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Abstract

Three closely related parthenogenetic species of root-knot nematodes, collectively termed the Meloidogyne incognita-
group, are economically significant pathogens of diverse crop species. Remarkably, these asexual root-knot nematodes are
capable of acquiring heritable changes in virulence even though they lack sexual reproduction and meiotic recombination.
Characterization of a near isogenic pair of M. javanica strains differing in response to tomato with the nematode resistance
gene Mi-1 showed that the virulent strain carried a deletion spanning a gene called Cg-1. Herein, we present evidence that
the Cg-1 gene lies within a member of a novel transposable element family (Tm1; Transposon in Meloidogyne-1). This
element family is defined by composite terminal inverted repeats of variable lengths similar to those of Foldback (FB)
transposable elements and by 9 bp target site duplications. In M. incognita, Tm1 elements can be classified into three
general groups: 1) histone-hairpin motif elements; 2) MITE-like elements; 3) elements encoding a putative transposase. The
predicted transposase shows highest similarity to gene products encoded by aphids and mosquitoes and resembles those
of the Phantom subclass of the Mutator transposon superfamily. Interestingly, the meiotic, sexually-reproducing root-knot
nematode species M. hapla has Tm1 elements with similar inverted repeat termini, but lacks elements with histone hairpin
motifs and contains no elements encoding an intact transposase. These Tm1 elements may have impacts on root-knot
nematode genomes and contribute to genetic diversity of the asexual species.
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Introduction

Root-knot nematodes (RKNs), comprising the genus Meloidogyne,

are obligate parasites causing damage to plant roots [1] and

weakening plants by acting as carbon sinks [2,3]. Worldwide,

RKNs represent a serious economic problem, causing a 5–12%

reduction in crop productivity [4]. Species within the genus

Meloidogyne differ widely in their modes of reproduction. The three

species generally regarded as causing the most damage globally are

part of what has been called the M. incognita (Mi)-group: M.

incognita, M. javanica, and M. arenaria. All three are parthenogenetic

species in which the eggs are products of mitosis and develop

without fertilization [5,6,7]. These asexual species are closely

related and are thought to have originated from interspecific

hybridization followed by the loss of meiosis [8,9,10]. Despite their

lack of meiosis, this group of RKNs is evolutionarily successful,

capable of parasitizing thousands of plant species and acquiring

heritable virulent phenotypes [7]. The mechanisms by which these

asexual RKN species acquire the ability to parasitize additional

host taxa are unknown, but genomic change mediated by

transposable elements and repetitive sequences has been proposed

[11,12].

Transposable elements are potent mutagens and can shape

genomes in many ways, ranging from large-scale chromosomal

rearrangements to subtle alterations in gene regulation [13,14].

Two general mechanistic classes of transposable elements exist

[15]: Class I—retrotransposons, which replicate and insert in new

genomic locations through an RNA intermediate; and Class II—

DNA transposons, which transpose through cut-and-paste mech-

anisms without an RNA intermediate. Typical autonomous Class

II elements encode a transposase gene flanked by terminal

inverted repeats (TIRs). The transposase protein recognizes the

TIRs and facilitates mobilization of the element to a new genomic

location. Non-autonomous elements do not encode a functional

transposase, but can be mobilized in trans by transposase proteins

produced by an autonomous element. Most transposable elements

are also flanked by target site duplications (TSDs) produced as a

byproduct of the transposon integration process [16].

A widely studied example of the genetic variability within the

apomictic RKNs is the ability to acquire virulence by escaping

recognition by tomato plants with the root-knot nematode

resistance gene, Mi-1. Mi-1 confers resistance that is broadly

effective against the related Mi-group asexual root-knot nematode

species [17,18] and, surprisingly, some isolates of potato aphid and

whitefly [19,20]. However, Mi-1 does not confer resistance to the

RKN species M. hapla, a facultative parthenogen in which gametes

are products of meiosis, but in the absence of males, sister nuclei

re-fuse to produce parthenogenetic diploid progeny [21,22].

Populations of Mi-1-resistance breaking asexual nematodes have

been found both in the field and after greenhouse selection

[23,24,25,26,27,28]. Gleason et al. [24] sought to identify genetic

differences between an avirulent isolate of M. javanica (VW4) and a
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greenhouse-derived virulent derivative, VW5. Results of both

gDNA and cDNA AFLP analyses were consistent with these two

nematode strains being isogenic with the exception of the deletion

spanning a putative gene named Cg-1 in VW5. The known 727 bp

of the Cg-1 locus was found to express 456 nt-long mature

transcript without obvious coding potential, capable of producing

peptides of only 3–32 amino acids, and containing a histone-

hairpin motif near its 39 end. Except for its discovery in Cg-1, this

motif has been identified only in the 39 UTR of metazoan, but not

plant, histone genes where it is required for processing of histone

Figure 1. Inverted-repeat element carrying Cg-1 and related elements. (A) Alignment between elements (open boxes) at the M. javanica
VW4 Cg-1 locus (GenBank EU214531.2), M. incognita contig 1763 (CABB01001763.1), and M. javanica VW4 BAC 18M17 (HQ122410.1). Similar regions
between elements are designated with light grey shading. Position of Cg-1 transcript [24] is shown with thick black lines representing exons and thin
lines, introns. Dark grey arrows within open boxes represent the TIRs with vertical bars indicating internal repeats. Target site duplications are
indicated black arrows; hh designates the position of the histone hairpin. Binding sites for primers SG2, SG6, 17-F and 17-R are indicated by
arrowheads. The grey bar (a5–a6 probe) shows the position of the PCR amplicon used for Southern analysis. (B) Alignment of TIRs of the elements
shown in (A). Strand designations+and2represent the 59 and 39 ends for the elements as drawn above. Motifs and binding site of primer SG6 are
indicated. Thin black arrows below the alignment denote repeat units of Motif C. (C) Agarose gel showing amplification products from genomic DNA
of M. incognita and M. javanica isolates using primers 17-F and 17-R for amplification of empty sites and primer set SG2 and 17-R to detect an
insertion similar to that on BAC 18M17.
doi:10.1371/journal.pone.0024534.g001
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mRNAs and export of these transcripts from the nucleus [29,30].

Southern analyses and PCR demonstrated that Cg-1 is a member

of a gene family with 8 copies in the M. javanica genome, and

transcript analysis indicated that several of these sequences are

expressed. Soaking preinfective juveniles of VW4 in dsRNA

corresponding to parts of the Cg-1 sequence resulted in a virulent

phenotype capable of parasitizing Mi-1 tomato, supporting a role

for Cg-1 in Mi-1-mediated recognition by the resistant host.

However, because of the apparent lack of coding potential, the

molecular function of Cg-1 and its role in mediating response to

tomato with Mi-1 has remained elusive.

Recently, the genome sequences of two root-knot nematodes

species, M. incognita and M. hapla, became available and provide a

resource for further investigation of the Cg-1 locus [10,31]. Herein

we present a detailed analysis of the Cg-1 locus, and demonstrate

that the previously described Cg-1 gene is within a novel class II

transposable element with structurally complex terminal-inverted

repeats similar to those of Foldback (FB) transposable elements. We

have named this element Tm1 (for Transposon in Meloidogyne-1).

We analyze and contrast the Tm1 transposon families of M.

incognita and M. hapla. While Tm1 elements display evidence of

transposition activity during the radiation of RKN species, our

analyses suggest Tm1 elements are currently inactive and a

decaying transposon family in M. incognita, M. javanica, and M.

hapla. We propose that despite the lack of obvious recent

transposition activity, Tm1 elements may be part of the molecular

toolkit asexual root-knot nematodes use to acquire genetic

diversity.

Results

The Cg-1 locus contains a transposon-like structure
We used the available 727 bp of the Meloidogyne javanica VW4

Cg-1 locus (GenBank EU214531.1) [24] to query the published

genome sequence of M. incognita, a RKN species closely related to

M. javanica. The highest-scoring BLASTN match (E = 6.70e248)

was on M. incognita contig 1763 (GenBank CABB01001763.1). We

noted that sequences 59 of the M. javanica Cg-1 transcript are

present on contig 1763 in an inverted-repeat orientation flanked

by 9 bp direct repeats, suggestive of a transposable element

(Figure 1A). The sequences between these inverted repeats are

similar to Cg-1 with the exception of the presence of a second,

unrelated 936 bp inverted-repeat element flanked by 7 bp target

site duplications being inserted within the region of homology

(Figure 1A). In other words, the sequence on M. incognita contig

1763 appears to contain two nested transposable elements: a

936 bp element residing within another novel transposable

element sharing sequence identity to M. javanica Cg-1 (Figure 1A).

We designed two PCR primers to test whether M. javanica Cg-1 was

also flanked by inverted repeats. The 39 end of primer SG1 binds a

5 bp sequence (CAATGA) present in Cg-1 but absent in other

members of the gene family [24]. A second primer, SG6, binds

within the presumptive inverted repeat. Using SG1 and SG6, we

amplified a 629 bp fragment from genomic DNA of M. javanica

strain VW4, but not VW5 (data not shown), confirming specific

amplification of the Cg-1 locus and supporting the presence of

inverted repeats flanking sequences coding for the Cg-1 transcript.

To investigate the M. javanica Cg-1 locus further, we screened a

genomic DNA library containing ,3 kb VW4 HindIII fragments,

a size previously demonstrated to harbor Cg-1 [24], using primers

SG1 and SG6. We obtained a 3154 bp clone containing Cg-1

(GenBank EU214531.2; Figure 1A), and sequence analysis

confirmed that the Cg-1 sequence is flanked by inverted repeats.

Sequences outside the inverted repeat element of M. javanica Cg-1

diverge completely from those outside the element on M. incognita

contig 1763, further suggesting that these inverted-repeat

sequences correspond to the boundaries of transposable elements.

However, the inverted repeats flanking M. javanica Cg-1 do not

have target site duplications and the 59 TIR appears to be

truncated (Figure 1A). The element at Cg-1 is 82.7% identical to

that on M. incognita contig 1763 excluding the nested 936-bp

insertion.

In an attempt to identify additional sequence flanking Cg-1, we

screened a BAC library of M. javanica VW4 by PCR using primers

SG1 and SG6. Despite several attempts, we were unable to

identify a clone corresponding exactly to Cg-1 in the BAC library.

However, by lowering the annealing temperature of our PCR

reaction (Materials and Methods), we obtained a 26 kb BAC clone

(clone 18M17, GenBank HQ122410.1). The sequence of this

clone identified an element similar to that found at Cg-1

(Figure 1A). This element was 1080 bp with terminal inverted

repeats flanked by 9 bp target site duplications. The sequence is

84.9% identical to Cg-1, but sequences outside the element on

BAC 18M17 are different from those found flanking elements at

Cg-1 and Mi contig 1763, again suggestive of a transposable

element.

The three putative transposable elements shown in Figure 1 are

similar in sequence and display no obvious protein-coding

potential. Between their inverted repeats, each contains a histone

hairpin motif (Figure 1A) [24,29]. Analysis of the TIRs of each

element reveals a composite structure (Figure 1B). The TIRs of the

elements on contig 1763 and BAC 18M17 have asymmetric 7 bp

motifs at their outer ends, internal to the 9 bp target site

duplications, here called Motif A1 (59-CGGTTAA-39) and Motif

A2 (59-CCTACCC-39). Internal to Motif A1 and A2 is a 3 bp

sequence, Motif B (59-GGA-39). The largest portion of the TIR is

composed of a variable number of 13 to 15 bp (most often 14 bp)

tandem repeats with the consensus 59- CGATTCAGTATCCGC-

39 (Motif C). Due to differing numbers of repeats of Motif C, the

TIRs at each end of the same element, as well as between

elements, differ in size. The internal ends of the TIRs (closer to the

element center) contain a conserved 12 bp purine-rich sequence

stretch (Motif D; 59-GGGAAAAGGGGA-39), followed by one

additional unit of Motif C.

To determine whether the nematode genomes carried para-

logous loci lacking an element and the associated target site

duplication (e.g., empty sites) corresponding to the insertion site of

the element on BAC 18M17, we surveyed several M. javanica and

M. incognita isolates by amplifying genomic DNA with primers 17-F

and 17-R, which flank the putative transposable element

(Figure 1A). We obtained ,0.4 kb amplicons from all tested

RKN isolates (Figure 1C), approximately 1 kb shorter than the

1493 bp amplicon produced from BAC clone 18M17 and

corresponding to the expected length for an empty site.

Sequencing of the 0.4-kb amplicon from VW4 (GenBank

HQ122411.2) confirmed that these fragments correspond to a

paralogous locus without the inverted repeat element and target

site duplications. A second PCR test using a primer within the

inverted-repeat element (SG2) and the flanking 17-R primer

(Figure 1A) demonstrates that the tested M. javanica isolates, but

not the M. incognita isolates, contain a paralog with an inverted

repeat element similar to that on BAC 18M17 (Figure 1C).

Taken together, the identification of 3 similar elements in

distinct genomic contexts, two of which are flanked target site

duplications, and the identification of paralogous loci with and

without an element support the hypothesis these sequences are

transposable elements. We have named this transposon family,

members of which have novel TIRs with internally redundant

FB Elements in Root-Knot Nematodes
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motifs, Tm1 (Transposon in Meloidogyne-1). Elements closely

resembling those found at Cg-1, Mi contig 1763, and on BAC

18M17 and containing a histone-hairpin motif will be referred to

as Tm1-HH.

Identification of a Tm1 element encoding a 496 amino
acid putative transposase

The three Tm1-HH elements discussed previously lack

potential to code for a transposase protein and are thus non-

autonomous elements. Reasoning that an autonomous Tm1

element is likely to share the same terminal inverted repeats, we

amplified nematode DNA using only the SG6 primer, which binds

within the TIRs (Figure 1B). We obtained predominant amplicons

of approximately 0.9 kb and 2.3 kb in all tested M. javanica and M.

incognita isolates, but no amplicons from the more distantly related

M. hapla VW9 (Figure 2A). The 0.9 kb amplicons are the size

expected from Tm1-HH elements such as those found at Cg-1 and

on BAC 18M17 (Figure 1A). Three of the 2.3-kb amplicons (one

each from M. javanica VW4, M. javanica Yolo-1, and M. incognita

LB-2) were cloned and sequenced (GenBank accessions

HM470231.1, HM470232.1, and HM470230.1, respectively).

These three clones were very similar in sequence, with the two

M. javanica amplicons sharing 99% identity and the M. javanica

VW4 and M. incognita LB-2 amplicons sharing 97% identity.

Because the binding site of SG6 was within the TIRs (Figure 1B),

the cloned amplicons from VW4, Yolo-1, and LB-2 lack the full

TIR. Therefore, we used BLASTN to query the M. incognita

genome and identified a highly similar element on contig 274

(GenBank CABB01000274.1) (E value = 0). This element is

2593 bp long, and is flanked by 9 bp target site duplications

(Figure 2B). The TIRs are structurally similar to those of the Tm1

elements described above and carry the same set of motifs

(Figure 2B and Table S1).

A query of the Pfam protein database [32] with the DNA

sequences of the 2.5 kb Tm1 element on contig 274 element

revealed coding potential for a MULE domain transposase

[33,34]. Thus, we refer to the 2.5 kb Tm1 element as Tm1-A

(Tm1-Autonomous). However, no long contiguous ORF was

found suggesting the presence of introns. To identify transcripts

encoded by Tm1-A elements, we used primers within the

predicted coding region (M8-1F and M8-3R; Figure 2B) to

amplify partial Tm1-A transcripts from cDNA of M. javanica

Yolo-1 (GenBank HQ122409.1; Figure 2B) and M. incognita LB-2

(not shown). We were not successful in obtaining full-length

cDNA, so the 59 and 39 ends of the transcript were deduced by

comparing the Yolo-1 Tm1-A cDNA sequence to the genomic

Yolo-1 Tm1-A sequence. The nearest in-frame start codon

(AUG) and stop codon (UGA) flanking the cloned cDNA were

found; a spliced leader 1 (SL1) acceptor site (UUUUCAG) [35]

was found 59 of the predicted start codon, and several potential

polyadenylation signal sequences (composed of AUUAAA,

AAUAAU, GAUAAA, and two repeats of AAAAAA) [35] were

identified 39 of the stop codon. Taken together, the Yolo-1 Tm1-

A element is predicted to express a transcript comprised of 7

exons (Figure 2B) and encoding a protein of 496 amino acids

(Figure 2C).

The highest BLASTP hits of the predicted full-length 496 amino

acid protein encoded by the M. javanica Yolo-1 Tm1-A element

(GenBank ADM16638.1) correspond to predicted proteins

deduced from the genome sequences of aphids and mosquitoes

(Table 1). Pfam v. 24.0 [32] revealed that these predicted proteins

have a domain structure similar to transposases encoded by

Phantom elements, a recently described subclass of Mutator Class II

transposable elements that is widely distributed in eukaryotic taxa

including many animals [36] (Figure 2C). Residues 5–66 of the

putative Yolo-1 Tm1-A transposase have similarity (E = 1.3e27) to

a FLYWCH zinc-finger domain (Pfam PF04500), a protein

interaction domain in some isoforms of Drosophila Mod(mdg4)

proteins [37]. Pfam also identified Yolo-1 Tm1-A residues 197–

294 as a MULE domain (E = 9e213) (Pfam PF10551) [33,34].

MULE domains are found in transposases of the Mutator family

originally identified in plants [38] and the prokaryotic IS256

family [39].

PSORT II [40] identified two putative overlapping nuclear

localization signals (NLSs) near the carboxy end of the Yolo-1

Tm1-A transposase: PPQKARK (residues 438–444) and

PQKARKY (439–445). Both are pattern-7 SV40-type NLSs

[40,41] (Figure 2C).

Tm1 elements are low copy and do not display evidence
of recent transposition

To determine the copy number of Tm1-A elements, a

Southern blot of HindIII-digested genomic DNA from several

isolates representing three RKN species was probed with an

internal portion of the Tm1-A element (Figure 2B). All surveyed

M. javanica isolates have a single ,11 kb hybridizing HindIII

fragment, while all surveyed M. incognita isolates have a single

,8 kb hybridizing fragment (Figure 3A). No HindIII fragments

hybridizing to the Tm1-A probe were detected in M. hapla VW9,

consistent with PCR results (above) and bioinformatic analyses

(discussed below). The same blot was stripped and re-probed with

a fragment of beta actin (GenBank AF532605; Materials and

Methods). The beta actin hybridization patterns were also similar

between isolates of the same species, although M. javanica Yolo-1

lacked hybridizing fragments of approximately 2.5 and 1.25 kb

when compared to other M. javanica isolates. A Southern blot of

M. javanica VW4 genomic DNA cut with BamHI, XbaI, or XhoI

and probed with Tm1-A also revealed only a single hybridizing

fragment (13 kb, 12 kb, 11 kb, respectively; data not shown).

These results are consistent with the presence of a single copy of

Tm1-A in the genome of tested M. javanica and M. incognita

isolates, and the absence of a conserved copy in M. hapla VW9.

Furthermore, the similar size of the HindIII fragments suggests

this element is likely in the same genomic location within the

isolates of each species.

To determine whether Tm1-HH elements like that at Cg-1 are

in distinct genomic positions between isolates, a portion of the

element at Cg-1 (Figure 1A) [24] was used to probe a second

Southern blot of HindIII-digested genomic DNA (Figure 3B).

With the exception of the previously noted absence of a 3.1 kb

hybridizing fragment in M. javanica VW5 representing the

deletion of Cg-1 [24], the same pattern of approximately nine

strongly hybridizing bands was seen in all M. javanica isolates

(VW4, Yolo-1, and Yolo-4; Figure 3B). This is in agreement with

previous findings obtained by cloning and sequencing PCR

products that M. javanica has 9 copies of sequences with 87 to

100% identity to Cg-1 [24]. In contrast, only weakly hybridizing

fragments are observed in the M. incognita isolates suggesting that

any copies present are sufficiently diverged and incapable of

hybridizing with the probe at the stringent conditions used. This

is consistent with our query of the M. incognita genome, which

found the Tm1-HH element on contig 1763 to be the most

similar sequence (72.4% identity over the length of the probe).

The similar hybridization patterns present in the tested M.

javanica isolates suggest that like Tm1-A, non-autonomous Tm1-

HH elements have not been mobilized since these isolates

diverged.

FB Elements in Root-Knot Nematodes
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Figure 2. Discovery and analysis of Tm1-A elements. (A) Agarose gel of PCR amplification products with primer SG6 showing the presence of
0.9 kb and 2.3 kb products with M. javanica and M. incognita isolates. (B) Diagram of 2.5 kb Tm1-A element from M. incognita contig 274 (GenBank
CABB01000274.1). Transcript, diagrammed above element, is predicted using experimental data acquired from M. javanica Yolo-1 (black regions) and
genomic sequence (grey regions). Asterisk indicates the predicted 59 SL1 splice site, and vertical marks, possible polyadenylation sites. All other
annotations are as described in Figureô 1. ‘‘Tm1-A probe’’ indicates the position of the subclone used for Southern analysis in Figureô 3. (C) Predicted
496 aa protein domain protein encoded by the M. javanica Yolo-1 Tm1-A element with positions of FLYWCH-MULE domains and nuclear localization
signal (NLS) identified by Pfam and PSORT II, respectively, are indicated.
doi:10.1371/journal.pone.0024534.g002

Table 1. Top BLASTP hits of Tm1-A transposase in GenBank.a

Accession # Organism E Val. Size (aa) Description

XP_003243189.1 Acyrthosiphon pisum 2e-123 468 hypothetical protein with FLYWCH
and MULE domains

XP_003240826.1 Acyrthosiphon pisum 3e-87 482 hypothetical protein with MULE
domain

XP_003244058.1 Acyrthosiphon pisum 1e-85 409 hypothetical protein with MULE
domain

XP_003244156.1 Acyrthosiphon pisum 3e-40 481 hypothetical protein with FLYWCH
and MULE domains

XP_001657863.1 Aedes aegypti 1e-36 488 hypothetical protein with FLYWCH
and MULE domains

XP_003240985.1 Acyrthosiphon pisum 5e-36 483 hypothetical protein with MULE
domain

XP_001659669.1 Aedes aegypti 1e-35 488 hypothetical protein with FLYWCH
and MULE domains

XP_003241855.1 Acyrthosiphon pisum 4e-32 433 hypothetical protein with MULE
domain

XP_001866309.1 Culex quinquefasciatus 6e-32 485 hypothetical protein with MULE
domain

XP_001848871.1 Culex quinquefasciatus 2e-31 487 hypothetical protein with MULE
domain; recombinase-like

YP_001029420.1 Glypta fumiferanae ichnovirus 3e-31 404 GfV-C17-ORF1; hypothetical protein
with MULE domain; recombinase-like

aAnalysis done 08 August 2011.
doi:10.1371/journal.pone.0024534.t001
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Bioinformatic comparison of Tm1 elements in M.
incognita and M. hapla

We sought to identify additional Tm1 elements in the published

genomes of M. incognita and M. hapla using a bioinformatics approach.

In short, we used a BLASTN-based algorithm to search for two or

more matches on the same contiguous sequence with similarity to a

38 bp region within the Tm1 TIRs in an inverted orientation

(Materials and Methods). This method identified 39 elements in M.

incognita and 22 elements in M. hapla, ranging in length from 0.17 to

2.5 kb (Tables S1 and S2; summarized in Table 2).

Tm1 elements of M. incognita could be divided into three

categories based upon features of sequences between the TIRs

(Table S1). Only 1 transposase-encoding element, on contig 274 as

previously noted, was identified. Eight Tm1 elements, including

the aforementioned element on contig 1763, included sequence

that matched or resembled the histone hairpin of the Cg-1 element.

The region with similarity to the Cg-1 element varied, but

generally spanned the ,24 nt histone hairpin and 300–400 nt 39

of this sequence, in some cases extending to the TIR. We refer to

these elements as the histone-hairpin class (Tm1-HH). Tm1-HH

elements are about 900 bp except for two, including the previously

described element on contig 1763, which contain insertions (Table

S1). Upstream of the histone hairpin region, elements in this group

vary in their similarity to Cg-1, with the element of contig 1763

Figure 3. Tm1 elements are low copy and do not display recent transposition. (A) A Southern blot of HindIII-digested genomic DNA from
indicated root-knot nematode isolates probed with Tm1-A and actin. (B) Similar HindIII-digested blot probed with the a5–a6 probe from Cg-1. The
position of the missing Tm1 element in VW5 is marked with an arrowhead). Probes are as diagrammed in Figuresô 1 (a5–a6) and 2 (Tm1-A).
doi:10.1371/journal.pone.0024534.g003

Table 2. Summary of Tm1 elements in M. incognita and M. hapla.

Tm1 Class Description M. incognita M. hapla Average Length

Tm1-A Putative autonomous element 1 0 2593

Tm1-D Deletion derivatives of Tm1-A 0 8 1307

Tm1-HH Contains histone haripin element 8 0 1182

Tm1-ML MITE-Like 30 12 431

Other No resemblance to other Tm1 elements 0 2 788

Total 39 22

Summary of Tm1 element classes and their average lengths in M. incognita and M. hapla. Detailed descriptions of each element can be found in appendix Tables S1 to
S4.
doi:10.1371/journal.pone.0024534.t002
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being the most similar and some other elements showing no

similarity. The third category of Tm1 elements is composed of

elements typically less than 0.5 kb (with the exception of an

element on Mi contig 3754, which contains a nested 878 bp

inverted repeat sequence). Elements in this third class have

inverted repeat sequences between their TIRs, thus resembling

MITEs (miniature inverted-repeat transposable elements [42]).

These MITE-like Tm1 (Tm1-ML) elements lack Motif D (Table

S1) and thus do not have the SG6 primer-binding site within their

TIRs, accounting for our failure to detect them by PCR. The

Tm1-ML elements are the largest category with 30 of 39 copies

identified in M. incognita and share 85.9% sequence identity as a

group.

No elements capable of encoding an intact transposase were

identified in M. hapla, but 8 elements with short patches of

similarity mainly spanning approximately 200 to 600 bp 39 to the

MULE domain of the Tm1A transposase gene were noted (Table

S2). These 8 M. hapla Tm1 elements appear to be derivatives of

Tm1-A (hereafter called Tm1-D elements). None of these elements

retained any homology to the MULE domain, and, aside from

portions sharing similarity to the Tm1-A element, share only

52.3% pairwise sequence identity as a group. Queries of the M.

hapla genome with both the nucleotide sequence and protein

sequence of the Tm1-A element failed to detect full-length

contiguous sequences, further suggesting M. hapla does not have

an autonomous Tm1-A element.

No elements resembling the Tm1-HH class were found in M.

hapla. Like M. incognita, the largest category of Tm1 elements in M.

hapla (12 of 22) is Tm1-ML elements, sharing 90.3% sequence

identity as a group. As with the ML elements of M. incognita, those

of M. hapla lack Motif D in their TIRs (Table S2). The Tm1-ML

element class is thus the only one clearly shared between M.

incognita and M. hapla, though a neighbor-joining consensus tree

generated from an alignment of Tm1-ML elements demonstrates

Figure 4. Motifs in TIRs of Tm1 elements. (A) Diagram showing the TIR motif structure of a generic Tm1 element. A1 is generally present at one
terminus and A2 at the other. (B) Sequence logos demonstrating variability of Tm1 TIR motifs in M. incognita and M. hapla. Sequence logos and the
associated consensus sequence are only shown for positions where the bit score is greater than 0.
doi:10.1371/journal.pone.0024534.g004
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the M. hapla elements are more closely related to each other than

the majority of M. incognita elements (Figure S1). Two elements in

M. hapla (on contigs 402 and 53) contain internal sequences that

did not fit within the Tm1-A, -D, -HH, or -ML classes (noted as

‘‘other’’ in Table S2).

None of the non-autonomous Tm1 elements have significant

coding potential, and BLASTX fails to detect similarity to known

or predicted proteins in the GenBank nr (non-redundant) database

(all E values .1). Similarly, conceptual translations of predicted

genes and ORFs residing within Tm1 elements produce only short

peptides not significantly similar to known or predicted proteins

(all E values .1; data not shown).

Tm1 TIRs have both conserved and variable motifs
The TIRs of Tm1 elements annotated in the M. incognita and M.

hapla genomes resemble the TIRs of Tm1 elements described

previously (Figure 1A, 2B), but have some differences in the

composition and sequence of motifs (Figure 4A). Most Tm1

elements identified in M. incognita (24/39) and M. hapla (20/22)

have the 7 bp A1 Motif exterior to the TIR at one end and A2 at

the other end of the element (Tables S3 and S4). However, for 6

elements, only one terminal motif was detected, and in one case

(Tm1-ML on M. hapla contig 1532) Motif A2 was found on both

ends of the element. Motif A2 (59-CCTACCC-39) is highly

conserved in both M. incognita and M. hapla Tm1 elements

(Figure 4B). However, Motif A1 displays some variability

(Figure 4B), with a consensus of 59-CGGTTAA-39 in M. incognita,

and 59-CGGATAA-39 in M. hapla. Most Tm1 elements have a

3 bp Motif B internal to Motifs A1 and A2 with a clear 59-GGA-39

consensus in both M. incognita and M. hapla.

Tm1 TIRs differ in length due to the variable number of Motif

C units (Figure 4A). Tm1 TIRs contain 1–9 consecutive units of

Motif C, and differences in the number of Motif C repeats occur

both between elements and for opposite ends of the same element

(Tables S1 and S2). In total, the 39 M. incognita elements contain

334 units of Motif C within their TIRs, ranging in length from 8 to

17 bp with the most common length being 14 bp (191 of 334).

Similarly, within the 22 M. hapla elements, there are 238 Motif C

units with lengths of 12 to 21 bp, but most commonly 14 bp (144

of 238). Sequence logos demonstrate a core consensus sequence of

Motif C (59-CGATTCAGTATCGC-39 for M. incognita; 59-

CGTTTCAGTATCGC-39 for M. hapla) with repeats more highly

conserved at their 59 ends than the 39 ends (Figure 4B).

While Tm1-ML elements lack the GA-rich Motif D, this motif is

generally present and highly conserved in other Tm1 elements

(Tables S1 and S2). The sequence consensus of Motif D differs

between M. incognita (59-GKGGAAAAGGGGA -39; where K = G

or T) and M. hapla (59-GCCAAAAGGGGA -39). In both species,

the 59 end of Motif D is less conserved than is the 39 end

(Figure 4B). The SG6 primer binding site spans part of the

variable portions of Motif D (Figure 1B), accounting for our

inability to detect all Tm1 elements in M. javanica, M. incognita, and

M. hapla via PCR.

In addition to differences in motif composition, the TIRs of

each element differ in sequence. BLAST2 was used to identify

local regions of similarity between the two TIRs of each element,

allowing automatic exclusion of asymmetric regions such as Motif

A1, A2, and asymmetric numbers of Motif C units. Subsequently,

the BLAST2 identified regions were aligned for comparison. Of

the 61 elements analyzed, only 5 elements (Tables S1 and S2)

display 100% sequence identity between the BLAST2-defined

portions of their TIRs. On average, the two TIRs of a single

element are 93.15% identical due to SNPs and small indels.

Tm1 elements are commonly flanked by 9 bp target site
duplications

Analysis of complete Tm1 elements having both terminal motifs

A1 and A2 revealed that in most cases (45 of 53), elements are

flanked by 8–10 bp (though most commonly 9 bp) target site

duplications (Tables S3 and S4). Comparison of TSD sequences

did not reveal a clear consensus sequence, suggesting Tm1

elements do not have target sequence preferences at their

integration site.

Discussion

A deletion in the M. javanica genome encompassing a candidate

effector gene led us to the discovery of a novel transposable

element family that we have named Tm1. These elements are

defined by the shared novel structure and sequence of their TIRs,

which contain 4 sequence domains and varying numbers of an

internally redundant ,14 bp sequence motif and, thus, resemble

Foldback (FB) elements, a heterogeneous group of transposons with

composite TIRs of multiple domains and tandem repeats

[43,44,45,46]. Tm1 elements contain at their boundaries asym-

metric 7 bp terminal motifs, generally Motif A1 at one end of the

element and Motif A2 at the other, that are outside of the inverted

repeat. The presence of short, non-inverted sequences at the ends

of elements is unusual, but has been observed in other Mutator-like

elements, which are thus sometimes said to have sub-terminal

inverted repeats (sub-TIRs) [36,47]. Additional conserved motifs

characterizing Tm1 elements include a 3 bp Motif B and a GA-

rich motif D, which is generally followed by a unit of Motif C.

Based on bioinformatic analysis of available genomic sequence,

M. incognita Tm1 elements can be placed in three general

categories: Tm1-A, Tm1-HH, and Tm1-ML. The isolates of M.

incognita and M. javanica that we examined carry a single Tm1-A

element encoding a protein resembling a Mutator-like (MULE)

transposase. The presence of 9 bp TSDs flanking most Tm1

transposons is consistent with the size commonly generated by

MULE domain transposases [47,48,49] and other members of the

IS256/MULE transposon family [50,51,52,53]. The domain

structure of the putative transposase places Tm1-A and the Tm1

family within the Phantom subclass of Mutator elements with highest

similarity to sequences from insects [36]. The predicted transpos-

ases of Phantom elements are characterized by an N-terminal,

FLYWCH zinc-finger DNA binding domain and a MULE

transposase domain. It is unclear whether the Tm1-A transposase

can bind DNA as it lacks the final histidine residue to form a

complete C2H2 zinc-finger motif within the FLYWCH domain.

However, it is possible Tm1-A can localize to DNA in a manner

similar to the Drosophila FLYWCH domain isoforms of Mod(mdg4)

proteins, which do not bind DNA directly but modulate gene

expression through interactions with DNA binding proteins

[37,54,55]. Further biochemical analysis of the Tm1-A-encoded

protein is needed to clarify any function.

Recently some Foldback elements have been grouped with

Mutator transposons into a superfamily because of similarity

between their encoded transposases [56]. Our finding of a

Phantom-like transposase within FB-like TIRs supports this

grouping. However, it is clear that despite their structural

similarity, FB-like elements are not necessarily phylogenetically

related as different classes of transposases have been shown to

reside within their TIRs and mediate their transposition. For

example, the FB transposon Galileo in Drosophila harbors a P

element transposase [57] whereas the Arabidopsis FB element

FARE contains a MULE domain transposase [46]. In addition,

while some Phantom transposases are flanked by FB-like TIRs or
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sub-TIRs, others are flanked by structurally simpler TIRs more

common in the Mutator superfamily [36]. Such observations have

led others [36,57] to propose that FB-like transposon families

evolved independently from structurally simple transposons

through the gradual expansion of TIR length. A similar case of

TIR expansion toward a FB-like structure appears to have

occurred during the evolution of the RKN Meloidogyne chitwoodi

Tc1/Mariner-like element Mcmar, which has 355 bp TIRs

composed of direct repeats and palindromes unlike most Tc1/

Mariner elements, which have simple 26–30 bp TIRs [58].

We hypothesize the non-autonomous Tm1 elements are derived

from an ancestral autonomous Tm1-A element, in a manner

consistent with models of transposon family evolution [59]. For

example, Pack-MULES are derivatives of plant Mutator transpo-

sons that have acquired fragments of host genes [60,61]. Tm-1-

HH elements, characterized by the presence of a highly conserved

histone hairpin motif, may represent a similar acquisition of host

sequences by a Tm1 element. Prior to the discovery of Cg-1 [24],

histone-hairpin motif had been found only in the 39 UTR of

transcripts of replication-dependent histone genes in metazoans.

The highly-conserved 24-nt hairpin and sequences 39 serve as

binding sites for an elaborate processing machinery that produces

a specific endonucleolytic cleavage of the mRNA just 39 of the

hairpin. As a result of this cleavage, these histone mRNAs are not

polyadenylated [29]. Interestingly, the region of the Tm-1-HH

element that is most conserved among this group is 39 of the

histone hairpin structure, that is, the 39 end of the transcript that is

predicted to be cleaved off by hairpin processing machinery.

Further studies will be required to determine if the histone hairpin

region is under selection and if RNAs produced by Tm1-HH

elements have a function.

Transposable elements can be acquired through horizontal gene

transfer (HGT; for reviews see [62,63,64]). However, despite the

similarity of the Tm1-A transposase to insect Phantom transposases

(Table 1), Tm1-A lacks sufficient DNA sequence conservation with

these elements to demonstrate HGT as has been done for other

transposons [65,66,67,68]. A more parsimonious assumption is that

the Tm1 elements described here evolved from a functional Tm1-A-

like element present in the ancestral Meloidogyne species rather than a

recent horizontal gene transfer event from insects. Though firm

conclusions cannot be drawn from current data, our observations are

consistent with a model in which the Tm1-HH and Tm1-D classes

arose as distinct deletion/insertion derivatives of Tm1-A in the M.

incognita group and M. hapla lineages, respectively. Additionally,

though the Tm1-ML elements are structurally similar between M.

incognita and M. hapla, most show evidence of having evolved

independently as deletion derivatives of larger Tm1 elements in each

lineage: the majority of (20 of 30) M. incognita Tm1-ML elements have

a M. incognita-type domain A1 (CGGTTAA; Figure 4) and the

majority of (9 of 12) M. hapla Tm1-ML elements have a M. hapla-type

domain A1 (CGGATAA; Figure 4). Additionally, the M. hapla Tm1-

ML elements form a well-supported clade distinct from most M.

incognita Tm1-ML elements (Figure S1).

Our data is consistent with Tm1 elements having been mobile

during the evolution of root-knot nematode species. The presence

of an additional 8 Tm1-HH elements similar in sequence to that at

Cg-1 in M. javanica but not in M. incognita (Figure 3B) suggests that

this particular element has expanded in the M. javanica lineage or

lost in the M. incognita lineage. The presence of an insertion in the

site flanked by primers 17-R and 17-F in M. javanica, but an empty

site only in M. incognita suggests that this may be a relatively recent

transposon insertion site (Fig. 1C). However, our Southern

analyses also suggest neither Tm1-A or Tm1-HH elements have

experienced recent transposition activity. Each isolate of M.

javanica and M. incognita has a species-specific, rather than isolate-

specific, hybridization pattern with the Tm1 probes (Figure 3). In

fact, our Southern analysis indicates that the beta actin genes of

Meloidogyne are more polymorphic than Tm1 elements (Figure 3A).

It is important to note that most nematode isolates tested in this

study (with the exception of M. incognita 557R, which was derived

from a field collection in North Carolina) were collected from

different locations in the California Central Valley and a wider

sampling may be necessary to reveal rare Tm1 transposition

events.

Consistent with the molecular observations suggesting recent

Tm1 element inactivity, bioinformatically-detected Tm1 elements

in the M. incognita and M. hapla genomes display sequence features

consistent with senescence and deterioration. As Class II

transposon families age, the number of autonomous elements

decreases while the number of non-autonomous members increase

and diverge in sequence [59,69]. Moreover, as transposable

elements are commonly deleterious, asexual lineages are predicted

to contain largely inactive and decaying transposable elements

[70]. Consistent with these hypotheses, tested M. javanica and M.

incognita isolates have retained only a single putatively autonomous

Tm1-A element while M. hapla encodes no elements capable of

encoding a transposase, and the majority of the Tm1 family in

both M. incognita and M. hapla is composed of MITE-like elements.

Furthermore, no two elements are identical in sequence,

suggesting they have accumulated mutations, including insertions,

since the expansion of the Tm1 family. Additionally, some Tm1

elements are missing TIR motifs, differ in copy number of Motif C

repeats, or lack TSDs. One Tm1 element in M. hapla (contig 1532)

has Motif A2 at the end of both TIRs and lacks a TSD, and may

have arisen as a crossover event between two Tm1 elements.

Moreover, the Tm1-HH element at Cg-1 appears to be degenerate

and lacks terminal Motif A2 (Figure 1A), possibly due to an intra

or inter-element recombination event (Figure 1A). Together these

observations support that Tm1 elements represent a currently

inactive and senescent transposon family in root-knot nematodes.

The role of the loss of the Tm1-HH element at the Cg-1 locus in

the acquisition of ability to bypass resistance in tomato mediated

by the Mi-1 gene remains unclear. Current models based on

similar plant resistance genes predict that the Mi-1 protein either

directly or indirectly recognizes the presence of a nematode

product (elicitor) to trigger defense responses [71]. Previous results

[24] suggest the virulent M. javanica VW5 strain is missing the

elicitor that is present in its progenitor strain VW4 and support the

importance of the Cg-1 transcript for Mi-1-mediated resistance.

However, several Tm1-HH elements similar to that at Cg-1 are

present in both strains VW4 and VW5, and DNA blots showed

that Cg-1 is present in the virulent M. javanica field isolates Yolo-1

and Yolo-4 (Figure 3 and [24]). It may be that the Tm1-HH

element carrying Cg-1 regulates expression of a cis-linked

nematode gene that is responsible for triggering resistance.

Transposable elements contain enhancers and promoters, often

in their TIRs, and thus can act as regulators of cis-linked genes

(reviewed in [13]). RNAi silencing of Cg-1 may reduce or eliminate

expression of the cis-linked gene by, for example, modifying

chromatin structure in the region. In the case of VW5, the deletion

of Cg-1 extends at least 2 kb 59 of the Tm1-HH element (S. Gross

and V. Williamson, unpublished observations) and, thus, the cis-

linked elicitor gene may be deleted. However, these ideas remain

untested as the extent of the deletion has not been determined and

a cis-linked effector has not yet been identified.

Given the presence of multiple Tm1-HH elements in our

virulent and avirulent isolates, the truncated nature of the Tm1-

HH element at Cg-1, data suggesting the deletion extends beyond
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the Tm1 element at Cg-1, and the apparent inactivity of extant

Tm1 elements, it is unlikely that canonical cut-and-paste

transposition of Tm1 caused deletion of Cg-1 in VW5. However,

other rearrangements involving the Tm1-HH element at Cg-1 may

have occurred, such as ectopic recombination and chromosome

breakage [72,73]. In fact, internally repetitive TIRs of Foldback

elements appear to be hotspots for ectopic recombination, as has

been shown in studies of chromosome rearrangements in natural

populations of Drosophila [74,75]. In asexual lineages, which cannot

acquire beneficial alleles that may arise in other members of the

population, recombination between repetitive sequences leading to

genome alterations may prove advantageous. Similar to Barbara

McClintock’s ‘‘Genome Shock’’ theory [76], asexual RKN

parasites may use genomic change to their advantage when faced

with the need to surmount plant resistance genes or perish. Such a

mechanism has been proposed for some pathogenic bacteria,

where effector molecules are clustered in ‘‘pathogenicity islands’’

flanked by transposable and repetitive elements and readily altered

to avoid host defense responses [77,78]. Perhaps because its

asexual reproduction mode benefits from use of repetitive

sequences for adaptation, the genome of M. incognita has much

more repetitive DNA than that of the sexual species M. hapla

[10,11]. Whether Tm1-mediated genomic alterations produced

the deletion of an effector molecule that allowed this nematode

strain to bypass recognition by the tomato resistance gene product

remains to be determined. However, such activity is consistent

with hypotheses that transposons and repetitive elements contrib-

ute to creating genetic diversity in asexual organisms such as the

root-knot nematodes M. javanica and M. incognita [11,12], and may

represent an example of transposable element exaptation [13,79].

Materials and Methods

Collection and culture of nematodes
M. javanica nematode strains VW4 and VW5 [24]; M. incognita

strain VW6 [80] and M. hapla strain VW9 [21,31,81] have been

described previously. Additional isolates (M. javanica isolates Yolo-

1, Yolo-2, and Yolo-4 from Yolo County, CA; M. incognita isolates

Los Banos-2 from Merced County, CA and W-1 from Yolo

County, CA) were obtained from processing tomato fields.

Meloidogyne incognita strain 557R was provided by A.C. Trianta-

phyllou, North Carolina State University. Nematodes were

identified to species by PCR using species-specific and mitochon-

drial primers [82,83]. Nematodes were maintained on tomato

cultivars VFNT (Mi/Mi) or UC82 (mi/mi). Eggs and second-stage

juveniles (J2s) were collected as described previously [84] then

frozen in liquid nitrogen and stored at 280uC.

Molecular analyses
To prepare DNA, 200–300 ml of packed frozen eggs were

pulverized in a mortar and pestle with liquid nitrogen. An equal

volume of homogenization buffer (200 mM NaCl, 200 mM Tris

pH 7.5, 20 mM EDTA, 2% SDS, 0.04 M 2-mercaptoethanol)

was added to the mortar and grinding continued until eggs were

completely homogenized. The homogenate was incubated at 40uC
for 30 minutes with 0.2 mg/ml proteinase K. Homogenate was

extracted using an equal volume of a 1:1 mixture of phenol:chloro-

form, then repeated with chloroform only. DNA was precipitated

with 2 volumes ethanol and 0.1 volumes 3 M sodium acetate,

washed in 70% ethanol, and resuspended in TE (10 mM Tris

pH 8.0, 1 mM EDTA). Phenol:chloroform extraction and ethanol

precipitation were repeated, and the DNA was resuspended in TE,

treated with RNAse A, and quantified using a fluorometer. Prior

to all PCR reactions, DNA was diluted to 5 ng/ml in TE.

Primer sequences used in this work are listed in Table 3.

Amplification conditions for primer sets: SG1+SG6: 35 cycles of

95uC—30 s, 58uC—30 s, 72u—60 s; 17-F+17-R: of 95uC—30 s,

60uC—30 s, 72uC—75 sec; 17-R+SG2: 95uC—30 s, 58uC—30 s,

72uC—30 sec. Reactions were performed according to the

manufacturer’s guidelines with Taq polymerase (New England

Biolabs, Ipswich, MA) in 16Thermo Pol buffer supplemented with

MgCl2 to a final concentration of 1 mM. PCR reactions with the

single primer SG6 were performed using LongAmp Polymerase

(New England Biolabs, Ipswich, MA) according to the manufac-

turer’s guidelines in buffer supplemented with KCl to a final

concentration of 30 mM. Cycling conditions were 35 cycles of

95uC—30 s, 58uC—30 s, 65uC—8 min. All separations of PCR

amplicons were performed in 1% LE agarose, 16TBE gels. PCR

amplicons were cloned into pGEM-T Easy Vector (Promega,

Madison, WI) and transformed into E. coli XL1-Blue (Stratagene,

La Jolla, CA) according to the manufacturer’s instructions. The

SG1+SG6 and 17-F+17-R PCR amplicons were sequenced

directly; SG6 amplicons were sequenced from plasmid clones.

The UC Davis College of Biological Science DNA Sequencing

Facility performed all sequencing services.

RNA was isolated from approximately 200–300 ml of packed

nematode eggs using Trizol reagent (Invitrogen, Carlsbad, CA).

Reverse transcription was performed with 5 mg DNAse I-treated

RNA using SuperScript III (Invitrogen) and oligo(dT)12–18

(Invitrogen) according to the manufacturer’s directions in a total

volume of 20 ml. One ml of resulting cDNA was used per 25 ml

PCR reaction with NEB Long Amp polymerase (as above) for the

following conditions the primer pair M8-1F+M8-3R, 50 cycles of

95uC—30 s, 58uC—30 s, 65uC—80 s. As a positive control, beta

actin was amplified from cDNA using Taq polymerase and

primers Mj-Actin-RT-F and Mj-Actin-RT-R for M. javanica

samples (35 cycles of 95uC—30 sec., 58uC—30 sec., 72uC—

30 sec.). Amplicons were sequenced directly as described above.

Restriction digests of either 5 or 10 mg of genomic DNA were

performed according to the restriction enzyme manufacturer’s

directions (New England Biolabs). DNA was separated in 1.0% LE

agarose and 16TBE and blotted to Hybond-N nylon membranes

(GE Healthcare Life Sciences, Piscataway, NJ) following standard

protocols [85]. Tm1-A probe templates were synthesized from a

M8-1F and M8-6R PCR amplicon generated from a plasmid

containing a 2.3 kb SG6 amplicon from VW4. Template for Tm1-

HH probe was generated by amplification with primers a5 and a6

from a plasmid containing a cloned VW4 a5-a6 amplicon [24].

Beta actin probe was amplified from M. javanica VW4 genomic

DNA template using primers Mj bActin-F and Mj bActin-R

(95uC—30 s; 58uC—30 sec, 72uC—1 min). Probe templates were

isolated from 1% TBE gels using a QIAquick Gel Extraction Kit

(Qiagen, Valencia, CA). Randomly-primed probes were labeled

with [a32P]-dATP (Perkin Elmer, Waltham, MA) according to

published protocols [86]. Blots were hybridized in aqueous buffer

at 60uC following standard protocols [85].

A plasmid library of ,3 kb HindIII fragments of M. javanica VW4

genomic DNA was constructed as follows: 50 mg genomic DNA was

digested with HindIII and separated on a 0.8% LE agarose gel in 16
TBE. Four size fractions spanning the range of 2–4 kb were isolated

from the gel, and DNA was extracted from these fractions using a

QiaQuick Gel Extraction Kit (Qiagen, Valencia CA). The four

fractions of gel-extracted DNA were amplified using primers SG1

and SG6 to identify the fraction containing the highest amount of Cg-

1 PCR template. The HindIII fragments were cloned into Litmus38i

(New England Biolabs) that had been previously treated with alkaline

phosphatase. Approximately 10,000 independent clones were

screened via PCR using pooling methods described previously [87].
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A BAC library of M. javanica VW4 DNA was prepared with high

molecular weight DNA isolated from J2s by Lucigen Corporation

(Middleton, WI). A total of 12,672 BAC clones with an average

insert size of 50 kb was screened via PCR with SG1 and SG6

primers using PCR conditions as above but with the annealing

temperature lowered from 58uC to 54uC. The identified BAC

clone (BAC 18M17) was isolated and purified according to the

instructions provided by Lucigen. Sequencing and sequence

assembly of BAC 18M17 was completed by the UC Davis College

of Agricultural and Environmental Science Genomics Facility.

Genbank deposits
The following sequences were deposited at GenBank: M.

incognita Los Banos-2 Tm1-A, HM470230.1; M. javanica VW4

Tm1-A, HM470231.1; M. javanica Yolo-1 Tm1-A, HM470232.1;

M. javanica VW4 BAC 18M17, HQ122410.1; M. javanica VW4

0.4 kb 17-F+17-R amplicon, HQ122411.2. The original sequence

of the M. javanica Cg-1 locus (EU214531.1) was updated and

corrected with the sequence of the 3.1 kb HindIII clone,

EU214531.2.

Bioinformatic analyses
The genome of Meloidogyne incognita (GenBank accessions

CABB01000001–CABB01009538) [10] was searched using

BLASTN [88] for sequences homologous to Cg-1 (GenBank

EU214531). Additional elements flanked by similar inverted

repeats were identified using BLASTN to search the genomes of

M. incognita and M. hapla [31] (GenBank accessions

ABLG01000001–ABLG01003450) for sequences similar to a

38 bp sequence in the inverted repeat flanking Cg-1 (59–

GATTCAGTAT ACGGGGAAAA GGGGACGATT CAGTA-

TAC–39) with the following parameters (word size = 7; low-

complexity filter = on; max E value = 10; gap costs: open = 4,

extend = 2; scoring: match = 1, mismatch = 23). Using this

method, we obtained a total of 142 BLASTN hits in M. incognita,

and 147 BLASTN hits in M. hapla. Two or more BLASTN hits

residing on the same contig in opposite orientation relative to each

other suggested presence of an intact Tm1 element. A BLAST2

analysis [89] with the following parameters (word size = 11,

complexity filter = on, match = 1, mismatch = 22, open gap

penalty = 5, gap extension penalty = 2, gap6dropoff = 50, E-value

cutoff = 10) was performed to clarify the full extent of the terminal

inverted repeats. Tandem repeats of Motif C were annotated

manually. Sequence alignments were generated using Geneious

v4.6 [90]. Tandem repeats were aligned using ClustalW v1.82 [91]

in conjunction with Geneious v4.6 with the following parameters:

free end gaps allowed, gap open cost = 15; gap extension

cost = 6.66. Sequence logos [92] were generated using Geneious

v4.6. Global alignments with free end gaps of Tm1 elements were

done using Geneious Aligner, part of Geneious v4.6, with the

following parameters: Cost matrix: 65%, match = 5, mis-

match = 24, open gap penalty = 12, gap extension penalty = 3.

Predicted protein sequences were analyzed using Pfam v. 24.0

[32]. Nuclear localization signals were identified using PSORT II

[40]. GeneMark-ES [93,94] was used to predict putative genes,

using the C. elegans ES-3.0 model for gene prediction parameters.

Supporting Information

Figure S1 Unrooted neighbor-joining consensus tree
demonstrating the relationship between M. hapla (red)
and M. incognita (blue) Tm1-ML elements. Branch

bootstrap support is noted on branches. Tree was generated using

Geneious Aligner and Geneious Tree Builder (Drummond et al.

2008). Branch lengths were transformed to uniform length for

clarity.

(TIF)

Table S1 Tm1 elements of Meloidogyne incognita.
Target site duplication (TSD) length is indicated if both terminal

motifs A1 and A2 are present; n.a. (not analyzed) indicates one or

both of these motifs is missing; n.f. (not found) indicates that

neither motif A1 or A2 was found. GenBank accession numbers,

location on contig, TSD sequences, and sequences of 7 bp

terminal motifs are provided in Table S3. When possible, elements

are oriented with the Left TIR beginning with Motif A1 and the

Right TIR terminating with Motif A2. Letters in parenthesis

denote Tm1 elements on the same contig. Notes: a Identity

between TIRs excluding motif A1 or A2. Tm1 elements with

nested, uncharacterized transposable elements are noted as

follows: b Contains 937 bp insertion flanked by 9 bp TSD,

Table 3. Primers used in this study.

Name Sequence (59 to 39) GenBank Accession(s) Reference

a5 GAGCCGTCCATTTTAAACCA EU214531.2 [24]

a6 GGGTTAAGGTTGTTGTTGCC EU214531.2 [24]

SG1 CGAGAATTCTACACTGACAATG EU214531.2 This work

SG2 ACTGAATCGTCCCCTTTTCC HQ122410.1 This work

SG6 GATTCAGTATACGGGGAAAAGG EU214531.2; HM470230.1–HM470232.1 This work

M8-1F TGGCTTTCTATATGTTTTTCATGC HM470230.1–HM470232.1 This work

M8-3R GTAAGTTGCTGTCAGTGCAAGG HM470230.1–HM470232.1 This work

M8-6R TCAGAATCTGCCAAAAGAAACC HM470230.1–HM470232.1 This work

MjActin RT-F AAGCCGTTCTTTCTTTGTATGC AF532604.1 [24]

MjActin RT-R AAGAATAACCACGTTCAGTGAGG AF532604.1 [24]

Mj bActin-F TAGGTATGTTGCCATCCAAGC AF532604.1 This work

Mj bActin-R CAAAGCAGTAATTTCCTTCTGC AF532604.1 This work

17-F AGAGCTCGGGACTGAAACGTCC HQ122410.1 This work

17-R TCTCCCTCGCCTCATCTCCACG HQ122410.1 This work

doi:10.1371/journal.pone.0024534.t003
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c Contains 923 bp insertion flanked by 7 bp TSD, d contains

877 bp insertion lacking TSD.

(DOCX)

Table S2 Tm1 elements of Meloidogyne hapla. TSD length

is indicated if both terminal motifs A1 and A2 are present; n.a. (not

analyzed) indicates one or both of these motifs is missing; n.f. (not

found) indicates that neither motif A1 or A2 was found. GenBank

accession numbers, location of Tm1 elements, TSD sequences, and

7 bp terminal motif sequences are provided in Table S4. When

possible, elements are oriented with the Left TIR beginning with

Motif A1 and the Right TIR terminating with Motif A2. Letters in

parenthesis denote Tm1 elements on the same contig. Note: a

Identity between TIRs excluding 7 bp terminal motifs.

(DOCX)

Table S3 Accessory information of Tm1 elements in
Meloidogyne incognita. The 7 bp terminal motifs A1 and A2

are shown in boldface. TSDs are underlined. No flanking sequence

is shown if TSDs or terminal motifs are not present. Mismatches

within the presumed TSDs are shown as lowercase letters. Letters in

parenthesis denote Tm1 elements on the same contig.

(DOCX)

Table S4 Accessory information of Tm1 elements in
Meloidogyne hapla. The 7 bp terminal motifs A1 and A2 are

shown in boldface. TSDs are underlined. No flanking sequence is

shown if TSDs or terminal motifs are not present. Mismatches

within the presumed TSDs are shown as lowercase letters. Letters

in parenthesis denote Tm1 elements on the same contig.

(DOCX)
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