc also exists in several antigens of Lewis blood groups,
such as Lea, Leb and sialyl Lewis A (sLea). These glycans are
involved in many biological processes including tumor
metastasis (47). Recent studies indicated that Type-I LacNAc-
tandem repeats were isolated from SW1116 human colorectal
carcinoma cell line (28, 48, 49) and shown as the specific ligands
of the tumor-associated human galectin 3 (22, 50). Type-I
LacNAc-containing glycans can be utilized to gain novel
insights about their functional roles, such as interactions with
carbohydrate-binding proteins (e.g., galectin 3), fertilization,
pathogen adhesion, and inhibitory activity against tumor cells.
Therefore, there is a rising urge for chemists to develop efficient
synthesis for these glycans or related glycoconjugates.

The first synthesis of Lea-tandem repeat was developed and
reported by Ishida et al. in 2016 (Scheme 7) (51). The fucose-
containing trisaccharide 42 was derived from monosaccharide
41 through multiple protecting group manipulations, followed
by two glycosylation steps. Next, 42 was converted to either the
corresponding N-phenyl-trifluoroacetimidate donor (43) via
anomeric desilylation and acetimidation, or the trisaccharide
acceptor (44) via selective removal of the allyl group at C-4 of
Gal residue. The Lewis acid (TMSOTf)-catalyzed [3 + 3]
glycosylation resulted in the formation of hexasaccharide 45 in
SCHEME 6 | Investigations of Romanò and coworker on the glycosylation reactivity

Frontiers in Immunology | www.frontiersin.org 7
93% yield. The same strategy was also applied to provide
hexasaccharide donor 46 and hexasaccharide acceptor 47 that
were subjected to [6 + 6] glycosylation with the same Lewis acid
to produce dodecasaccharide 48. A linker was introduced at the
reducing end of 48 to produce this Lea-tandem repeat
oligosaccharide. Although there was a high or excellent yield in
every step, this synthetic procedure was tedious and laborious,
considering the number of reaction steps and multiple protecting
groups employed. As a consequence, to develop a more
convenient approach has drawn increasing attention.

Elling and coworkers developed a one-pot and sequential
approach to prepare Type-I LacNAc oligosaccharides by using
two recombinant glycosyltransferases. The procedure started from
chemically derivatized GlcNAc-linker-tBoc 49 (Scheme 8). Two
recombinant bacterial enzymes, were added to the reaction mixture
alternatively, including E. coli O55:H7 b1,3-galactosyltranserase
(b1,3GalT) and H. pylori b1,3-N-acetylglucosaminyltransferase
(b3GlcNAcT). Di-, tri-, tetra- and pentasaccharides were
synthesized in high overall yields. However, bGal3T showed low
activity towards longer Type-I LacNAc glycan acceptors, resulting
in unsatisfying yields for hexa-, hepta- and octasaccharides. The
problem was not solved albeit with extra additions of enzymes
(b3GalT, alkaline phosphatase) and donor (UDP-Gal).

In comparison with the alternative enzyme usage, the one-
pot, simultaneous usage of b3GalT and b3GlcNAcT was
examined with different activity-based enzyme ratios (Scheme
8) (52, 53). Varying ratios led to different product distributions.
Interestingly, when the ratio of b3GalT/b3GlcNAcT was 5/1,
acceptor 49 was consumed completely, generating disaccharide
50 (~80%) as the main product and tetrasaccharide 52 (14%)
after 72 h. Nevertheless, this one-pot procedure was restricted
 

that was affected by different N-protecting groups of lactosamine disaccharides.
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SCHEME 7 | Synthesis of Lea-tandem repeat dodecasaccharide 48 by Ishida and coworkers (TBDPS, t-butyldiphenylsilyl; PTFAI, N-phenyltrifluoroacetimidate).
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towards the synthesis of trisaccharide and longer glycans. The
method usually produced a mixture of products, representing
another problem in purification of desirable glycans.
Additionally, several challenges are associated with enzymatic
methods. For instance, most glycosyltransferases and related
enzymes are not commercially available. To prepare any of
them for the synthetic purpose is time-consuming and may
not be cost-effective. At this stage, it is not feasible to synthesize
long Type-I oligomers by using b3GalT and b3GlucNAcT unless
superior enzymes or/and reaction conditions are identified.

Moreover, inspired by Wong’s success of the reactivity-based
one-pot synthesis in Type-II LacNAc oligosaccharides, Lin and
coworkers demonstrated a one-pot [1 + 1 + 2] glycosylation. The
procedure started with a high-RRV galactoside 54 as the donor
(RRV = 16500) to couple with a low-RRV, trichloroacetamide
(NHTCA)-protected glucosamine acceptor 55 (RRV = 126), as
shown in Scheme 9. In the presence of N-iodosuccinimide (NIS)
and TMSOTf as the promoter, the glycosylation produced
Frontiers in Immunology | www.frontiersin.org 8
disaccharide 56 as a mixture of a/b isomers (ratio of a/b = 1/
7) (54). The loss of the exclusive stereoselectivity was mainly due
to the bulky O3-t-butyldimethylsilyl group of 54 that caused a
distorted chair conformation. The next glycosylation utilized
NIS/AgOTf as the milder promoter after donor 54 and acceptor
55 were completely consumed. Although 56 existed as a mixture
of a/b isomers, the coupling with disaccharide 57 produced
tetrasaccharide 58 of the desired b,b,b-stereochemistry in a total
45% yield, without detection of the isomeric a,b,b-product. To
explain the stereochemistry outcome, 57 was glycosylated with
either pure a-isomer (Gal-a1,3-GlcNHTCA, 56a) or b-isomer
(Gal-b1,3-GlcNHTCA, 56b). Interestingly, 56a was activated
faster than 56b and thus rapidly hydrolyzed without forming the
expected tetrasaccharide of a,b,b-stereochemistry.

The idea of performing the one-pot synthesis of
tetrasaccharide 58 can be further extended to synthesize Type-
I LacNAc oligosaccharides in an efficient and convenient way,
but there were problems to be resolved. First, the methoxy group
February 2022 | Volume 13 | Article 858894
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SCHEME 8 | Enzymatic synthesis of Type-I LacNAc oligomers by Elling and coworkers.

 

SCHEME 9 | One-pot [1 + 1 + 2] glycosylation to synthesize tetrasaccharide 58 by Lin and coworkers.
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at the reducing end of acceptor 57 eliminated the possibility for
further glycan elongation. More importantly, the issue of b-
selectivity in the first glycosylation has to be addressed, otherwise
the formation of undesired disaccharide 56a unavoidably
decreases the overall yield, making it impractical to prepare
elongated glycans.

Because the reactivity difference between glycosyl donors and
acceptors is critical in chemoselective glycosylation, it is
indispensable for identifying suitable donor-acceptor pairs which
can be accomplished by using different protecting groups to tune
their reactivities. Hence, with the systematic investigation on the
reactivities of thiotoluenyl-linked disaccharide donors and
acceptors (shown as RRVs), Lin and coworkers synthesized
various tetrasaccharides by performing chemoselective coupling
of these glycosyl donors and acceptors in the presence of NIS and
TMSOTf (0.2 equiv), as shown in Scheme 10. To provide a useful
guideline obtaining maximal yields, they plotted a graph between
the tetrasaccharide yields and the corresponding RRV difference
Frontiers in Immunology | www.frontiersin.org 9
(RRVD, between the donors and acceptors) (Scheme 10) (55).
They concluded that the RRVD threshold, sufficient RRVD equal to
or higher than 6311 (i.e., RRVD ≥ 6311 or ln(RRVD) ≥ 8.75), is
required to afford Type-I LacNAc tetrasaccharides in good yields
(> 60%). The idea of RRVD threshold can not only significantly
prevent aglycon transfer, but also additionally help to design
synthetic procedures for Type-I LacNAc oligosaccharides with
satisfying yields.
SYNTHESIS OF OTHER RELATED
GLYCANS

The solutions improving the synthesis of Type-I/II glycans are
beneficial to the preparation of other glycans that contains
similar structural motifs (Figure 2). For instance, bacterial
February 2022 | Volume 13 | Article 858894
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SCHEME 10 | The importance of exceeding the RRVD threshold for efficient synthesis of Type-I oligomers demonstrated by Lin and coworkers.
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peptidoglycans contain the repeating unit of GlcNAc-b1,4-
MurNAc(pentapeptide) (see the structure of 80 in Figure 2).
Since MurNAc is a GlcNAc derivative, GlcNAc-b1,4-MurNAc
can be considered as the modified version of Type-II LacNAc.
Human milk oligosaccharides are known to contain b-1,3/4-
linkage sugar residues, including Gal-b1,4-Glc, Gal-b1,3-
GlcNAc and Gal-b1,4-GlcNAc (e.g., Lacto-N-tetraose 81).
Likewise, Globo-H hexasaccharide (82), one of TACAs, has the
moieties of Gal-b1,3-GalNAc and Gal-b1,4-Glc. Preparation of
these glycans or glycoconjugates unavoidably encounter various
Frontiers in Immunology | www.frontiersin.org 10
problems, like what we previously discussed. As a consequence,
the aforementioned ideas and approaches are presumably useful,
such as the concept of RRV threshold and the ways to prevent the
formation of stable oxazoline side-products, making it possible to
produce these oligosaccharides at a suitable scale with high
efficiency. With continuing advances in the field of
carbohydrate synthesis, the expansion of these developed
methods and related applications will serve as an important
stepping stone toward a foreseeable promise for efficient glycan
synthesis operated with a rational design and analysis.
FIGURE 2 | Glycans containing b-1,3/4 glycosidic bonds (indicated as red color). Disaccharides marked by rectangles are analogous to Type-I or Type-II LacNAc.
February 2022 | Volume 13 | Article 858894
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Phang and Lin Synthesis of Type-I/II LacNAc Glycans
CHALLENGES AND FUTURE
PERSPECTIVES

In the past two decades, tremendous efforts have been made to
develop an efficient methodology for preparing complex
oligosaccharides. To assemble complicated glycan structures in
a more rapid, efficient and massive way, many strategies have
been studied, including protecting group manipulation, one-pot
glycosylation, chemoenzymatic synthesis, or even the
combination of these strategies (e.g., protecting-group
controlled enzymatic glycosylation) (56). Additionally, a solid-
phase oligosaccharide synthesizer, enabling automated glycan
assembly, was developed by Seeberger to prepare desired glycans
in a fast and reproducible fashion. Through the resin equipped
with a photolabile linker as a solid support, a set of Lewis, Type-I/
II oligosaccharides (Lea, Leb, Lex, Ley, lactotetraosyl,
neolactetraosyl) were synthesized successfully by using a large
quantity of glycan building blocks (5–8 equiv) (57). However, the
assembly of Type-I and Type-II LacNAc-tandem repeat glycans
still represents a long-lasting challenge due to several limiting
factors shown as follows.

Firstly, the intrinsic low nucleophilicity of 3/4-OH of
glucosamine acceptor has impeded the synthesis of
Galb1,3GlcNAc and Galb1,4GlcNAc disaccharide precursors at
the very beginning (44, 58, 59). Both hydroxyl groups are easily
affected by adjacent protecting groups. The latest discovery by
Wang and coworkers also pinpointed the deactivating effect of
electron-withdrawing group (e.g. benzoate) to reduce the
hydroxyl nucleophilicity that is indexed in terms of acceptor
nucleophilic constant (Aka) (46). Although it seems feasible to
compensate the poor nucleophilicity of acceptor by increasing
the donor reactivity, the effort usually leads to rapid hydrolysis
before formation of a desired glycosidic linkage. The problem of
preparing Type-I LacNAc is more serious than preparing Type-II
LacNAc because 3-OH is less reactive than 4-OH (58). This is in
agreement with the analysis of Wang’s Aka values (perbenzylated
glucoside’s Aka value of 4-OH is 2.68, whereas that of 3-OH is
1.62), as well as the results of Lin’s (50, 54, 55) and Madsen’s
work (58). The nucleophilicity is known to be influenced by
steric effect (e.g., primary vs. secondary alcohol) and electronic
effect (electron-withdrawing vs. electron-donating group) as
mentioned previously. Additionally, other effects were reported
to influence acceptor’s reactivity, such as hydrogen bonding and
conformational change. To enhance the acceptor reactivity is
thus a complex issue.

The reactivity-based chemoselective glycosylation represents
an effective strategy by tuning and matching the RRVs of donors
SCHEME 11 | General scheme for the glycosylation with a GlcNAc-derived donor w
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and acceptors. However, this strategy is usually accompanied by
aglycon transfer of the acceptor, especially when the
nucleophilicity of the hydroxyl group is much lower than the
anomeric thio-moiety (60–64). To circumvent this problem,
Glidersleeve et al. surveyed a series of thio-aglycon groups and
discovered that thio-2,6-dimethylphenyl (SDMP) can block the
aglycon transfer completely because of the corresponding steric
hindrance (65). Therefore, a SDMP-based RRV database may
possibly provide a satisfying solution for chemoselective one-
pot glycosylation.

Another concern is how to select N-protecting group of
glucosamine acceptors. Various amide- or carbamate-type N-
protecting groups have been utilized for the purpose of the
neighboring group participation to produce b-stereoselectivity
(66–71). However, most of them still display limitations during
glycosylation. For example, the synthesis of O-sulfated sLex

antigens by Chen et al. started from N-phthalimido-3,4-diol
glucosamine derivatives as glycosyl acceptors . The
glycosylation exhibited good regioselectivity towards 4-OH,
owing to the differential steric hindrance of the two hydroxyl
groups. The C3-hydroxyl group is near the bulky N-phthalimide
and thus hindered for reaction (72). In comparison with N-
phthalimide, 2,2,2-trichloroethoxycarbarmate (NHTroc) is less
bulky, but it has to be removed either under harsh conditions
(e.g., Zn and acidic condition under a high temperature) (73), or
by a radical method which often results in a significant amount
of a dichloroethoxycarbonylated byproduct (74). Although
trichloroacetamide (NHTCA) or trifluoroacetamide (NHTFA)
have been widely used and can be easily deprotected (75–78), the
formation of TCA-oxazoline as a stable side product is known to
be problematic (55, 79). For example, the chemical synthesis of a
hyaluronic acid decasaccharide by Huang et al. was hampered by
the substantial formation of TCA-derived oxazoline side
products (79). Despite the addition of TMSOTf to suppress
their formation by shifting the equilibrium from oxazoline to
oxazolinium ion (80), a significant amount of the oxazoline
species was still detected during the elongation of longer
saccharides (55, 79).

Moreover, when a relatively acidic oxazolinium accumulates
to a high level in glycosylation reactions, it would possibly
activate NIS and then thioglycosides, with concomitant
formation of a deprotonated yet stable oxazoline (81).
Therefore, to resolve this issue, Henrik and coworkers
demonstrated the importance of balancing the rate between the
oxazoline formation (rate constant k1 in Scheme 11) and the
subsequent glycosylation (k2), which can be achieved by tuning
the amount and Lewis acidity of the catalyst (e.g., Bi(OTf)3, Fe
here an oxazoline is formed as a stable intermediate.
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(OTf)3·DMSO). The glycosylation yield was thus improved
significantly by maintaining a low concentration of the
oxazoline under the reaction condition. This approach was
found useful to obtain good yields for the acceptors containing
a primary hydroxyl group, but the reactions for those containing
a secondary hydroxyl still gave moderate yields. Meanwhile,
Hashimoto and coworkers used triflimide to convert glycosyl
diethylphosphite to a-glycosyl triflimide for the subsequent
glycosylation, which successfully avoided the oxazoline
formation (82, 83).

Even though these aforementioned methods were established to
overcome the oxazoline formation, their efficacy is usually
dependent on promoters, donors or acceptors. There is still lack
of systematic investigations that are expected to offer a universal
solution to themajority of glycosylation reactions. The examination
of N-protecting groups likely shows a great promise when taking
account of the fact that N-protecting groups are essential for
controlling the glycosylation stereoselectivity and tuning the
saccharide reactivity at the same time. If N-protecting groups are
Frontiers in Immunology | www.frontiersin.org 12
able to form corresponding oxazolines, they can also alter the
reactivity of oxazoline and thus shift the oxazoline/oxazolinium
equilibrium. If the past is any indication of the future, undoubtedly,
the development of an advanced methodology will be mostly
emphasized on chemoselective one-pot synthesis with prior
analysis on the reactivity of donors and acceptors.
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