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Abstract

Background

Protein electrophoresis (PEP) is an important tool in supporting the analytical characteriza-

tion of protein status in diseases related to monoclonal components, inflammation, and anti-

body deficiency. Here, we developed a deep learning-based PEP classification algorithm to

supplement the labor-intensive PEP interpretation and enhance inter-observer reliability.

Methods

A total of 2,578 gel images and densitogram PEP images from January 2018 to July 2019

were split into training (80%), validation (10%), and test (10.0%) sets. The PEP images

were assessed based on six major findings (acute-phase protein, monoclonal gammopathy,

polyclonal gammopathy, hypoproteinemia, nephrotic syndrome, and normal). The images

underwent processing, including color-to-grayscale and histogram equalization, and were

input into neural networks.

Results

Using densitogram PEP images, the area under the receiver operating characteristic curve

(AUROC) for each diagnosis ranged from 0.873 to 0.989, and the accuracy for classifying all

the findings ranged from 85.2% to 96.9%. For gel images, the AUROC ranged from 0.763 to

0.965, and the accuracy ranged from 82.0% to 94.5%.

Conclusions

The deep learning algorithm demonstrated good performance in classifying PEP images. It

is expected to be useful as an auxiliary tool for screening the results and helpful in environ-

ments where specialists are scarce.
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1. Introduction

Protein electrophoresis (PEP) indirectly identifies characteristic patterns and increases or

decreases the concentration of individual proteins by separating several individual proteins,

including albumin, present in high serum concentrations. In PEP, serum proteins are sepa-

rated by electrophoresis into five or six major fractions: albumin, alpha 1, alpha 2, beta 1, beta

2, and gamma globulin [1, 2]. PEP has been utilized in clinical practice, as the change in con-

centration and pattern of these proteins in patients is related to various diseases [3, 4]. It is the

most widely used method for detecting monoclonal bands in gamma globulin, which is an

indicator of uncontrolled growth and division of malignant plasma cells in the form of mono-

clonal immunoglobulins in patients with multiple myeloma. PEP has been established as an

essential test for the diagnosis and follow-up of multiple myeloma [5, 6]. In addition, present-

ing a specific pattern, it can be implemented for the diagnosis of diverse diseases, such as

nephrotic syndrome, liver cirrhosis, protein loss bowel disease, and hypogammaglobulinemia

[4, 7, 8]. However, as PEP is interpreted based on visual reading, not only relative quantitative

values but also specific shapes of curves, an expert’s proficiency in reading the gel or densito-

gram graph greatly influences the accuracy of the examination. Interpretation of PEP curves

requires experienced operators to understand the overall clinical conditions of patients

because they can be affected by various pathological conditions, as well as endogenous and

exogenous potential interfering factors [9–11]. In particular, follow-up examinations of

patients undergoing treatment or interpretation of patients with multiple underlying diseases

require considerable caution in PEP reading [12–14]. In most laboratories, the reading step by

the experts is a major factor in delaying the reporting of results, and the need for an auxiliary

tool for interpretation has been raised [14–16]. Further, morphologic evaluation has the limita-

tion of inter-pathologist reliability, which incurs difficulty in standardizing the interpretation

criteria [17].

Recently, artificial intelligence (AI) technology has been rapidly progressing and widely

adopted in various medical fields [18–21]. These technologies are not only used for simple

image segmentation and classification, but also make it possible to convert various non-image

data into well-organized image-form through a convolution neural network (CNN) [20, 21].

PEP also has the potential for various clinical applications of AI algorithms using existing accu-

mulated data, and a few deep learning (DL)-related PEP analyses have been conducted in

recent years. To date, several algorithms have been developed for detecting both normal and

pathogenic patterns of PEP capillary images. However, the specificity of the developed algo-

rithms is not high, and only limited data were employed in their development [15, 16]; this

increases the need for additional research with various DL algorithms. Thus, the possibility of

DL-based classification in patients with kidney, liver, and neurological diseases should be eval-

uated by developing a DL algorithm with a large-scale PEP image database.

In this study, we developed and evaluated a DL-based PEP classification algorithm for pat-

terns with monoclonal gammopathy, acute-phase proteins, hypoproteinemia, nephrotic syn-

drome, polyclonal gammopathy, and normal. Herein, we report on its development and

evaluation, present applications of this algorithm in actual clinical practice, and suggest future

tasks for the development of DL algorithms related to PEP interpretation.

2. Materials and methods

2.1. Dataset

An overview of the dataset preparation and proposed framework is presented in Fig 1. The

PEP images were obtained at Kangnam Sacred Heart Hospital, from the assay results of a
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SPIFE 3000 electrophoresis system (Helena Laboratories, Beaumont, TX, USA). Both the

scanned PEP gel images and converted densitogram images, which were collected from Janu-

ary 2018 to July 2019, were used for the analysis. PEP gel and densitogram images were col-

lected and paired from 1076 patients, and median 2.0 (95% CI = 2.0–3.0) gel or densitogram

images of different dates were collected from 88 patients. For each patient, demographic data,

including age, sex, total protein, and albumin at the date of the collection, were investigated.

This study was approved by the institutional review board at Kangnam Sacred Heart Hospital

(institutional review board identifier: HKS 2020-03-022) and was conducted per the tenets of

the Declaration of Helsinki. The need for informed consent for this study was waived, as the

anonymity of personal information was maintained throughout the study.

Among the results of PEP, patients who had reported six major findings (i.e., acute-phase

protein, monoclonal gammopathy, polyclonal gammopathy, hypoproteinemia, nephrotic syn-

drome, and normal) were included in the study. The PEP gel and densitogram sample images

of each of the six major findings were provided in supporting information (S1 Fig). All images

were retrospectively reviewed independently by following the published standard guidelines

[4, 22] by two pathologists with 5 and 22 years of laboratory medicine experience. Every image

was reviewed by both pathologists, and any disagreement between them was resolved by con-

sensus. The reference standard for the diagnosis of monoclonal gammopathy was based on

immunofixation electrophoresis (IFE) results, among images with characteristic sharp patterns

in the beta or gamma region. Polyclonal gammopathy was designated as an image showing

swell-like gamma elevation due to an increase in the gamma region. Images with increased

alpha fraction, a normal to a mild increase in total protein, and a normal to a mild decrease in

albumin on the chemistry analyzer were labeled as acute-phase protein. In contrast, images

showing a marked increase in the alpha-2 region but decreased total protein and albumin frac-

tions were labeled as nephrotic syndrome. For hypoproteinemia, the amount of measured

total protein was lower than the reference range, and images with reduced albumin fraction

were included. In the case of normal, each region was designated as being within the reference

range. The increase or decrease of each protein region was determined according to the refer-

ence range established in the laboratory.

After completion of the annotation, all dataset images were randomly split into training

(80%), validation (10%), and test (10.0%) sets. The PEP images underwent color-to-grayscale

Fig 1. Dataset preparation and proposed framework.

https://doi.org/10.1371/journal.pone.0273284.g001
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conversion, resizing to 256 ⅹ 256 pixels, and image histogram equalization. After the images

were processed, they were input into neural networks.

2.2. Development and evaluation of algorithms and statistical analyses

The performance of the DL algorithms was evaluated using in-house test datasets. The area

under the receiver operating characteristic curve (AUC) was computed for each diagnosis. The

sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV)

that yielded the highest performance were estimated. The numbers on the curve represent the

degree of accuracy as follows: no discrimination (AUC < 0.5), acceptable (0.5� AUC < 0.7),

excellent (0.7� AUC< 0.9), and outstanding (0.9� AUC) [23]. We used the metrics modules

in DEEP:PHI (medical AI software; DEEPNOID, Seoul, Republic of Korea), which is an open

platform that assists DL model research. Further, statistical analyses were performed using the

DEEP:PHI platform. We used the DenseNET-121 architecture, a well-known object detection

DL framework, to perform a per-image diagnosis of the PEP results [24]. In addition, we uti-

lized other DL algorithms, such as VGG19 [25], InceptionV3 [26], and Xception [27], to com-

pare the performance among various algorithms. Adaptive Moment Estimation (Adam)

optimizer was utilized for hyperparameter settings with a learning rate of 0.0001, selected by

trial-and-error approach. The gradient decay factor was set to 1.0. The batch size value was 16,

and the number of epochs equals 30. The Gradient-weighted Class Activation Mapping (Grad-

CAM) technique was used for the interpretation and evaluation of DL outputs [28].

3. Results

3.1. Demographic and clinical characteristics

We collected annotations for 2578 images during the study period. Table 1 lists the number of

images for each of the six findings in our in-house dataset. We utilized 1033 densitogram EP

images (80.0%) for training, 128 images (10.0%) for validation, and 128 images (10.0%) for

testing. The same numbers of gel EP images (1033 for training, 128 for validation, and 128 for

testing) were collected for evaluation of the gel EP dataset. The train, validation, and test sets

were split independently at the gel or densitogram images level. The six-tiered diagnosis

Table 1. Demographic statistics and diagnostic classification of protein electrophoresis datasets.

Densitogram PEP (N = 1289) Gel PEP (N = 1289)

Training and Validation Test Training and Validation Test

Age (year) 67.0 (55.0–77.0) 66.0 (51.0–75.5) 67.0 (55.0–76.3) 64.0 (52.0–78.0)

Sex (Male:Female) 604 : 557 68 : 60 610 : 551 62 : 66

Total protein (mg/dL) 6.4 (5.6–7.2) 6.4 (5.6–7.2) 6.2 (5.5–7.0) 6.4 (5.6 0 7.3)

Albumin (mg/dL) 3.4 (2.7–3.9) 3.3 (2.7–3.8) 3.3 (2.7–3.8) 3.2 (2.7–3.8)

Total no. of EP images 1161 128 1161 128

Diagnosis

Acute-phase protein 69 (5.9%) 5 (3.9%) 65 (5.6%) 9 (7.0%)

Hypoproteinemia 223 (19.2%) 26 (20.3%) 224 (19.3%) 25 (19.5%)

Monoclonal gammopathy 235 (20.2%) 29 (22.7%) 240 (20.7%) 24 (18.8%)

Nephrotic syndrome 149 (12.8%) 16 (12.5%) 144 (12.4%) 21 (16.4%)

Polyclonal gammopathy 222 (19.1%) 22 (17.2%) 224 (19.3%) 20 (15.6%)

Normal 263 (22.7%) 30 (23.4%) 264 (22.7%) 29 (22.7%)

Values are presented as median (interquartile range).

https://doi.org/10.1371/journal.pone.0273284.t001
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included acute-phase protein (N = 148), hypoproteinemia (N = 498), monoclonal gammopa-

thy (N = 528), nephrotic syndrome (N = 330), polyclonal gammopathy (N = 288), and normal

patterns (N = 586). There were no statistically significant differences in median age, gender,

total protein, and albumin among training, validation, and test sets in both the densitogram

and gel image data sets.

3.2. Diagnostic performance of the deep learning model for the six-tiered

diagnosis

The DenseNET-121 architecture showed better AUC for most of the PEP densitogram pat-

terns (acute phase protein, hypoproteinemia, monoclonal gammopathy, nephrotic syndrome),

when compared with the other algorithms; specifically, InceptionV3, and Xception (Table 2).

However, in the case of gel PEP images, three algorithms exhibited similar performance with

each other, and no architecture consistently outperformed the others, among them.

The AUC, sensitivity, specificity, accuracy, PPV, and NPV for the six findings with Dense-

NET-121 were presented in Table 3. In the case of densitogram EP images, the AUC for mono-

clonal gammopathy was 0.979, with a sensitivity of 86.2% and specificity of 100%. The

sensitivities for polyclonal gammopathy, hypoproteinemia, acute-phase protein, nephrotic

syndrome, and normal were 81.8%, 84.6%, 60.0%, 68.7%, and 66.7%, respectively. Specificity

was much higher, at 99.1% for nephrotic syndrome, 98.1% for polyclonal gammopathy, 95.1%

for acute-phase protein, 94.9% for normal pattern, and 85.3% for hypoproteinemia. Fig 2 pres-

ents the receiver operating characteristic (ROC) curve for each diagnosis. The figure also

shows dependable results for polyclonal gammopathy (0.989), followed by nephrotic syn-

drome (0.967), monoclonal gammopathy (0.979), normal pattern (0.927), hypoproteinemia

(0.891), and acute-phase protein (0.873) (Table 3 and Fig 2A). When gel EP images were

applied, each evaluation parameter showed a decreased performance. The sensitivity for diag-

nosis ranged from 22.2% to 80.0%, and the specificity ranged from 87.9% to 98.1%. The AUC

for the gel EP images also slightly decreased, with the highest value for polyclonal gammopathy

(0.965) and the lowest for acute-phase protein (0.763) (Table 2 and Fig 2B).

3.3. True and false-positive prediction by the algorithm

Table 4 lists the true and false-positive results according to the algorithm. In the case of mono-

clonal gammopathy for densitogram images, 25 out of 29 tested images showed correct results

(Table 4A). Fig 3A and 3B show examples of true positive results for monoclonal gammopathy.

It was possible to achieve the correct results for small peaks as well as definite peaks. False-pos-

itive results were given for two hypoproteinemias, one polyclonal gammopathy (Fig 3C), and

one normal (Fig 3D) image. In the case of polyclonal gammopathy, four images showed false-

Table 2. Comparisons of the area under the receiver operating characteristic curve (AUC) of Inception V3, Xception, and DenseNET-121 to identify patterns of

protein electrophoresis images.

Densitogram EP image Gel EP image

Inception V3 Xception DenseNET-121 Inception V3 Xception DenseNET-121

Acute phase protein 0.647 0.826 0.873 0.767 0.665 0.763

Hypoproteinemia 0.833 0.856 0.891 0.888 0.879 0.863

Monoclonal gammopathy 0.970 0.952 0.979 0.920 0.920 0.897

Nephrotic syndrome 0.936 0.963 0.967 0.894 0.910 0.919

Polyclonal gammopathy 0.993 0.991 0.989 0.942 0.977 0.965

Normal 0.942 0.933 0.927 0.933 0.934 0.929

https://doi.org/10.1371/journal.pone.0273284.t002
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positive results, and two each were predicted as hypoproteinemia and normal images. Regard-

ing acute-phase proteins, there were two false-positive results, which were predicted differently

for nephrotic syndrome and hypoproteinemia. Meanwhile, the nephrotic syndrome was diffi-

cult to predict when distinguishing it from acute-phase proteins or hypoproteinemia. Table 4B

provides the results of the gel images. There were more incorrect predictions than for the den-

sitogram images; in particular, the numbers of incorrect predictions for normal (5 vs. 12) and

polyclonal gammopathy (2 vs. 9) were higher than for the densitogram images. The examples

of true- and false-positive gel PEP images were presented in supporting information (S2 Fig).

4. Discussion

In this paper, we reported the development and validation of a DL-based PEP classification

algorithm for the identification of various patterns. We developed an algorithm to detect

monoclonal gammopathy and demonstrated its performance with 86.2% sensitivity and 100%

specificity. This algorithm showed favorable performance when applied to the diagnosis of

Table 3. Summary of performance, including AUROC, for each finding in the database.

(A) Densitogram EP image

Metric

Sensitivity Specificity AUROC Accuracy PPV NPV

Acute phase protein 0.600 0.951 0.873 0.937 0.333 0.983

Hypoproteinemia 0.846 0.853 0.891 0.852 0.595 0.956

Monoclonal gammopathy 0.862 1.000 0.979 0.969 1.000 0.961

Nephrotic syndrome 0.687 0.991 0.967 0.953 0.917 0.957

Polyclonal gammopathy 0.818 0.981 0.989 0.953 0.900 0.963

Normal 0.667 0.949 0.927 0.883 0.800 0.903

(B) Gel EP image

Metric

Sensitivity Specificity AUROC Accuracy PPV NPV

Acute phase protein 0.222 0.882 0.763 0.836 0.125 0.938

Hypoproteinemia 0.520 0.893 0.863 0.820 0.542 0.885

Monoclonal gammopathy 0.792 0.981 0.897 0.945 0.905 0.953

Nephrotic syndrome 0.238 0.972 0.919 0.852 0.625 0.867

Polyclonal gammopathy 0.800 0.917 0.965 0.898 0.640 0.961

Normal 0.759 0.879 0.929 0.852 0.647 0.926

https://doi.org/10.1371/journal.pone.0273284.t003

Fig 2. ROC curves for classification of diagnosis from PEP images. (A) densitogram EP images and (B) gel EP images.

https://doi.org/10.1371/journal.pone.0273284.g002
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nephrotic syndrome, polyclonal gammopathy, and normal patterns, among others, with AUC

values of over 0.9.

To the best of our knowledge, DL-based studies for the classification of various PEP pat-

terns have not been sufficiently performed [1, 15, 16, 29, 30]. Only a few studies have been con-

ducted, but there have been limitations for actual clinical application. Ognibene et al. were the

first to apply an artificial neural network-based algorithm to PEP, but it only discriminated the

PEP images by “normal vs. pathological” patterns, and their definition of pathological image is

unclear [16]. Altinier et al. also focused only on the anomaly of each fraction rather than on

the comprehensive interpretation and diagnosis of PEP [1]. More recently, a PEP analysis DL

algorithm using large-scale images was developed by Floris et al. [30]. Our study differs from

theirs in that our classification was implemented through image training using both expert

reading and test results (IFE, protein level) without separation of fractions, and a more detailed

clinical diagnosis was applied. Further, in the detection of M-spike, the accuracy of our algo-

rithm was slightly higher than that of Floris et al. (91.2% vs. 96.9%).

In the present study, large amounts of various PEP image patterns with annotation by spe-

cialists were applied, and a DL-based classification algorithm that directly and specifically

interprets PEP images was developed. In addition, improved performance was also demon-

strated based on the various DL algorithm techniques, which were more advanced than in

most previous studies. We found the most optimal algorithm by comparing the performance

of various recently developed algorithms. Only a few studies have compared the performance

of various DL algorithms for application to actual clinical practice, and comparative evaluation

in laboratory medicine remains insufficient [31]. Currently, various DL algorithms have been

rapidly progressed and developed, each with different characteristics. VGG19 is a VGGNET

neural network model with 19 convolution layers. It is characterized by using a relatively small

3x3 or 1x1 kernel to deepen the network [25]. InceptionV3 is an evolution of the previous

GoogleLeNet. It uses filters of several sizes concurrently and also uses a smaller size filter to

Table 4. Confusion Matrix for disease diagnosis from the PEP dataset.

(A) Densitogram EP image

Label Prediction

APR Hypoproteinemia Monoclonal gammopathy Nephrotic syndrome Polyclonal gammopathy Normal Total

APR 3 1 0 1 0 0 5

Hypoproteinemia 2 22 0 0 0 2 26

Monoclonal gammopathy 0 2 25 0 1 1 29

Nephrotic syndrome 2 3 0 11 0 0 16

Polyclonal gammophathy 0 2 0 0 18 2 22

Normal 2 7 0 0 1 20 30

Total 9 37 25 12 20 25 128

(B) Gel EP

Label Prediction

APR Hypoproteinemia Monoclonal gammopathy Nephrotic syndrome Polyclonal gammopathy Normal Total

APR 2 3 0 1 1 2 9

Hypoproteinemia 2 13 0 1 4 5 25

Monoclonal gammopathy 1 1 19 1 1 1 24

Nephrotic syndrome 9 4 1 5 1 1 21

Polyclonal gammophathy 0 0 1 0 16 3 20

Normal 2 3 0 0 2 22 29

Total 16 24 21 8 25 34 128

https://doi.org/10.1371/journal.pone.0273284.t004
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Fig 3. Representative true and false-positive case images results from Gradient-weighted Class Activation Mapping (Grad-CAM), obtained using DenseNET-121

classification model. (A) and (B) show true positive cases with a definite monoclonal peak and small monoclonal peak, respectively. Patients A and B showed 4.3g/dL and

1.1g/dL M-peaks (IgG, kappa type pattern with immunofixation assay). Monoclonal gammopathy cases were incorrectly predicted as polyclonal gammopathy (C) and

normal (D). Patient C showed a 0.7 g/dL M-peak (IgG, lambda), and patient D showed a 0.6g/dL M-peak (bi-clonal band with IgG, kappa).

https://doi.org/10.1371/journal.pone.0273284.g003
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reduce the number of dimensions; it has the advantage of increasing the computation effi-

ciency [26]. Xception has the characteristic that it can learn at the same time by separating

channel information and spatial information by applying a depth-wise separable convolution

method [27]. DenseNET-121 is a neural network structure in which the dense connectivity

method is applied to CNN DL training, and it has the advantage of alleviating the gradient van-

ishing problem. In addition, because the number of parameters is reduced compared to the

depth of the network, efficient computation is possible and improved performance can be

achieved even with a small dataset [24]. The DenseNET-121 architecture used in this study has

shown favorable performance in many image analysis studies [32, 33], and it demonstrated the

best accuracy among various DL algorithms. Furthermore, various novel approaches that

allow high-throughput biological data have continuously appeared [20, 21]. These approaches

enable the conversion of nonimage data into a form that is compatible with CNN

architectures.

In this study, the Grad-CAM heatmap-generating technique was applied for CNN interpre-

tation [28]. Utilizing this technique, the region of interest on a PEP image was highlighted, so

that the significant region of the image for prediction could be focused on, aiding the interpre-

tation of the image. When investigating the diagnostic failures of this study with Grad-CAM, it

was possible to infer several reasons for false positives or false negatives. In the case of mono-

clonal gammopathy, when polyclonal gammopathy was accompanied, or when the monoclo-

nal peak was atypical and very tiny, the prediction was limited even though the gamma region

was included in the significant region by Grad-CAM. In the case of polyclonal gammopathy,

when the area of the gamma region was small, and the alpha region was relatively large, the sig-

nificant region was regarded as the alpha to beta region, and it was incorrectly analyzed as nor-

mal or hypoproteinemia. In the case of the distinction between hypoproteinemia and normal

or nephrotic syndrome and acute-phase protein, quantitative values through a chemical ana-

lyzer were considered in the reading; thus, it was difficult to distinguish them if they did not

present a typical peak.

In addition, in this study, the performances of algorithms derived from densitogram images

and gel images for PEP were compared. The gel EP images were found to have lower overall

performance than densitogram images. Densitogram images are more intuitive than gel

images and are easy to read with visual assessment, and the evaluation assessed by the DL algo-

rithm also showed similar results. Densitogram PEP images (or capillary images) will be pre-

ferred over gel EP images in future DL applicable studies using PEP images. This study is

expected to be used as a reference to determine the appropriate algorithm or type of image for

various DL studies based on PEP images in the future.

PEP is an essential tool for the diagnosis of monoclonal gammopathy [5, 6]. As the inci-

dence of multiple myeloma disease gradually increases, the number of assays has expanded sig-

nificantly [34]. The interpretation and reporting of PEP results are currently performed by

specialists in laboratory medicine, but a considerable amount of time is required for proper

reading by specialists. In addition, the detection of monoclonal gammopathy by PEP is subjec-

tive and false-positive cases of monoclonal gammopathy by the EP method have occasionally

occurred [14]. Furthermore, there are no standardized clinical practice guidelines for the inter-

pretation of PEP [35]. In this study, all monoclonal gammopathy specimens confirmed by the

IFE study were trained, and both the typical peak and atypical peak, including a small peak or

peak outside the gamma region, could be detected with high accuracy. In the case of monoclo-

nal proteins, not only detection of monoclonal components but also standardization of the M

protein measurement process and establishment of clinical practice guidelines are important

issues [35]. DL-based classification algorithms are helpful for the standardization of M compo-

nent detection and quantification as they provide a more objective interpretation. The
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proposed algorithm is expected to be useful not only as an auxiliary tool to aid institutions that

lack specialized manpower but also to decrease the variability of morphologic assessment that

constantly helps discrimination even for difficult-to-distinguish peaks.

Although PEP has been suggested to apply to various diseases in several previous reports, it

has not been actively used in clinical practice because of limitations such as difficulty in test

execution and the time required for interpretation of the test [4, 17]. In this study, hypoprotei-

nemia and acute-phase protein patterns showed AUC values higher than 0.8, and nephrotic

syndrome, polyclonal gammopathy, and normal patterns showed AUC values exceeding 0.9.

Although the PEP image pattern included in this study exhibited a relatively low sensitivity, it

has high specificity and NPV, suggesting the possibility of being useful as an auxiliary tool in

the exclusion of diseases in the screening step.

This study had a limitation that only internal data were used, and there was a restriction on

the expansion of the evaluation results. Because the densitogram image appears as a regular

pattern regardless of equipment or location, it is considered that the difference between insti-

tutions is not large, and it has been reported that the performance difference between internal

data and external data was not significant in similar studies conducted previously [30]. How-

ever, to maximize reliability with limited images, efforts such as reducing the label errors

through review, reconfirming duplication and/or omitted values, and reducing image noise

were made. Through further studies, image augmentation and generalization through external

data are necessary. In addition, various other state-of-art algorithms, including approaches

that implement a CNN to nonimage, could be utilized for PEP interpretation. Since PEP is

mostly read with reference to various test results (albumin, hemolysis, immunoglobulin, creat-

inine, inflammatory markers) reported as text, the development of a reading algorithm model

that integrates clinical data is essential for actual clinical application. In follow-up studies, we

intend to supplement the algorithm by including more images with external data and integrat-

ing related laboratory data with images.

5. Conclusions

In this paper, we reported the development of a DL-based interpretation algorithm using PEP

images. We obtained acceptable to excellent performance evaluation results, with an AUC of

0.873–0.989 and an accuracy of 0.852–0.969 for various patterns. DL-based reading may

enable a reduction in intra- and inter-laboratory variability, contributing to standardization

and high-throughput laboratory workflows. The algorithm is expected to be useful as an auxil-

iary tool for reading in environments where specialists are scarce. Moreover, the proposed

algorithm is expected to be utilized in further application of AI studies using PEP.
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