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Abstract
The use of synthetic data in pharmacology research has gained significant atten-
tion due to its potential to address privacy concerns and promote open science. In 
this study, we implemented and compared three synthetic data generation meth-
ods, CT- GAN, TVAE, and a simplified implementation of Avatar, for a previously 
published pharmacogenetic dataset of 253 patients with one measurement per 
patient (non- longitudinal). The aim of this study was to evaluate the performance 
of these methods in terms of data utility and privacy trade off. Our results showed 
that CT- GAN and Avatar used with k = 10 (number of patients used to create the 
local model of generation) had the best overall performance in terms of data utility 
and privacy preservation. However, the TVAE method showed a relatively lower 
level of performance in these aspects. In terms of Hazard ratio estimation, Avatar 
with k = 10 produced HR estimates closest to the original data, whereas CT- GAN 
slightly underestimated the HR and TVAE showed the most significant deviation 
from the original HR. We also investigated the effect of applying the algorithms 
multiple times to improve results stability in terms of HR estimation. Our findings 
suggested that this approach could be beneficial, especially in the case of small 
datasets, to achieve more reliable and robust results. In conclusion, our study 
provides valuable insights into the performance of CT- GAN, TVAE, and Avatar 
methods for synthetic data generation in pharmacogenetic research. The applica-
tion to other type of data and analyses (data driven) used in pharmacology should 
be further investigated.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

Synthetic data generation has emerged as a promising approach to address pri-
vacy concerns and promote open science in pharmacological research. However, 
the performance of different synthetic data generation methods on “small” size 
datasets is not well known.
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INTRODUCTION

Machine learning is changing the way we understand 
and use data in pharmacology. As the volume and com-
plexity of biomedical data are growing, traditional ana-
lytical methods are often inadequate for capturing well 
the intricate relationships inherent to these datasets. 
Machine learning, with its ability to model complex, non- 
linear relationships, has emerged as a powerful tool for 
pharmacological research and clinical pharmacology, 
offering new avenues for drug discovery,1 precision medi-
cine,2–4 model informed precision dosing, and clinical 
decision- making.5–9

Data are very important for machine learning, but 
getting/producing clinical pharmacology data can be 
hard. Sharing data between researchers or combining 
data from multiple sources can significantly reduce the 
need for new data production. However, stringent regu-
lations, such as the General Data Protection Regulation 
(GDPR), govern the sharing of medical data to protect 
individual privacy. Without such regulations, individ-
uals would be highly vulnerable to privacy breaches. 
GDPR is, therefore, not merely a restrictive measure but 
a crucial framework that enables secure and respectful 
data sharing. It ensures that data sharing can benefit all 
stakeholders while safeguarding the privacy and secu-
rity of individuals. Patients can be identified even when 
all identification variables have been suppressed from 
a database (called pseudonymization), in some cases.10 
One way to share data without breaking these rules is 
to create synthetic data from real data, mimicking its 
initial properties. These simulated data act like real pa-
tient information but, when validated and documented, 
protect privacy by making it impossible to identify any 

individual. In essence, synthetic data offer the benefits 
of real data for research without compromising patient 
privacy.11

Synthetic data generation also allows augmenting 
dataset size, which can help or improve the performance 
of predictive ML algorithms.12–14 However, this approach 
is inherently constrained by the initial data subspace used 
as a template, with some exceptions.15

A recent method by Guillaudeux et  al.16 (called 
Avatar) for creating synthetic data is based on reduc-
ing the dimensionality of the data, applying the near-
est neighbors method in a latent space to create a local 
modeling area for each patient/record, and generating 
within this space a synthetic record at the stochastically 
weighted barycenter (by sampling in an exponential 
distribution and shuffling of the ranks of the nearest 
neighbors). The 2 hyperparameters in this process are 
the number of components and the number of nearest 
neighbors (k). This method has been approved by the 
Commission Nationale de l'Informatique et des Libertés 
(CNIL), the French agency that checks if data use com-
plies with privacy law.

Deep learning techniques for synthetic data gener-
ation offer promising applications in pharmacology. 
Platforms such as Synthcity,17 developed by the Van der 
Schaar Lab (https:// www. vande rscha ar-  lab. com/ ), pro-
vide sophisticated tools for generating synthetic tabular 
and survival data. Some of the methods are suitable for 
tabular data including tabular variational auto- encoders 
(VAE) and conditional tabular Generative Adversarial 
Networks (CT- GAN)18 as well as metrics addressing both 
privacy and fidelity in synthetic data generation. In brief, 
VAE first compresses the input data into a lower dimen-
sional representation (encoding) and then reconstruct 

WHAT THE QUESTION DID THIS STUDY ADDRESS?

This study aimed to implement and compare the performance of three syn-
thetic data generation methods, namely CT- GAN, TVAE, and Avatar, for a non- 
longitudinal pharmacogenetic dataset of 253 patients previously published in 
terms of data utility and privacy trade off.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?

CT- GAN and Avatar had the best overall performance in terms of data utility 
and privacy. Data augmentation increased the number of false- positive findings. 
In addition, applying the algorithms multiple times improved the stability of the 
results.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, OR 
THERAPEUTICS?

Our findings in this study can guide the selection of appropriate synthetic data 
generation methods for pharmacogenetic and transectionnal “small” datasets in 
pharmacology in the context of collaborative works and open science.

https://www.vanderschaar-lab.com/
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the original data from this compressed form (decoding), 
while adding Gaussian randomness in the encoding pro-
cess that ensures that the generated data points are var-
ied yet similar to the original dataset.19 The CT- GANs 
consist of two parts: a generator that creates synthetic 
data and a discriminator that tries to distinguish between 
real and synthetic data. The “conditional” aspect means 
that the generation process can be guided by specific 
conditions or features, allowing for more controlled and 
targeted data generation.18 These methods are known 
to perform very well when the amount of data is rather 
large, but little is known about their performances in 
smaller datasets that are more common in clinical phar-
macology or pharmacometrics.

Clinical pharmacology data predominantly exist in 
tabular form2 or can be effectively transformed into it, 
encompassing a wide spectrum of goals like survival 
analysis, multiple linear regression with longitudinal 
data, and non- linear mixed- effect or non- parametric 
population pharmacokinetics analysis. However, most 
of the algorithms developed for data synthesis are 
meant for non- longitudinal data (with some exceptions 
including Avatar). Pharmacogenetics association stud-
ies are typical examples of such association between 
determinants (e.g., SNPs) and outcomes in a cross sec-
tional design.

In this context, our study aimed to implement and 
evaluate three algorithms for synthetic longitudinal data 
generation in terms of data privacy and fidelity, using a 
previously published case study of pharmacogenetics de-
terminants of the time- to- kidney graft loss.20

MATERIALS AND METHODS

Patients and data

The dataset analyzed was from a pharmacogenetics study 
that linked SNPs in the 227 kidney donors with clinical 
outcome in the 253 respective renal transplant recipients 
treated with cyclosporine. Cox models were developed 
to evaluate the association between ABCB1 genetic pol-
ymorphisms and the risk of graft loss.20 The study was 
in accordance with the ethical standards of the respon-
sible committee on human experimentation or with the 
Helsinki Declaration of 1975. The study showed that 
graft loss was significantly associated with the presence 
of the ABCB1 variant haplotype 1236T/2677T/3435T in 
the donor (1236T/2677T/3435T vs. other haplotypes: 
hazard ratio (HR) = 9.346; 95% confidence interval (CI) 
(2.278–38.461); p = 0.0019) and with previous episodes 
of acute organ rejection (hazard ratio = 3.077; 95% CI 
(1.213–7.812); p = 0.0178). The tabular dataset was made 

of one row per patient, and included continuous (recipi-
ent and donor age, cold ischemia time, and time to event) 
as well as categorical (donor and recipient sex, haplotype, 
acute rejection, donor CYP3A5 status and event) vari-
ables, without missing data. All the categorical variables 
had been converted into numeric ordinal variables and 
the haplotype effect considered additive (0, 1, or 2 risk 
haplotypes).

Synthetic data and data augmentation

We implemented a simplified version of the Avatar al-
gorithm as described in Guillaudeux et al.16 in the origi-
nal dataset. The number of components for the principal 
component analysis (PCA) step of the Avatar algorithm 
was set by default to the number of columns. Analyses 
were performed using the key parameter k = 5, 10 and 20 
(all synthetic data are stochastically generated within a 
surrounding of k neighbors for each patient) by creating 
a set of synthetic data of the same size as the real data-
set. As the algorithm is stochastic, a seed was applied for 
reproducibility.

We evaluated the intra- dataset variability of the hap-
lotype effect by 100 bootstrap samples of the synthetic 
dataset in which the final Cox model was applied and 
we reported the 5, 50 and 95th percentiles of the esti-
mated HR. Then, we evaluated both the inter- dataset 
variability of the Avatar algorithm and the effect of 
changing the k parameter by changing 100 times the 
seed for the different numbers of k parameter (5,10 and 
20). For each of them, we reported the 5, 50, and 95th 
percentiles of the haplotype HR after adjustment on the 
significant covariates.

We also investigated the effect of data augmentation 
for the k parameter = 5, 10, and 20 with an arbitrary in-
crease to four times (the initial size of the original dataset) 
and applied the same analyses as above (intra-  and inter- 
dataset variability and change in the k parameter).

Finally, survivalVAE and survival ctGAN were used as 
alternate algorithms to create synthetic and augmented 
data and the intra-  and inter- dataset variability was evalu-
ated as for the Avatar algorithm.

The code used to perform this study is available as an 
Rmd html file as supplemental data (https:// github. com/ 
jbwoi llard/  synth etic_ data_ pharm acoge netics/ tree/ main).

Evaluation of synthetic data

The synthetic data were evaluated comparing the distri-
bution (median[min–max] values or n(%)) and graphi-
cal matrix of distribution and covariation to those of the 

https://github.com/jbwoillard/synthetic_data_pharmacogenetics/tree/main
https://github.com/jbwoillard/synthetic_data_pharmacogenetics/tree/main
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original dataset. A multivariate Cox model was fitted to 
the synthetic and the augmented data, and the Kaplan–
Meier curve and distribution of the hazard ratio adjusted 
on the significant covariates for each dataset (obtained 
after bootstrapping and inter- dataset variability) were 
compared to those of the original data. For each of the al-
gorithms, we evaluated the percentage of each variable se-
lection based on the BIC (Bayesian information criterion) 
across the 100 bootstraps, to see if the same variables as in 
the original analysis were selected (threshold of >50% of 
the bootstraps for selection).

Evaluation of privacy and fidelity

Utility was evaluated using the Kullback–Leibler distance 
and the Kolmogorov–Smirnov test. Privacy was assessed 
using the distance from the closest record (DCR) and the 
nearest neighbor distance ratio (NNDR),16 which evalu-
ate the risk of re- identification of the original data from 
the synthetic data. Finally, we conducted a discrimination 
analysis using logistic regression by training a model to 
distinguish between the original and synthetic datasets.21 
We calculated the AUC- ROC to assess the model's perfor-
mance, with an AUC- ROC value close to 0.5 indicating 
indistinguishability between the original and synthetic 
data. All the analyses were performed in R version 4.2.1 
except the surVAE, survival CT- GAN, and the metric cal-
culation which were fitted using the Synthcity library17 in 
Python 3.9.

RESULTS

Data

Table  1 summarizes the original data and the various 
synthetic datasets. Significant differences were found 
for all variables across datasets, except the recipient sex 
proportion. In particular, the haplotype distributions dif-
fer from the original. As an example, Figure 1 depicts the 
variation and covariation between features for the non- 
augmented Avatar k = 5 (A), k = 20 (B), CT- GAN (C) and 
surVAE (D) datasets in comparison to the original data 
(different colors). Similar figures for other synthetic data-
sets are available as supplemental data (html R code file). 
Interestingly, the Avatar synthetic data exhibit a central 
tendency for the continuous covariates (shrinkage to-
wards the mean). Figure  2 presents the Kaplan–Meier 
(KM) curves for the different synthetic datasets in com-
parison ot the original one. SurvVAE, with or without 
augmentation, produced disappointing results, generat-
ing KM curves significantly different from the original. 

Conversely, the Avatar models with k = 10 or k = 20, and 
the non- augmented CT- GAN, exhibited the Kaplan–
Meier curves closest to the real ones. However, they either 
underestimated survival without graft loss for the long-
est follow- up periods, with a marked decline in survival 
probability observed in the non- risk group (CT- GAN), or 
slightly overestimated it (Avatar with k = 10 and k = 20). 
Surprisingly, the k = 5 dataset significantly overestimated 
the haplotype effect, as shown by the shorter time- to- 
event for the TTT/TTT group and the higher hazard ratio 
compared to the original data.

Variable selected in the final model using 
each algorithm

Table 2 details the variables each algorithm would have 
selected in the final model after bootstrapping. We ob-
served that the augmented datasets exhibited a tendency 
to introduce “false- positive” associations (i.e., not signifi-
cant after bootstrapping the original dataset). Only the 
Avatar models with values of k = 5 and k = 20 identified 
the one and only variable (haplotype) significant in the 
original dataset bootstrapping analysis, whereas Avatar 
with k = 10 additionally identified acute rejection, which 
was selected in the original analysis but did not remains 
after bootstrapping. SurvVAE did not select any variables.

Intra- dataset variability

Our analysis revealed significant intra- dataset variabil-
ity for the haplotype HR. Table 3 illustrates the quantile 
distribution obtained after performing 100 bootstrap sam-
ples for each algorithm. Among the tested algorithms, 
the non- augmented CT- GAN and augmented Avatar 
with k = 20 yielded HR estimates closest to the original 
data. Non- augmented Avatar with k = 10 or k = 20 yielded 
slightly increased HR in comparison to the original, 
Avatar with k = 5 even more so, while surVAE underes-
timated the effect and resulted in a non- significant result.

Inter- dataset variability

The quantile distribution of the haplotype HR after 
running 100 times each algorithm to create synthetic data 
is presented in Table 4. Interestingly, the Avatar algorithm 
with k = 5 aligned more closely with the original results 
than the single run application of the algorithm (Table 3). 
Avatar with k = 10 and k = 20 diverged from those 
obtained previously. Each algorithm converged towards 
a similar central value—regardless of data augmentation. 
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F I G U R E  1  Example of variance–covariance matrix of features for the algorithms Avatar (a = with k = 5 and b = with k = 20), c = CT-
GAN and d = surVAE; CYP3A5D is CYP3A5 donor status, age_r and sexe_r are recipient age and sex,  age_d and sexe_d are donor age and 
sex, rejet_aigu is acute rejection, TIF is cold ischemia time, event is graft loss, delai_event is time to event (graft loss).
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F I G U R E  1   (Continued)
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Additionally, the values of k do not seem to significantly 
affect the HR value. CT- GAN slightly underestimated 
the results relative to the original data, and SurvVAE 
continued to produce disappointing results, with the 5th 
percentile of HR being below 1.

Privacy

The privacy and utility metrics are reported in Table 5. Briefly, 
the utility metrics showed that there was a good fidelity 
between the original data and the synthetic data whatever 
the method for generating synthetic data. Concerning 
privacy, the DCR and NNDR were the highest and close to 
1 for CT- GAN and VAE, respectively, while Avatar for k = 5 
(augmented or not) yielded lower but acceptable privacy. 
Interestingly and as expected, when the value of k increases 
privacy increases, as highlighted for the Avatar k = 10 and 
k = 20 exhibiting better privacy metrics values in comparison 
to k = 5. The discrimination analysis using logistic regression 
revealed that the AUC- ROC was approximately 0.5 for the 

Avatar method. In contrast, the AUC- ROC for the CT- GAN 
and TVAE methods was around 0.3 (Table 5).

DISCUSSION

This study evaluates three different synthetic data gener-
ation methods for their capacity to reproduce the results 
obtained using a pharmacogenetic dataset characterized 
by a rather small sample size. We had a particular in-
terest in the Avatar approach, recently developed by a 
French group, as it is certified by the French data pro-
tection authority (CNIL). This recent approach has been 
used successfully in some previous studies.22,23 The two 
other approaches (CT- GAN and SurVAE) have been 
largely used in the data augmentation/anonymization 
world.24–28 This work is also original in that it focuses on 
small datasets, whereas the existing methods were de-
signed for large datasets (thousands of patients). Actually, 
most pharmacology studies have been performed on lim-
ited datasets (dozens or hundreds of patients).

F I G U R E  2  Kaplan Meier curve for the ABCB1 TTT haplotype in the original study and in the synthetic datasets obtained with Avatar 
k = 5, k = 10, and k = 20, CT- GAN, and surVAE, augmented or not.
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While the Avatar method is founded on a machine 
learning approach with only a few hyperparameters to 
tune (such as the number of k and components for the 
latent projection step), CT- GAN and TVAE are based on 
deep learning approaches with a larger number of hy-
perparameters to optimize. We did not performed an 
exhaustive parameter search for Avatar opting to use all 
component to preserve as much of the original data's vari-
ability. Regarding the k parameter, we conducted exper-
iments with different values (5, 10 and 20) to assess its 
impact on the synthetic data performances. This explora-
tion can be viewed as a parameter search in a small sub-
space and our results indicated that k = 10 provided the 
best balance between data fidelity and privacy.

For the two deep learning methods (CT- GAN and 
SurVAE), the default implementation as provided in 
Synthcity was used.

Our analysis revealed that the statistical descriptives of 
the synthetic datasets varied between the methods applied 
and in comparison to the original data. However, the pri-
mary goal of such analyses is not to perfectly match the sta-
tistical descriptives but to ensure that the synthetic data can 
select the same variables in predictive or explanatory mod-
els and conserve approximately the same effect sizes. Our 
results indicate that while there are differences in statisti-
cal descriptives, the synthetic data generated by the Avatar 
method successfully identified the key variable (haplotype).

After single- run data generation, CT- GAN achieved the 
best results for the ABCB1 TTT haplotype HR estimation. 
However, HR was slight underestimated after aggregating 

T A B L E  2  Variable selected in the final model in the 100 
bootstrapping (>50% of the bootstrap) using each algorithm and 
comparison to original data.

Algorithm
Variable selected in the final 
model after bootstrapping

Original Haplotype

k = 5 Haplotype

Augmented k = 5 Haplotype, age recipient, donor sex, 
acute rejection

k = 10 Haplotype, acute rejection

Augmented k = 10 Haplotype, donor age, donor sex, 
acute rejection

k = 20 Haplotype

Augmented k = 20 Haplotype, donor CYP3A5, donor 
age, acute rejection

SurvVAE None

Augmented SurvVAE Haplotype, donor CYP3A5

CT- GAN Haplotype, recipient age, donor age

Augmented ctGAN Haplotype, donor CYP3A5, donor age

Note: K is a hyperparameter for Avatar corresponding to the number of 
nearest neighbors used to stochastically generate the synthetic record.
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100 independent bootstrap datasets, as compared to the 
original effect. CT- GAN also demonstrated excellent pri-
vacy, with high DCR and NNDR values. Bootstrapping 
analysis of the dataset resulted in the CYP3A5 donor status, 
donor age, and the haplotype itself being significant risks 
of survival without graft loss. Even if false positive, donor 
age was previously reported in the literature29 and donor 

CYP3A5 is controversial30,31 and showed significance or a 
tendency in the original data univariate analysis.

While the Avatar approach yielded very good results 
compared to the original data, it produced overall an over-
estimation of the haplotype effect. Interestingly, in our 
study, increasing the value of k (up to 20, corresponding 
to approximately 10% of the original data size) did not 

Algorithm
5th percentile 
of HR

50 percentile 
of HR

95th percentile 
of HR

Original NA 3.40 NA

k = 5 4.07 6.17 9.35

k = 10 3.98 6.43 12.84

k = 20 3.49 5.98 12.90

Augmented k = 5 4.44 5.53 7.27

Augmented k = 10 4.24 5.30 7.76

Augmented k = 20 3.58 5.30 7.25

SurvVAE 0.64 1.91 7.44

Augmented SurvVAE 0.98 1.92 3.55

CT- GAN 1.16 2.65 5.69

Augmented CT- GAN 1.46 2.50 4.45

Note: K is a hyperparameter for Avatar corresponding to the number of nearest neighbors used to 
stochastically generate the synthetic record.

T A B L E  4  Quantile distribution for 
haplotype HR among the 100 datasets 
(obtained with 100 different seeds) 
for each algorithm and for different k 
values for the avatar algorithm without 
adjustment on other covariates.

Algorithm
KL 
inverse

KS 
test

DCR* 
[5th–50th–95th]

NNDRa 
[5th–50th–95th]

AUC 
ROCb

Original data NA NA NA NA NA

Avatar k = 5 0.87 0.72 [0.28–0.57–1.00] [0.14–0.33–0.75] 0.581

Avatar k = 5 
augmented

0.93 0.92 [0.09–0.42–1.51] [0.05–0.27–0.94] 0.534

Avatar k = 10 0.79 0.90 [0.50–1.00–2.14] [0.34–0.72–0.97] 0.550

Avatar k = 10 
augmented

0.89 0.91 [0.19–0.68–1.51] [0.10–0.47–0.94] 0.518

Avatar k = 20 0.77 0.89 [0.47–1.04–1.90] [0.34–0.74–0.98] 0.503

Avatar k = 20 
augmented

0.76 0.88 [0.47,1.01,1.87] [0.32–0.74–0.94] 0.474

CT- GAN 0.78 0.88 [0.83–1.78–3.39] [0.52–0.87–0.99] 0.234

CT- GAN 
augmented

0.89 0.91 [0.81–1.87–3.62] [0.52–0.87–0.99] 0.345

survVAE 0.84 0.89 [0.89–1.01–2.99] [0.55–0.88–0.99] 0.298

survVAE 
augmented

0.86 0.90 [0.86–1.94–3.08] [0.54–0.90–0.99] 0.367

Abbreviations: DCR, distance to closest record; KL, Kullback Leibler; KS, Kolmogorov Smirnov; NNDR, 
nearest neighbor distance ratio.
aValue in comparison to the original data, K is a hyperparameter for Avatar corresponding to the number 
of nearest neighbors used to stochastically generate the synthetic record.
bAUC- ROC for a logistic regression attempting to discriminate between original and synthetic data.

T A B L E  5  Fidelity and privacy metrics 
of the synthetic data algorithms.



92 |   WOILLARD et al.

harm HR estimation; on the contrary, it improved it, and 
also enhanced the KM curve. As expected, increasing the 
number of K nearest neighbors improved privacy as well. 
Ultimately, the Avatar with k = 10 might be the best per-
former, comparable to the CT- GAN.

The Avatar method resulted in the shrinkage of the 
synthetic data distribution compared to the original data. 
This is because each patient does not participate to the 
local space where the synthetic data will be stochasti-
cally produced. This specificity allows privacy by design 
as every outlier patient will be recentered automatically if 
they don't belong to a small cluster. While this shrinks the 
distribution of each variable, the impact on our estimation 
of the haplotype effect is unclear. We were surprised by 
the differences in results between a single application of 
Avatar with k = 20 and multiple runs of the algorithm; the 
latter tended to converge towards a higher (overestimated) 
value. In contrast, Avatar with k = 5 initially overestimated 
the results highly, but multiple applications converged to-
wards a lower value. The variations in HR values between 
augmented and non- augmented datasets might be due to 
differences in the final model and the adjusted covariates, 
which result in a decreased HR value upon adjustment. 
Unlike the other methods, SurvVAE consistently pro-
duced disappointing results.

Based on our results and regardless of the algorithm 
chosen for synthetic data generation, for datasets with 
small sample sizes it seems very important to run the al-
gorithm multiple times and aggregate the performance 
metrics. Alternatively, one could propose running the 
algorithm multiple times and aggregating the generated 
datasets before conducting survival analysis. However, 
this approach may lead to a decrease in the variance of 
effect estimation, as observed in our results for four times 
augmented data. In our example, CT- GAN seemed less 
impacted by that phenomenon because the single dataset 
yielded values close to the original values.

To address privacy in comparison to the original 
data, we used two metrics: DCR and NNDR. DCR is the 
Euclidean distance between a synthetic record and its 
closest real neighbor, with a higher distance indicating 
better privacy. NNDR, however, is the ratio between the 
distances of the closest and second- closest real neigh-
bors for each synthetic record. A higher NNDR value 
(between 0 and 1) means better privacy. In this study, 
Avatar exhibited lower values in comparison to CT- GAN 
or surVAE but as discussed before, increasing the value 
of k increased the privacy with acceptable results for pri-
vacy starting at k = 10. Additionally, our discrimination 
analysis using logistic regression showed that the AUC- 
ROC for the Avatar method was around 0.5, indicating a 
high degree of similarity between the original and syn-
thetic data. In contrast, the AUC- ROC for CT- GAN and 

TVAE was around 0.3, suggesting these methods pro-
duce synthetic data that are more easily distinguishable 
from the original data.

This study has a notable limitation in that its find-
ings cannot be generalized to other types of datasets 
within the field of pharmacology. Originally, we in-
tended to evaluate synthetic data generation techniques 
across three distinct datasets: the current pharmacoge-
netics dataset, a population pharmacokinetics dataset, 
and a longitudinal dataset. However, as the manuscript 
evolved, it became clear that including all three datasets 
would result in an overly complex and lengthy article, 
potentially compromising the clarity and depth of our 
analysis. Consequently, we chose to focus this man-
uscript exclusively on the pharmacogenetics dataset. 
This decision was made to allow for a thorough exam-
ination of the specific challenges (particularly in terms 
of result stability) associated with synthetic data in this 
context, characterized by its cross- sectional and non- 
longitudinal nature.

Despite this focus, there is a significant potential of 
synthetic data across various domains of clinical phar-
macology. The analysis of population pharmacokinetics 
and longitudinal datasets, which present unique chal-
lenges related to data structure, variability, and pri-
vacy, is ongoing within our DIGPHAT consortium. By 
addressing these datasets in separate studies, we aim to 
provide a comprehensive and nuanced understanding of 
synthetic data applications across different pharmaco-
logical contexts.

In the analysis conducted here which is a specific case 
using survival analysis to replicate the results of a phar-
macogenetic study, we observed that data augmentation 
increased the incidence of false positives and did not pro-
vide significant added value overall. Future research will 
further explore these broader applications, particularly in 
machine learning contexts, where synthetic data can be 
leveraged to augment datasets, enhance model training, 
and strengthen privacy protections.32

In this work, we did not generate our data under differ-
ential privacy (DP). DP is a privacy- preserving technique 
that adds statistical noise to data, ensuring that the output 
of any analysis does not significantly differ whether an in-
dividual's data are included or not. This provides strong 
theoretical guarantees that individual privacy is protected 
and has been recommended in reports.32 While we did not 
generate data with DP initially, we a posteriori applied 
Laplace noise with an epsilon value of 0.25 (which is as-
sociated with relatively low privacy) to our dataset to eval-
uate the impact of DP on the utility of the synthetic data. 
We observed that the means of the original data with DP 
noise deviated significantly from the means of both the 
original and synthetic datasets without DP (cf. Data  S1 
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and code diffpriv.html). This substantial loss of utility 
highlights the trade- off between privacy and data use-
fulness, particularly in the context of small and specific 
datasets like ours. The synthetic data generation meth-
ods we employed (CT- GAN, surVAE, and Avatar) were 
chosen for their ability to produce high- fidelity datasets 
that closely mimic the results original data. The empirical 
privacy metrics we used, such as DCR and NNDR, while 
having some pitfalls, provided a practical assessment of 
re- identification risk. While DP offers formal privacy 
guarantees, our results suggest that its implementation 
compromises the utility of synthetic data, making it less 
effective for statistical analysis and predictive modeling, 
which is critical in the context of our study. Therefore, the 
empirical privacy metrics used in our study offer a more 
balanced approach, ensuring adequate privacy protection 
without sacrificing data fidelity.

Our results might initially be seen as poor, thus limiting 
any future application or generalizability of the applied 
methods. However, although our study highlights some 
limitations and variabilities in the results, it also demon-
strates positive findings. For instance, the haplotype 
variable was consistently selected by all methods except 
one, and similar patterns were observed in Kaplan–Meier 
curves for several approaches. These results, especially 
for the newly developed Avatar method, indicate that 
synthetic data are valuable for maintaining the integrity 
of predictive models and achieving consistent analytical 
outcomes. Additionally, our study addresses a critical gap 
in the literature by focusing on a small pharmacogenetic 
dataset, which is a common scenario in clinical research 
that often poses unique challenges.

In conclusion, no tested method allowed us to reach 
both perfect utility and high privacy with respect to the 
original dataset for the development of a survival Cox 
model in this pharmacogenetics case study. CT- GAN 
yielded good results in terms of privacy and utility, but se-
lected some “false- positive” variables. The Avatar method 
recently developed is an excellent alternative for gener-
ating synthetic data, associated with a good fidelity with 
k = 10 (same variables selected in comparison to the origi-
nal study) and privacy in comparison to CT- GAN. On the 
contrary, data augmentation seems to increase the false- 
positive selection of variables and in the case of statisti-
cal models, the variance is reduced. surVAE yielded poor 
results and cannot be recommended in this context. In 
the case of small datasets, applying the algorithm multi-
ple times could help to achieve more stable and reliable 
results.

Finally, creating synthetic data is particularly valu-
able because it promotes open science by providing data 
alongside results. Additionally, it facilitates data sharing 
between centers in multicenter studies as an alternative to 

federated learning. This bypasses the legal complexities, 
costs, and time- consuming procedures often associated 
with traditional data sharing.
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