

Received 3 December 2015 Accepted 18 December 2015

Edited by A. J. Lough, University of Toronto, Canada

Keywords: structure transformation; homonuclear cluster; palladium; gold; crystal structure

CCDC reference: 1443364 **Supporting information**: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of a Pd_4 carbonyl triphenylphosphane cluster $[Pd_4(CO)_5(PPh_3)_4] \cdot 2C_4H_8O$, comparing solvates

Koen Robeyns, Christopher Willocq, Bernard Tinant, Michel Devillers and Sophie Hermans*

Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain, 1 Place Louis Pasteur, B 1348 Louvain-la-Neuve, Belgium. *Correspondence e-mail: sophie.hermans@uclouvain.be

Attempts to synthesize Au–Pd heterometallic compounds from homonuclear palladium or gold complexes, $[Pd(PtBu_2)_2]$ and $[Au(PPh_3)Cl]$ in a tetrahydrofuran (THF) solution under a CO atmosphere resulted in a homonuclear Pd cluster, namely pentakis(μ -carbonyl- $\kappa^2 C:C$)tetrakis(triphenylphosphane- κP)-tetrapalladium(5 Pd-Pd) tetrahydrofuran disolvate, $[Pd_4(CO)_5(C_{18}H_{15}P)_4]$ - $2C_4H_8O$. The complex molecule lies on a twofold rotation axis. The crystal structure is described in relation to the CH₂Cl₂ solvate previously determined by our group [Willocq *et al.* (2011). *Inorg. Chim. Acta*, **373**, 233–242], and in particular to the desolvated structure [Feltham *et al.* (1985). *Inorg. Chem.* **24**, 1503–1510]. It is assumed that the title compound transforms into the latter structure, upon gradual loss of solvent molecules. In the title compound, the symmetry-unique THF solvent molecule is linked to the complex molecule by a weak C–H···O hydrogen bond. Contributions of disordered solvent molecules to the diffraction intensities, most likely associated with methanol, were removed with the SQUEEZE [Spek (2015). *Acta Cryst.* C**71**, 9–18] algorithm.

1. Chemical context

Heterometallic compounds are ideal precursors for mixed oxides or mixed-metal nanoparticles, especially when the two considered metals are difficult to alloy. In the case of the Pd-Au combination, a tremendous amount of work has been carried out recently in heterogeneous catalysis to prepare supported bimetallic catalysts with a fine control over composition and size of the supported heterometal nanoparticles (Paalanen et al., 2013). These materials find, for example, application in the direct synthesis of hydrogen peroxide from hydrogen and oxygen (Edwards et al., 2015), or liquid-phase oxidation of alcohols and aldehydes (Villa et al., 2015; Hermans & Devillers, 2005; Hermans et al., 2010, 2011). However, synthesizing molecular compounds presenting a hetero metal-metal bond is challenging. Several strategies have been described, such as reactions of metal salts in the presence of a reducing agent or reactions under irradiation (favoring formation of metal-metal bonds). In the present work, we explore the reactivity of Au and Pd compounds in a CO atmosphere, with the hope of providing the reducing agent and additional ligands through dissolved carbon monoxide. The direct synthesis of Au-Pd heterometallic complexes has already been achieved using similar strategies, for example starting from [Pd(PPh₃)₂Cl₂] and [Au(PPh₃)NO₃] in the presence of NaBH₄ (Ito et al., 1991; Quintilio et al., 1994). One major drawback of this type of strategy is that the product formed is unpredictable, with easy cluster formation by

aggregation and homometal bond formation. We have devised in parallel a more predictable synthesis method for Au–Pd compounds by adding a cationic Au fragment to a reduced Pd species (Willocq *et al.*, 2011). Here we describe a homometallic Pd₄ cluster formed by reductive carbonylation and coalescence of a Pd complex in presence of an Au phosphine compound. The reported cluster is closely related to known Pd₄ cluster structures (Willocq *et al.*, 2011; Mednikov *et al.*, 1987; Feltham *et al.*, 1985).

2. Structural commentary

The structure of the Pd cluster (Fig. 1) shows internal symmetry and is located on a twofold rotation axis, passing through the central carbonyl, giving four complex molecules in the unit cell (Z' = 0.5). Crystallized from a THF/MeOH mixture, the reported structure is a THF solvate, revealing eight tetrahydrofuran molecules in the unit cell. Around the inversion centres, 60 Å cavities are located which were treated by the *PLATON* (Spek, 2009) SQUEEZE (Spek, 2015)

Figure 1

Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (a) -x, y, $-z + \frac{1}{2}$.] Only the symmetry-unique THF solvent molecule is shown.

0 ()						
Pd1-Pd2	2.7381 (8)	Pd2-P4	2.3208 (15)			
Pd1-Pd2 ⁱ	2.7446 (9)	Pd2-Pd1 ⁱ	2.7446 (9)			
Pd1-Pd1 ⁱ	3.1704 (14)	$Pd2-Pd2^{i}$	2.8006 (12)			

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

algorithm, accounting to 15 electrons. A single peak, on the special position, was visible in this cavity, which is believed to be the oxygen atom of a partially occupied and disordered MeOH molecule. Partial evaporation of the solvent molecules probably explains the limited resolution of the collected data. Reflection data up to 0.94 Å were used during refinement, this being the best diffracting crystal amongst several tested.

The central unit of the complex consists of four Pd atoms at the corners of a distorted tetrahedron. Of the six edges, five are occupied by bridging carbonyl ligands, the remaining one has a non-bonding Pd···Pd distance of 3.170 (1) Å. The bonding Pd-Pd distances are in the range 2.7381 (8)-2.8006 (12) Å (Table 1). The same compound had been crystallized earlier by our group (Willocq et al., 2011) as a CH₂Cl₂ solvate in the triclinic space group $P\overline{1}$. The molecular geometry of both structures is quite different, the most pronounced difference being the lack of internal symmetry in the $P\overline{1}$ structure, which can be extended to the symmetry of the Pd core. The Pd–Pd distances opposite the non-bonding Pd-Pd are very similar, 2.801 (1) and 2.805 (1) Å ($P\overline{1}$). Although the average of the four remaining Pd-Pd bond lengths in the two structures is quite similar (2.741 Å for the current structure and 2.746 Å for the triclinic structure), the bond-length distribution is quite different, showing equal bond lengths for the current structure and two shorter [2.678 (1) and 2.720 (1) Å] and two longer ones [2.797 (1) and 2.790(1) Å] for the triclinic structure.

No classical hydrogen-bond interactions are observed, but a weak $C-H \cdots O$ interaction (Table 2) can be considered to the oxygen atom of the THF molecule.

3. Database survey

A survey of the Cambridge Structural Database (Groom & Allen, 2014) revealed two more occurrences of the title compound, both crystallized in the *C*2/c space group. In the paper by Mednikov *et al.* (1987) the homonuclear Pd cluster is reported as a co-former, together with a trinuclear Pd cluster $[Pd_3(CO)_3(PPh_3)_4]$, here as well the Pd cluster is found onto a twofold rotation axis and superposition of both molecular entities reveals similar features, right up to similar orientations of the triphenylphosphines.

The second occurrence is however much more interesting as the structure of Feltham *et al.* (1985) shows remarkable similarities with the reported structure, not only with respect to the molecular conformation – the r.m.s. deviation between the two structures is 0.757 Å for all atoms, and 0.356 Å when omitting the phenyl rings – but also with respect to the overall crystal packing. Closer inspection of the unit-cell parameters, listed

research communications

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C19-H19···O100 ⁱⁱ	0.95	2.43	3.282 (8)	149

Symmetry code: (ii) $x - \frac{1}{2}, y + \frac{1}{2}, z$.

below, reveals that for both structures only the *a* axis differs significantly by more than 2 Å (2.297 Å):

a = 27.254 (9), b = 16.016 (6), c = 17.938 (7) Å, $\beta = 105.92$ (2)°, V = 7530.0 Å³, 120 K (title compound);

a = 24.957 (5), b = 16.138 (3), c = 17.758 (3) Å, $\beta = 103.47$ (2)°, V = 6955.4 Å³, RT, (Feltham *et al.*, 1985).

While the Feltham et al. (1985) structure contains a total of 400 Å^3 of voids distributed over six sites (pore sizes from 5– 32 Å³), none of these is big enough to host even small solvent molecules, characterizing this structure as solvent-free. Gradual loss of solvent molecules is believed to provoke a transformation from the solvent-rich title compound to the desolvated structure reported by Feltham et al. (1985). The reported problems during crystal harvesting of the latter structure (see section 4) tends to support this hypothesis. The transformation itself appears to occur in a sequential process where two types of solvent cavities gradually lose their solvent molecules, leading to a contraction of the *a* axis. The first affected cavities are the 61 $Å^3$ voids treated by SQUEEZE (Spek, 2015) in the current structure, followed by the cavity hosting the loosely trapped THF molecule (289 $Å^3$). After correcting for the interstitial voids observed in the contracted structure, the volume loss during the transformation is in complete agreement with the solvent loss in both cavities.

Figure 2

Packing overlay of the title compound measured at 120 K and the solvent-free structure of Feltham *et al.* (1985) measured at room temperature, obtained by pairwise fitting of all Pd atoms of the four molecules in the unit cell. The projection along the *b* axis reveals that, upon evaporation of the solvent molecules, the unit cell contracts, while keeping the global packing arrangement. Phenyl rings have been omitted for clarity.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$[Pd_4(CO)_5(C_{18}H_{15}P)_4] \cdot 2C_4H_8O$
M _r	1758.93
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	27.254 (9), 16.016 (6), 17.938 (7)
β (°)	105.92 (2)
$V(Å^3)$	7530 (5)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.08
Crystal size (mm)	$0.18\times0.12\times0.05$
Data collection	
Diffractometer	MAR345 image plate
No. of measured, independent and	9236, 4739, 3938
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.037
θ_{\max} (°)	22.2
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.532
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.086, 1.04
No. of reflections	4739
No. of parameters	453
H-atom treatment	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} { m \AA}^{-3})$	0.54, -0.53

Computer programs: *mar345* (Klein, 1998), *marHKL* (Klein & Bartels, 2000), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *Mercury* (Macrae *et al.*, 2008) and *PLATON* (Spek, 2009).

Fig. 2 shows the packing overlay by pairwise fitting of the Pd atoms of the reported structure and the structure of Feltham *et al.* (1985) (all Pd atoms within one unit cell were considered); evaporation of the THF molecules and small rearrangements of the homonuclear cluster allows the transformation of the solvated structure into the solvent-free analogue to be completed. This transformation only involves one dimension and a projection along the *a* axis of the superimposed unit cells reveals practically fully overlapped molecules, even when considering the orientation of the phenyl rings.

4. Synthesis and crystallization

The synthesis of the title compound was an attempt to obtain mixed Au–Pd complexes in a one-step reaction. Through a THF solution of $[Pd(P^tBu_3)_2]$ and $[Au(PPh_3)Cl]$ carbon monoxide gas was passed and the solid material left after evaporation of the solvent was characterized by NMR and IR spectroscopy. One intense IR band at 1870 cm⁻¹ indicated the formation of a complex with CO ligands. ³¹P NMR showed two signals at 28.1 and 97.2 p.p.m. with a 4:1 ratio, which indicate the presence of two types of phosphines, while the ¹H NMR indicated the presence of both triphenylphosphine and tri*-tert*-butylphosphine. Dissolution of the solid in a THF/ MeOH mixture yielded red crystals which were suitable for X-ray diffraction. Rather than a mixed Au–Pd species, the crystals contained a homonuclear Pd complex.

Previously the synthesis of the title compound was reported as the reduction of an oxygen-free CH_2Cl_2 solution of $[Pd(NO_2)_2(PPh_3)_3]$ under CO. Crystals were formed upon cooling after addition of CO-saturated hexane and were reported to decompose rapidly and could finally be measured at room temperature in a CO-filled sealed capillary (Feltham *et al.*, 1985). The homonuclear Pd₄ cluster can also be synthesized by the reaction of $[Pd_2(dba)_3]$ (dba is dibenzylideneacetone) and three equivalents of PPh₃ under CO (Willocq *et al.*, 2011).

5. Refinement

Crystal data and structure refinement details are summarized in Table 3. Data were collected on a MAR345 image plate, using Mo K α radiation generated on a Rigaku UltraX 18S generator (Zr filter). Diffaction data were not corrected for absorption, but the data collection mode with high redundancy, partially takes the absorption phenomena into account. (111 images, $\Delta \Phi = 2^{\circ}$, 21617 reflections measured for 4740 independent reflections). H atoms were placed at calculated positions with isotropic temperature factors fixed at $1.2U_{eq}$ of the parent atom.

Acknowledgements

The authors thank the Fonds de la Recherche dans l'Industrie et l'Agriculture (FRIA) for the research fellowship allotted to CW, and the Belgian National Fund for Scientific Research (FNRS) for financial support.

References

- Edwards, J. K., Freakley, S. J., Lewis, R. J., Pritchard, J. C. & Hutchings, G. J. (2015). *Catal. Today*, **248**, 3–9.
- Feltham, R. D., Elbaze, G., Ortega, R., Eck, C. & Dubrawski, J. (1985). *Inorg. Chem.* 24, 1503–1510.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Hermans, S., Deffernez, A. & Devillers, M. (2010). *Catal. Today*, **157**, 77–82.
- Hermans, S., Deffernez, A. & Devillers, M. (2011). *Appl. Catal. Gen.* **395**, 19–27.
- Hermans, S. & Devillers, M. (2005). Catal. Lett. 99, 55-64.
- Ito, L. N., Felicissimo, A. M. P. & Pignolet, L. H. (1991). *Inorg. Chem.* **30**, 988–994.
- Klein, C. (1998). mar345. X-ray Research GmbH, Norderstedt, Germany.
- Klein, C. & Bartels, K. (2000). *marHKL*. X-ray Research GmbH, Norderstedt, Germany.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mednikov, E. G., Eremenko, L. A., Slovokhotov, Y. L., Struchkov, Y. T. & Gubin, S. P. (1987). *Koord. Khim.* **13**, 979.
- Paalanen, P., Weckhuysen, B. M. & Sankar, M. (2013). Catal. Sci. Technol. 3, 2869–2880.
- Quintilio, W., Sotelo, A. & Felicissimo, A. M. P. (1994). Spectrosc. Lett. 27, 605–611.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Villa, A., Wang, D., Su, D. S. & Prati, L. (2015). *Catal. Sci. Technol.* 5, 55–68.
- Willocq, C., Tinant, B., Aubriet, F., Carré, V., Devillers, M. & Hermans, S. (2011). *Inorg. Chim. Acta*, **373**, 233–242.

Acta Cryst. (2016). E72, 120-123 [doi:10.1107/S205698901502441X]

Crystal structure of a Pd₄ carbonyl triphenylphosphane cluster [Pd₄(CO)₅(PPh₃)₄]·2C₄H₈O, comparing solvates

Koen Robeyns, Christopher Willocq, Bernard Tinant, Michel Devillers and Sophie Hermans

Computing details

Data collection: *mar345* (Klein, 1998); cell refinement: *marHKL* (Klein & Bartels, 2000); data reduction: *marHKL* (Klein & Bartels, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *Mercury* (Macrae *et al.*, 2008) and *PLATON* (Spek, 2009).

Pentakis(μ -carbonyl- $\kappa^2 C$:C)tetrakis(triphenylphosphane- κP)tetrapalladium(5 Pd—Pd) tetrahydrofuran disolvate

Crystal data	
$[Pd_4(CO)_5(C_{18}H_{15}P)_4] \cdot 2C_4H_8O$	F(000) = 3544
$M_r = 1758.93$	$D_{\rm x} = 1.552 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $C2/c$	Mo $K\alpha$ radiation, $\lambda = 0.71069$ Å
a = 27.254 (9) Å	Cell parameters from 4740 reflections
b = 16.016 (6) Å	$\theta = 2.6 - 22.2^{\circ}$
c = 17.938 (7) Å	$\mu = 1.08 \text{ mm}^{-1}$
$\beta = 105.92 \ (2)^{\circ}$	T = 120 K
$V = 7530 (5) Å^3$	Platelets, red
Z = 4	$0.18 \times 0.12 \times 0.05 \text{ mm}$
Data collection	
MAR345 image plate	4739 independent reflections
diffractometer	3938 reflections with $I > 2\sigma(I)$
Radiation source: Rigaku UltraX 18 rotating	$R_{\rm int} = 0.037$
anode	$\theta_{\rm max} = 22.2^\circ, \ \theta_{\rm min} = 2.5^\circ$
Zr filter monochromator	$h = -28 \rightarrow 28$
111 images, $\Delta \Phi 2^{\circ}$ scans	$k = -17 \rightarrow 17$
9236 measured reflections	$l = -19 \rightarrow 19$
Refinement	

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0201P)^2 + 36.9627P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.54$ e Å⁻³ $\Delta\rho_{min} = -0.53$ e Å⁻³

Refinement on F^2

 $wR(F^2) = 0.086$

4739 reflections

453 parameters

0 restraints

S = 1.03

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.035$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pd1	0.00088 (2)	0.70651 (2)	0.16201 (2)	0.01857 (13)
Pd2	-0.05342 (2)	0.59762 (2)	0.22629 (2)	0.01713 (13)
C1	0.0757 (2)	0.6757 (3)	0.1897 (3)	0.0248 (13)
01	0.11225 (15)	0.6829 (2)	0.1692 (2)	0.0345 (9)
C2	-0.0735 (2)	0.6741 (3)	0.1236 (3)	0.0239 (12)
O2	-0.10823 (14)	0.6805 (2)	0.0691 (2)	0.0333 (9)
C3	0.0000	0.5003 (5)	0.2500	0.0231 (17)
O3	0.0000	0.4268 (3)	0.2500	0.0320 (13)
P3	-0.00131 (5)	0.82666 (8)	0.09097 (7)	0.0185 (3)
C4	0.06148 (19)	0.8732 (3)	0.1019 (3)	0.0180 (11)
C5	0.0797 (2)	0.8963 (3)	0.0400 (3)	0.0235 (12)
Н5	0.0579	0.8915	-0.0113	0.028*
C6	0.1284 (2)	0.9258 (3)	0.0510(3)	0.0275 (13)
H6	0.1405	0.9401	0.0078	0.033*
C7	0.1599 (2)	0.9346 (4)	0.1258 (3)	0.0328 (14)
H7	0.1937	0.9548	0.1340	0.039*
C8	0.1422 (2)	0.9140 (4)	0.1878 (3)	0.0365 (15)
H8	0.1636	0.9211	0.2390	0.044*
С9	0.0937 (2)	0.8833 (3)	0.1764 (3)	0.0281 (13)
H9	0.0819	0.8686	0.2199	0.034*
C10	-0.02718 (19)	0.8146 (3)	-0.0143 (3)	0.0208 (12)
C11	-0.0615 (2)	0.8691 (3)	-0.0601 (3)	0.0262 (13)
H11	-0.0741	0.9150	-0.0372	0.031*
C12	-0.0777 (2)	0.8572 (4)	-0.1398 (3)	0.0346 (15)
H12	-0.1024	0.8936	-0.1714	0.041*
C13	-0.0577 (2)	0.7919 (4)	-0.1732 (3)	0.0373 (15)
H13	-0.0678	0.7850	-0.2279	0.045*
C14	-0.0234 (2)	0.7371 (4)	-0.1274 (3)	0.0373 (15)
H14	-0.0100	0.6924	-0.1506	0.045*
C15	-0.0085 (2)	0.7470 (3)	-0.0478 (3)	0.0280 (13)
H15	0.0143	0.7082	-0.0161	0.034*
C16	-0.03973 (19)	0.9103 (3)	0.1160 (3)	0.0199 (12)
C17	-0.0907 (2)	0.8940 (3)	0.1112 (3)	0.0253 (13)
H17	-0.1050	0.8410	0.0939	0.030*
C18	-0.1208 (2)	0.9551 (4)	0.1318 (3)	0.0317 (14)
H18	-0.1556	0.9436	0.1275	0.038*
C19	-0.1010 (2)	1.0321 (3)	0.1581 (3)	0.0327 (15)
H19	-0.1216	1.0734	0.1728	0.039*
C20	-0.0505(2)	1.0477 (4)	0.1628 (3)	0.0309 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H20	-0.0364	1.1008	0.1802	0.037*
C21	-0.0199(2)	0.9878 (3)	0.1425 (3)	0.0258 (13)
H21	0.0149	0.9998	0.1468	0.031*
P4	-0.12826(5)	0.52022 (8)	0.19235 (7)	0.0191 (3)
C22	-0.12432 (19)	0.4330 (3)	0.1291 (3)	0.0233 (12)
C23	-0.1279 (2)	0.3498 (3)	0.1471 (3)	0.0314 (14)
H23	-0.1329	0.3344	0.1956	0.038*
C24	-0.1241(2)	0.2883 (4)	0.0939(4)	0.0433 (16)
H24	-0.1259	0.2312	0.1072	0.052*
C25	-0.1178(2)	0.3084(4)	0.0231 (4)	0.0373 (15)
H25	-0.1160	0.2660	-0.0131	0.045*
C26	-0.1141(3)	0.3903(4)	0.0058(4)	0.0475(17)
H26	-0.1096	0.4052	-0.0431	0.057*
C27	-0.1170(2)	0.4521(4)	0.078(3)	0.0419(16)
027 Н27	-0.1139	0.5088	0.0444	0.050*
C28	-0.14892(18)	0.4741(3)	0.0771	0.020
C29	-0.1977(2)	0.1711(3) 0.4841(4)	0.2723(3) 0.2804(3)	0.0193(12) 0.0312(14)
H29	-0.2223	0.5150	0.2004 (3)	0.037*
C30	-0.2223	0.3190 0.4494(4)	0.2420 0.3431 (3)	0.037 0.0359(15)
H30	-0.2441	0.4583	0.3491	0.043*
C31	-0.1761(2)	0.4022 (3)	0.3967(3)	0.043 0.0323(14)
H31	-0.1856	0.3765	0.4384	0.039*
C32	-0.1277(2)	0.3926(4)	0.3896 (3)	0.0411 (16)
H32	-0.1034	0.3604	0.3090 (3)	0.049*
C33	-0.1139(2)	0.4200 (4)	0.3281(3)	0.049
U22	-0.0708	0.4233(4)	0.3261 (3)	0.0349(13)
C24	-0.18558 (10)	0.4247 0.5748 (2)	0.3240 0.1261 (2)	0.042
C34	-0.1023(2)	0.5748(3)	0.1301(3) 0.1488(3)	0.0232(12)
U35	-0.1663	0.6392 (4)	0.1468 (5)	0.0339(13)
П33 С26	-0.1003 -0.2252(2)	0.0881 0.7020 (4)	0.1001	0.043°
C30	-0.2332(2)	0.7020 (4)	0.1092 (4)	0.0301 (18)
H30	-0.2390	0.7394	0.1197	0.060°
C37	-0.2/2/(3)	0.6609 (5)	0.0342 (4)	0.057(2)
H3/	-0.3024	0.6902	0.0203	0.069*
C38	-0.26/3(2)	0.5785 (5)	0.0398 (4)	0.053 (2)
H38	-0.2933	0.5500	0.0010	0.064^{+}
C39	-0.2241(2)	0.5345 (4)	0.0806 (3)	0.0374 (15)
H39	-0.2209	0.4769	0.0704	0.045°
0100 C101	0.2944(2)	0.6292(4)	0.1655(3)	0.0822(18)
	0.2603 (3)	0.6561 (5)	0.0954 (5)	0.079 (3)
HIOA	0.2303	0.6185	0.0805	0.095*
HIOB	0.2773	0.6562	0.0533	0.095*
C102	0.2439 (3)	0.7435 (5)	0.1096 (4)	0.063 (2)
HIOC	0.2675	0.7859	0.0989	0.076*
HIOD	0.2088	0.7555	0.0777	0.076*
C103	0.2467 (3)	0.7403 (5)	0.1944 (4)	0.069 (2)
HIOE	0.2541	0.7962	0.2185	0.082*
H10F	0.2143	0.7194	0.2024	0.082*
C104	0.2894 (3)	0.6812(5)	0.2274 (4)	0.063(2)

H10G	0.3215	0.7123	0.2497	0.076*
H10H	0.2818	0.6471	0.2689	0.076*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Pd1	0.0184 (2)	0.0189 (2)	0.0177 (2)	-0.00139 (17)	0.00377 (16)	0.00374 (17)
Pd2	0.0165 (2)	0.0166 (2)	0.0186 (2)	-0.00199 (16)	0.00526 (16)	0.00040 (17)
C1	0.035 (4)	0.020 (3)	0.017 (3)	0.002 (3)	0.002 (3)	0.000(2)
01	0.030 (2)	0.044 (3)	0.035 (2)	0.0032 (19)	0.0176 (19)	0.0124 (19)
C2	0.032 (3)	0.014 (3)	0.029 (3)	-0.001 (2)	0.014 (3)	0.004 (2)
O2	0.028 (2)	0.038 (2)	0.026 (2)	-0.0103 (18)	-0.0057 (19)	0.0121 (18)
C3	0.021 (4)	0.026 (5)	0.024 (4)	0.000	0.008 (3)	0.000
O3	0.021 (3)	0.025 (3)	0.048 (4)	0.000	0.006 (2)	0.000
P3	0.0200 (7)	0.0193 (7)	0.0157 (7)	-0.0018 (6)	0.0038 (5)	0.0031 (6)
C4	0.023 (3)	0.012 (3)	0.019 (3)	0.002 (2)	0.005 (2)	0.002 (2)
C5	0.026 (3)	0.022 (3)	0.022 (3)	-0.004 (2)	0.006 (2)	0.004 (2)
C6	0.029 (3)	0.032 (3)	0.023 (3)	-0.002 (3)	0.010 (2)	0.006 (3)
C7	0.027 (3)	0.040 (4)	0.033 (3)	-0.006 (3)	0.010 (3)	0.001 (3)
C8	0.029 (4)	0.052 (4)	0.025 (3)	-0.012 (3)	0.003 (3)	-0.001 (3)
C9	0.029 (3)	0.040 (3)	0.016 (3)	-0.009 (3)	0.006 (2)	0.002 (3)
C10	0.021 (3)	0.025 (3)	0.017 (3)	-0.007 (2)	0.006 (2)	0.004 (2)
C11	0.031 (3)	0.022 (3)	0.023 (3)	-0.005 (2)	0.003 (2)	0.002 (2)
C12	0.037 (4)	0.033 (3)	0.027 (3)	-0.008 (3)	-0.001 (3)	0.007 (3)
C13	0.054 (4)	0.034 (4)	0.025 (3)	-0.023 (3)	0.014 (3)	-0.009 (3)
C14	0.045 (4)	0.033 (4)	0.036 (4)	-0.016 (3)	0.015 (3)	-0.014 (3)
C15	0.027 (3)	0.032 (3)	0.027 (3)	-0.003 (3)	0.010 (2)	-0.004 (3)
C16	0.025 (3)	0.020 (3)	0.013 (3)	0.001 (2)	0.002 (2)	0.003 (2)
C17	0.028 (3)	0.029 (3)	0.017 (3)	-0.003 (3)	0.003 (2)	0.000 (2)
C18	0.027 (3)	0.051 (4)	0.018 (3)	0.009 (3)	0.006 (2)	0.008 (3)
C19	0.055 (4)	0.029 (4)	0.014 (3)	0.014 (3)	0.009 (3)	0.005 (3)
C20	0.039 (4)	0.031 (3)	0.022 (3)	0.007 (3)	0.007 (3)	0.002 (3)
C21	0.028 (3)	0.031 (3)	0.018 (3)	0.002 (3)	0.006 (2)	0.001 (3)
P4	0.0187 (7)	0.0196 (7)	0.0192 (7)	-0.0035 (6)	0.0051 (6)	0.0010 (6)
C22	0.021 (3)	0.020 (3)	0.030 (3)	-0.007(2)	0.007 (2)	-0.005 (2)
C23	0.027 (3)	0.035 (4)	0.032 (3)	0.001 (3)	0.008 (3)	-0.003 (3)
C24	0.046 (4)	0.022 (3)	0.059 (4)	-0.004 (3)	0.011 (3)	-0.014 (3)
C25	0.028 (3)	0.036 (4)	0.049 (4)	0.002 (3)	0.011 (3)	-0.021 (3)
C26	0.069 (5)	0.040 (4)	0.042 (4)	-0.009 (3)	0.029 (3)	-0.009 (3)
C27	0.071 (5)	0.024 (3)	0.040 (4)	-0.009 (3)	0.032 (3)	-0.006 (3)
C28	0.021 (3)	0.019 (3)	0.019 (3)	-0.006 (2)	0.006 (2)	0.002 (2)
C29	0.026 (3)	0.042 (4)	0.026 (3)	-0.002 (3)	0.007 (2)	0.008 (3)
C30	0.026 (3)	0.049 (4)	0.037 (3)	-0.010 (3)	0.015 (3)	0.003 (3)
C31	0.039 (4)	0.036 (3)	0.022 (3)	-0.008 (3)	0.008 (3)	0.001 (3)
C32	0.034 (4)	0.052 (4)	0.039 (4)	0.016 (3)	0.012 (3)	0.020 (3)
C33	0.021 (3)	0.054 (4)	0.034 (3)	0.012 (3)	0.015 (3)	0.015 (3)
C34	0.015 (3)	0.029 (3)	0.028 (3)	-0.005 (2)	0.011 (2)	0.015 (3)
C35	0.031 (3)	0.048 (4)	0.026 (3)	0.013 (3)	0.003 (3)	0.009 (3)

C36	0.048 (4)	0.056 (4)	0.047 (4)	0.028 (4)	0.014 (4)	0.018 (4)
C37	0.032 (4)	0.085 (6)	0.053 (5)	0.017 (4)	0.009 (3)	0.040 (4)
C38	0.022 (4)	0.088 (6)	0.037 (4)	-0.015 (4)	-0.011 (3)	0.033 (4)
C39	0.028 (3)	0.044 (4)	0.035 (3)	-0.017 (3)	0.000 (3)	0.014 (3)
O100	0.061 (4)	0.110 (5)	0.081 (4)	0.038 (3)	0.031 (3)	0.018 (4)
C101	0.094 (7)	0.081 (6)	0.062 (5)	-0.012 (5)	0.019 (5)	0.002 (5)
C102	0.051 (5)	0.062 (5)	0.068 (5)	-0.002 (4)	0.004 (4)	0.006 (4)
C103	0.057 (5)	0.090 (6)	0.062 (5)	0.015 (4)	0.022 (4)	0.006 (5)
C104	0.049 (5)	0.082 (6)	0.056 (5)	0.005 (4)	0.011 (4)	0.018 (4)

Geometric parameters (Å, °)

Pd1—C2	2.021 (6)	С20—Н20	0.9500
Pd1—C1	2.022 (6)	C21—H21	0.9500
Pd1—P3	2.2998 (15)	P4—C22	1.821 (5)
Pd1—Pd2	2.7381 (8)	P4—C34	1.832 (5)
Pd1—Pd2 ⁱ	2.7446 (9)	P4—C28	1.837 (5)
Pd1—Pd1 ⁱ	3.1704 (14)	C22—C23	1.380 (8)
Pd2—C3	2.095 (6)	C22—C27	1.383 (7)
Pd2—C2	2.154 (5)	C23—C24	1.395 (8)
Pd2—C1 ⁱ	2.169 (6)	С23—Н23	0.9500
Pd2—P4	2.3208 (15)	C24—C25	1.365 (9)
Pd2—Pd1 ⁱ	2.7446 (9)	C24—H24	0.9500
$Pd2$ — $Pd2^{i}$	2.8006 (12)	C25—C26	1.358 (8)
C1—O1	1.159 (6)	С25—Н25	0.9500
C1—Pd2 ⁱ	2.169 (6)	C26—C27	1.377 (8)
C2—O2	1.164 (6)	C26—H26	0.9500
C3—O3	1.178 (9)	С27—Н27	0.9500
C3—Pd2 ⁱ	2.095 (6)	C28—C33	1.373 (7)
P3—C4	1.827 (5)	C28—C29	1.384 (7)
P3—C16	1.830 (5)	C29—C30	1.388 (8)
P3—C10	1.836 (5)	С29—Н29	0.9500
C4—C5	1.385 (7)	C30—C31	1.377 (8)
C4—C9	1.392 (7)	С30—Н30	0.9500
C5—C6	1.373 (7)	C31—C32	1.369 (8)
С5—Н5	0.9500	C31—H31	0.9500
C6—C7	1.387 (7)	C32—C33	1.394 (8)
С6—Н6	0.9500	С32—Н32	0.9500
С7—С8	1.368 (8)	С33—Н33	0.9500
С7—Н7	0.9500	C34—C35	1.391 (8)
C8—C9	1.372 (8)	C34—C39	1.391 (7)
С8—Н8	0.9500	C35—C36	1.375 (8)
С9—Н9	0.9500	С35—Н35	0.9500
C10—C11	1.374 (7)	C36—C37	1.377 (10)
C10—C15	1.401 (7)	С36—Н36	0.9500
C11—C12	1.390 (7)	C37—C38	1.361 (10)
C11—H11	0.9500	С37—Н37	0.9500
C12—C13	1.388 (8)	C38—C39	1.395 (9)

C12—H12	0.9500	С38—Н38	0.9500
C13—C14	1.379 (8)	С39—Н39	0.9500
С13—Н13	0.9500	O100—C101	1.410 (9)
C14—C15	1.382 (7)	O100-C104	1.425 (9)
C14—H14	0.9500	C101—C102	1.512 (11)
С15—Н15	0.9500	C101—H10A	0.9900
C16—C21	1.385(7)	C101—H10B	0.9900
C16-C17	1 394 (7)	C102 - C103	1 503 (10)
C17 - C18	1 389 (8)	C102—H10C	0.9900
C17 H17	0.9500	C102 H10D	0.9900
C18 C10	1 276 (9)	C_{102} $- C_{104}$	1 400 (10)
C_{10} U_{10}	1.570 (8)	C103 - C104	1.490 (10)
C18—H18	0.9500	CI03—HI0E	0.9900
C19—C20	1.379 (8)	C103—H10F	0.9900
С19—Н19	0.9500	C104—H10G	0.9900
C20—C21	1.384 (7)	С104—Н10Н	0.9900
C2—Pd1—C1	1504(2)	C17—C18—H18	119.4
$C_2 Pd_1 P_3$	98 89 (15)	C18 - C19 - C20	118 3 (5)
C1 $Pd1$ $P3$	102.22(16)	$C_{10} = C_{10} = C_{20}$	120.0
$C_2 \text{Pd}_1 \text{Pd}_2$	51 16 (15)	$C_{10} = C_{10} = H_{10}$	120.9
$C_2 - I d_1 - I d_2$	111.10(15)	$C_{20} = C_{19} = 1119$	120.9
$C_1 = 1 u_1 = 1 u_2$	111.40(13)	$C_{19} = C_{20} = C_{21}$	121.4(3)
$P_3 - P_0 I - P_0 Z$	140.24(4)	C19 - C20 - H20	119.3
C_2 —Pd1—Pd2 ⁴	111.07 (15)	C21—C20—H20	119.3
$C1$ — $Pd1$ — $Pd2^{1}$	51.44 (15)	C20—C21—C16	120.4 (5)
$P3$ — $Pd1$ — $Pd2^{1}$	149.92 (4)	C20—C21—H21	119.8
$Pd2$ — $Pd1$ — $Pd2^{i}$	61.43 (3)	C16—C21—H21	119.8
$C2$ — $Pd1$ — $Pd1^i$	92.97 (15)	C22—P4—C34	102.1 (2)
$C1$ — $Pd1$ — $Pd1^i$	92.60 (15)	C22—P4—C28	105.2 (2)
$P3$ — $Pd1$ — $Pd1^i$	123.13 (4)	C34—P4—C28	103.0 (2)
Pd2—Pd1—Pd1 ⁱ	54.768 (18)	C22—P4—Pd2	112.06 (17)
$Pd2^{i}$ — $Pd1$ — $Pd1^{i}$	54.58 (2)	C34—P4—Pd2	116.44 (17)
C3—Pd2—C2	126.58 (14)	C28—P4—Pd2	116.45 (16)
$C3$ — $Pd2$ — $C1^i$	126.77 (14)	C23—C22—C27	117.8 (5)
$C2$ — $Pd2$ — $C1^i$	102.29 (19)	C23—C22—P4	125.1 (4)
C3—Pd2—P4	99.66 (15)	C27—C22—P4	117.0 (4)
C2—Pd2—P4	94 64 (15)	C^{22} C^{23} C^{24}	120.0 (6)
$C1^{i}$ Pd2 P4	95 57 (15)	$C^{22} = C^{23} = H^{23}$	120.0
$C_3 Pd_2 Pd_1$	97.67 (12)	C_{24} C_{23} H_{23}	120.0
$C_2 Pd_2 Pd_1$	76.07 (12) 76.04 (15)	$C_{24} = C_{23} = H_{23}$	120.0 121.4(6)
$C_2 - 1 d_2 - 1 d_1$	102.24(15)	$C_{25} = C_{24} = C_{25}$	121.4(0)
	102.24(13)	C23—C24—H24	119.3
P4— $P02$ — $P01$	140.12(4)	C23—C24—H24	119.5
$C_3 - Pd_2 - Pd_1^{-1}$	97.47 (12)	C26—C25—C24	118.5 (6)
	102.83 (14)	C26—C25—H25	120.8
C1 [·] —Pd2—Pd1 [·]	46.81 (15)	С24—С25—Н25	120.8
P4—Pd2—Pd1 ¹	140.88 (4)	C25—C26—C27	121.2 (6)
$Pd1$ — $Pd2$ — $Pd1^i$	70.66 (3)	C25—C26—H26	119.4
$C3$ — $Pd2$ — $Pd2^i$	48.05 (15)	C27—C26—H26	119.4
C2—Pd2—Pd2 ⁱ	104.98 (15)	C26—C27—C22	121.2 (6)

$C1^{i}$ —Pd2—Pd2 ⁱ	104.73 (15)	С26—С27—Н27	119.4
P4— $Pd2$ — $Pd2$ ⁱ	147.71 (4)	С22—С27—Н27	119.4
Pd1—Pd2—Pd2 ⁱ	59.40 (2)	C33—C28—C29	118.8 (5)
$Pd1^{i}$ — $Pd2$ — $Pd2^{i}$	59.171 (19)	C33—C28—P4	118.3 (4)
O1—C1—Pd1	142.6 (4)	C29—C28—P4	122.8 (4)
$O1 - C1 - Pd2^i$	135.0 (4)	C28—C29—C30	120.4 (5)
$Pd1-C1-Pd2^{i}$	81 7 (2)	C28—C29—H29	119.8
$\Omega^2 - \Omega^2 - Pd1$	140.6(4)	C_{30} C_{29} H_{29}	119.8
$O_2 = C_2 = Pd_2$	1365(4)	C_{31} C_{30} C_{29} C_{29}	120.2(5)
Pd1 = C2 = Pd2	130.3(+)	$C_{31} = C_{30} = C_{23}$	120.2 (5)
$1 \text{ u}_1 - \text{c}_2 - 1 \text{ u}_2$	(1.7(2))	C_{20} C_{20} H_{20}	119.9
$O_2 = C_2 = P_1 Z_1$	138.03(13) 128.05(15)	$C_{29} = C_{30} = H_{30}$	119.9
	138.03(13)	$C_{32} = C_{31} = C_{30}$	119.0 (3)
Pd2 - C3 - Pd2'	83.9 (3)	C32—C31—H31	120.2
C4—P3—C16	104.9 (2)	С30—С31—Н31	120.2
C4—P3—C10	103.7 (2)	C31—C32—C33	120.1 (5)
C16—P3—C10	104.2 (2)	С31—С32—Н32	119.9
C4—P3—Pd1	113.63 (16)	С33—С32—Н32	119.9
C16—P3—Pd1	113.95 (16)	C28—C33—C32	120.7 (5)
C10—P3—Pd1	115.24 (17)	С28—С33—Н33	119.6
C5—C4—C9	118.0 (5)	С32—С33—Н33	119.6
C5—C4—P3	123.6 (4)	C35—C34—C39	117.4 (5)
C9—C4—P3	118.4 (4)	C35—C34—P4	120.2 (4)
C6—C5—C4	121.4 (5)	C39—C34—P4	122.4 (4)
С6—С5—Н5	119.3	C36—C35—C34	122.1 (6)
С4—С5—Н5	119.3	С36—С35—Н35	119.0
C5—C6—C7	119.4 (5)	С34—С35—Н35	119.0
C5—C6—H6	120.3	$C_{35} - C_{36} - C_{37}$	119 5 (7)
C7—C6—H6	120.3	$C_{35} = C_{36} = H_{36}$	120.3
$C_{8} - C_{7} - C_{6}$	120.0(5)	C_{37} C_{36} H_{36}	120.3
C8-C7-H7	120.0 (5)	C_{38} C_{37} C_{36}	120.3
C6 C7 H7	120.0	$C_{38} = C_{37} = C_{30}$	110.0
$C_0 = C_1 = H_1$	120.0	$C_{26} = C_{27} = H_{27}$	119.9
$C_{}C_{0}$	120.4 (3)	$C_{30} = C_{37} = H_{37}$	119.9
$C = C = H \delta$	119.8	$C_{37} = C_{38} = C_{39}$	120.6 (6)
C9—C8—H8	119.8	$C_{3}/-C_{3}$ H38	119.7
C8—C9—C4	120.8 (5)	С39—С38—Н38	119.7
С8—С9—Н9	119.6	C34—C39—C38	120.3 (6)
С4—С9—Н9	119.6	С34—С39—Н39	119.8
C11—C10—C15	120.1 (5)	С38—С39—Н39	119.8
C11—C10—P3	123.7 (4)	C101—O100—C104	109.6 (6)
C15—C10—P3	116.1 (4)	O100—C101—C102	106.6 (7)
C10-C11-C12	120.1 (5)	O100-C101-H10A	110.4
C10-C11-H11	120.0	C102—C101—H10A	110.4
C12—C11—H11	120.0	O100—C101—H10B	110.4
C13—C12—C11	119.7 (5)	C102—C101—H10B	110.4
C13—C12—H12	120.1	H10A—C101—H10B	108.6
C11—C12—H12	120.1	C103—C102—C101	101.7 (6)
C14—C13—C12	120.3 (5)	C103—C102—H10C	111.4
C14—C13—H13	119.8	C101—C102—H10C	111.4

С12—С13—Н13	119.8	C103—C102—H10D	111.4
C13—C14—C15	120.1 (6)	C101—C102—H10D	111.4
C13—C14—H14	119.9	H10C—C102—H10D	109.3
C15—C14—H14	119.9	C104—C103—C102	104.0 (6)
C14—C15—C10	119.6 (5)	C104—C103—H10E	111.0
C14-C15-H15	120.2	C102 - C103 - H10E	111.0
C10-C15-H15	120.2	C102 C103 H10E	111.0
C_{21} C_{16} C_{17}	118 4 (5)	C102 - C103 - H10F	111.0
$C_{21} = C_{16} = P_{3}$	1230(4)	$H_{10}E_{-}C_{10}3_{-}H_{10}E_{-}$	109.0
$C_{11} = C_{10} = 15$	125.0(4) 118 5 (4)	0100 - C104 - C103	107.0(6)
C17 - C10 - 13	110.3(4)	0100 - 0104 - 0103	107.0 (0)
$C_{10} = C_{17} = C_{10}$	120.2 (3)	$C_{100} = C_{104} = H_{100}$	110.5
С16—С17—Н17	119.9	C103—C104—H10G	110.5
C10 - C17 - H17	119.9	0100—C104—H10H	110.3
C19—C18—C17	121.2 (5)	С103—С104—Н10Н	110.3
C19—C18—H18	119.4	H10G—C104—H10H	108.6
C_{16} D_{2} C_{4} C_{5}	105 5 (4)	C24 D4 C22 C27	(2, 2, (5))
C10 P3 C4 C5	-105.5(4)	C_{34} P4 C_{22} C_{27}	05.2(5)
C10 - P3 - C4 - C5	3.0(3)	C_{28} P4 C_{22} C_{27}	1/0.4(4)
PdI - P3 - C4 - C3	129.5 (4)	Pd2—P4—C22—C27	-62.1 (5)
C16 - P3 - C4 - C9	77.1 (4)	$C_{27} = C_{22} = C_{23} = C_{24}$	0.0 (8)
C10—P3—C4—C9	-1/3.9 (4)	P4—C22—C23—C24	-179.8 (4)
Pd1—P3—C4—C9	-48.0 (4)	C22—C23—C24—C25	-1.2 (9)
C9—C4—C5—C6	1.9 (8)	C23—C24—C25—C26	1.3 (9)
P3—C4—C5—C6	-175.5 (4)	C24—C25—C26—C27	-0.3 (10)
C4—C5—C6—C7	-1.5 (8)	C25—C26—C27—C22	-0.9 (10)
C5—C6—C7—C8	-0.1 (9)	C23—C22—C27—C26	1.0 (9)
C6—C7—C8—C9	1.2 (9)	P4—C22—C27—C26	-179.2 (5)
C7—C8—C9—C4	-0.7 (9)	C22—P4—C28—C33	75.3 (5)
C5—C4—C9—C8	-0.8 (8)	C34—P4—C28—C33	-178.1 (4)
P3-C4-C9-C8	176.7 (4)	Pd2—P4—C28—C33	-49.4 (5)
C4—P3—C10—C11	-99.7 (5)	C22—P4—C28—C29	-106.7(5)
C16—P3—C10—C11	9.8 (5)	C34—P4—C28—C29	-0.1 (5)
Pd1—P3—C10—C11	135.4 (4)	Pd2—P4—C28—C29	128.6 (4)
C4—P3—C10—C15	77.9 (4)	C33—C28—C29—C30	-0.5 (8)
C16—P3—C10—C15	-172.5 (4)	P4-C28-C29-C30	-178.6(4)
Pd1—P3—C10—C15	-469(4)	$C_{28} = C_{29} = C_{30} = C_{31}$	-2.3(9)
$C_{15} - C_{10} - C_{11} - C_{12}$	0.0(8)	C_{29} C_{30} C_{31} C_{32}	2.7(9)
$P_3 = C_{10} = C_{11} = C_{12}$	177.5(4)	C_{30} C_{31} C_{32} C_{33}	-0.4(9)
C_{10} C_{11} C_{12} C_{13}	-23(8)	C_{29} C_{28} C_{33} C_{32}	28(9)
C_{11} C_{12} C_{13} C_{14}	2.5(8)	$P_{4} = C_{28}^{28} = C_{33}^{23} = C_{32}^{22}$	-1701(5)
C12 - C12 - C13 - C14	2.3(8)	14-0.20-0.33-0.32	-24(10)
C12 - C13 - C14 - C15	-0.3(8)	$C_{22} = C_{24} = C_{25}$	-2.4(10)
$C_{13} = C_{14} = C_{15} = C_{10}$	2.1(0)	C_{22} Γ_{4} C_{34} C_{35} C_{28} Γ_{4} C_{24} C_{25}	130.3(4)
C11 - C10 - C15 - C14	2.2(8)	120 - r4 - 134 - 135	94.0 (4) 24.1 (5)
$P_{2} = C_{10} = C_{12} = C_{14}$	-1/5.5(4)	r_{02} $- r_{4}$ $- c_{34}$ $- c_{35}$	-34.1(3)
C4 - P3 - C16 - C21	-4.5 (5)	C_{22} P_{4} C_{34} C_{39} C_{22} P_{4} C_{24} C_{22}	24.4 (5)
C10—P3—C16—C21	-113.0 (4)	C28—P4—C34—C39	-84.5 (5)
Pd1—P3—C16—C21	120.6 (4)	Pd2—P4—C34—C39	146.8 (4)
C4—P3—C16—C17	178.4 (4)	C39—C34—C35—C36	0.7 (8)

C10—P3—C16—C17	$\begin{array}{c} 69.7 \ (4) \\ -56.7 \ (4) \\ 0.9 \ (7) \\ 178.3 \ (4) \\ -0.9 \ (7) \\ 0.9 \ (7) \\ -0.8 \ (7) \\ 0.8 \ (7) \\ -0.8 \ (7) \\ -178.1 \ (4) \\ -117.1 \ (5) \\ -9.8 \ (5) \end{array}$	P4—C34—C35—C36	-178.5(5)
Pd1—P3—C16—C17		C34—C35—C36—C37	-1.0(9)
C21—C16—C17—C18		C35—C36—C37—C38	0.5(10)
P3—C16—C17—C18		C36—C37—C38—C39	0.3(10)
C16—C17—C18—C19		C35—C34—C39—C38	0.2(8)
C17—C18—C19—C20		P4—C34—C39—C38	179.3(4)
C18—C19—C20—C21		C37—C38—C39—C34	-0.6(9)
C19—C20—C21—C16		C104—O100—C101—C102	16.7(9)
C17—C16—C21—C20		O100—C101—C102—C103	-30.5(8)
P3—C16—C21—C20		C101—C102—C103—C104	32.2(8)
C34—P4—C22—C23		C101—O100—C104—C103	4.4(9)
C28—P4—C22—C23		C102—C103—C104—O100	-23.6(8)
C28—P4—C22—C23 Pd2—P4—C22—C23	-9.8 (5) 117.6 (4)	C102—C103—C104—O100	-23.6 (8)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
С19—Н19…О100 ^{іі}	0.95	2.43	3.282 (8)	149

Symmetry code: (ii) x-1/2, y+1/2, z.