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Abstract 10 

Carbohydrates dynamically and transiently interact with proteins for cell-cell recognition, cellular 11 
differentiation, immune response, and many other cellular processes. Despite the molecular importance 12 
of these interactions, there are currently few reliable computational tools to predict potential 13 
carbohydrate binding sites on any given protein. Here, we present two deep learning models named 14 
CArbohydrate-Protein interaction Site IdentiFier (CAPSIF) that predict carbohydrate binding sites on 15 
proteins: (1) a 3D-UNet voxel-based neural network model (CAPSIF:V) and (2) an equivariant graph 16 
neural network model (CAPSIF:G).  While both models outperform previous surrogate methods used 17 
for carbohydrate binding site prediction, CAPSIF:V performs better than CAPSIF:G, achieving test 18 
Dice scores of 0.597 and 0.543 and test set Matthews correlation coefficients (MCCs) of 0.599 and 19 
0.538, respectively. We further tested CAPSIF:V on AlphaFold2-predicted protein structures. 20 
CAPSIF:V performed equivalently on both experimentally determined structures and AlphaFold2 21 
predicted structures. Finally, we demonstrate how CAPSIF models can be used in conjunction with 22 
local glycan-docking protocols, such as GlycanDock, to predict bound protein-carbohydrate structures. 23 

1 Introduction 24 

The carbohydrate-protein handshake is the first step of many pathological and physiological processes 25 
(1, 2). Pathogens attach to host cells after their lectins successfully bind to surface carbohydrates (or 26 
glycans) (3–6). The innate and adaptive immune systems utilize carbohydrate signatures present on 27 
cellular and subcellular surfaces to recognize and destroy foreign components (7, 8). 28 
Glycosaminoglycans (GAGs) bind to membrane proteins of adjacent cells for cell-cell adhesion and to 29 
regulate intracellular processes (9–11). Despite the biological importance of these carbohydrate-protein 30 
interactions, there are few carbohydrate-specific tools leveraging the vast Protein DataBank (PDB) and 31 
recent advances in machine learning (ML) to elucidate the binding of carbohydrates at a residue level.  32 
Knowledge of carbohydrate-protein interactions has been leveraged to develop therapeutic candidates 33 
to neutralize infections and inspire proper health function (6, 12). One bottleneck in designing 34 
carbohydrate-mimetic drugs is obtaining residue-level interaction knowledge through methods such as 35 
structural data and/or mutational scanning profiles (12–14). Further, in some studies, computational 36 
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tools have been used to predict docked structures, refine bound carbohydrates, or extract dynamic 37 
information (14–16). 38 
Recent developments in deep learning (DL) have substantially enhanced the theoretical modeling of 39 
proteins and protein-protein interactions. For example, neural networks can design stable proteins with 40 
unique folds using graph representations (17, 18). 3D structures can be predicted with programs such 41 
as IgFold and Alphafold2 (AF2) (19, 20). Predicted 3D atomic coordinates can be probed to determine 42 
ligand or protein binding capabilities using neural networks such as Kalasanty or dMaSIF (21, 22). 43 
Recent computational studies have demonstrated new ways to explore protein-carbohydrate 44 
interactions. Our lab has also contributed to the advancement of this field by adding the following, (1) 45 
a shotgun scanning glycomutagenesis protocol to predict the stability and activity of protein 46 
glycovariants (23), and (2) the GlycanDock algorithm to refine protein-glycoligand bound structures 47 
(24). 48 
Recently there have been developments in small molecule binding site predictors. Small molecule 49 
binding site predictors typically fall into four categories: template, geometry, energy, or machine 50 
learning based (25). Template based strategies, such as 3DLigandSite (26), search datasets for sequence 51 
and/or structurally related ligand binding proteins to assess prospective binding sites. Geometry based 52 
methods, like FPocket (27), search the surface of proteins for pockets and cavities. Energy based 53 
methods, such as FTMap (28), use probe molecules to scan the surface of a protein to determine the 54 
energetic favorability of binding. Recently, machine learning techniques, such as Kalasanty (21), have 55 
emerged and outperformed previous classical site prediction algorithms, commonly with convolutions 56 
on a 3D voxel grid containing atomistic information (29, 30). 57 
Although there are many general small molecule binding site predictors (21, 28, 31), few tailored 58 
algorithms exist for prediction of protein-carbohydrate sites. In 2000, Taroni et al. performed an 59 
analysis of carbohydrate binding spots using the solvation potential, residue propensity, 60 
hydrophobicity, planarity, protrusion, and relative accessible surface area to construct a function to 61 
predict carbohydrate binding sites (32). In 2007, Malik and Ahmad created a neural network to predict 62 
the carbohydrate binding sites using their constructed Procarb40 dataset, a collection of 40 proteins, 63 
with leave one out validation (33). In 2009, Kulharia built InCa-SiteFinder to predict carbohydrate and 64 
inositol binding sites by leveraging a grid to construct an energy-based method for predicting binding 65 
sites (34). Tsai et al. constructed carbohydrate binding probability density maps using an encoding of 66 
30 protein atom types as an input to a machine learning algorithm (35). Later, Zhou, Yang and 67 
colleagues developed two methods to predict carbohydrate binding sites, (1) a template-based approach 68 
named SPOT-Struc (36) and (2) a support vector machine (SVM) named SPRINT-CBH that leverages 69 
sequence-based features (37). Tsia (35) and SPOT-Struc (36) have achieved Matthews correlation 70 
coefficients (MMCs) of 0.45 on test sets of 108 and 14 proteins, respectively. The increased size of the 71 
protein databank and the improvements in deep learning methods now presents an opportunity to train 72 
and test more broadly. 73 
Larger protein-carbohydrate structural databases now include UniLectin3D (38) and ProCaff (39). 74 
UniLectin3D focuses on lectins bound to carbohydrates, containing 2406 structures; however, it 75 
contains many redundant structures and is currently limited to 592 unique sequences. ProCaff lists 552 76 
carbohydrate-binding protein structures and their binding affinities under various conditions; however, 77 
many structures are only available in the unbound form. 78 
Many drug targets, from pathogen-lectins to aberrant selectins, are carbohydrate binding proteins (6, 79 
13, 40). Understanding the physiological response and determining a glycomimetic drug to neutralize 80 
the infection requires residue-level knowledge (40). Currently, DL algorithms LectinOracle (41) and 81 
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GlyNet (42) predict lectin-carbohydrate binding on a protein level; however, pharmaceutical 82 
development requires residue-level information. 83 
In this work, we develop two DL methods for residue-level carbohydrate-binding site prediction. The 84 
two methods have different architectures, one using voxel convolutions and one using graph 85 
convolutions. We also present a dataset of 808 bound nonhomologous protein chain-carbohydrate 86 
structures and use it to train and test both models. We compare the performance of the models with 87 
each other and with FTMap (28) and Kalasanty (21). Then, we evaluate the performance of the models 88 
on AlphaFold2 (20) predicted versus experimentally determined structures. Finally, we present a proof-89 
of-concept pipeline to predict bound protein-carbohydrate structures. 90 

2 Results 91 

2.1 Dataset for carbohydrate-protein structures 92 

To construct a method to predict carbohydrate-protein interactions, we needed a large and reliable 93 
dataset to use for training and testing. The dataset should contain as many non-homologous structures 94 
as possible to avoid biasing to specific folds. By filtering the PDB (43), we constructed a dataset of 95 
808 high accuracy (< 3 Å resolution), nonhomologous (30% sequence identity), and physiologically 96 
relevant experimental structures (by manually removing buffers), spanning 16 carbohydrate monomer 97 
species. In these structures, 5.2% of the protein residues contact carbohydrates (Supplementary File 98 
S1). The final dataset consists of 808 structures, which we split into 521 training structures, 125 99 
validation structures, and 162 test structures. 100 
2.2 CAPSIF uses deep neural networks to predict carbohydrate interaction sites 101 

We constructed convolutional neural networks (CNNs) named CArbohydrate-Protein Site IdentiFier 102 
(CAPSIF) to predict carbohydrate binding residues from a protein structure. CNNs were initially 103 
developed for images, exploiting the spatial relationship of nearby pixels for prediction tasks. They 104 
have been applied to predict protein structure (44–46) and small molecule binding pockets of proteins 105 
(21). To predict carbohydrate binding residues using structural information, we created two CAPSIF 106 
CNN architectures, CAPSIF:Voxel (CAPSIF:V) and CAPSIF:Graph (CAPSIF:G). 107 
Since a protein can change its side chain conformations upon binding a small molecule or carbohydrate 108 
(from apo to holo), we sought a protein representation that is robust to these and other binding induced 109 
changes. We chose a residue-level representation, using only the Cβ positions of all residues (or Cα in 110 
glycine), since the Cβ position is frequently equivalent in both the apo and holo states (47). Both 111 
CAPSIF architectures use the following features: unbound solvent accessible surface area (SASA) of 112 
each residue, a backbone orientation (architecture specific), and encodings of amino acid properties, 113 
including hydrophobicity index (0 to 1) (48), “aromatophilicity” index (0 to 1) (49), hydrogen bond 114 
donor capability (0,1), and hydrogen bond acceptor capability (0,1) (Methods/Table 3). 115 
The first CAPSIF architecture, CAPSIF:V, is a 3D voxelized approach to learn carbohydrate binding 116 
pockets. CAPSIF:V uses a UNet architecture, which comprises a grid with a series of convolutions 117 
compressing and then decompressing the data to its original size with residual connections to previous 118 
layers of the same size. For each grid, we used an 8 Å3 voxel size where CAPSIF:V encodes each 119 
residue’s β carbon (Cβ) into a corresponding voxel. CAPSIF:V predicts a label P(carbohydrate-binding 120 
residue) for each voxel on the initial grid (Figure 1A; Methods/Figure 6). 121 
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 122 
Figure 1: Two deep learning models that predict where proteins bind carbohydrates. (A) The first model 123 
(CAPSIF:V) maps the β carbon (Cβ) coordinates into voxels, utilizes a convolutional UNet architecture, and 124 
predicts the binding residues. (B) The second model (CAPSIF:G) converts the Cβ coordinates into network 125 
nodes with edges for residue-residue neighbors, performs convolutions on nodes with respect to neighbors with 126 
an equivariant graph neural network (EGNN) architecture, and predicts which residues bind sugars. 127 

The second architecture, CAPSIF Graph (CAPSIF:G), is an equivariant graph neural network (EGNN) 128 
(50), with each Cβ represented as a node on the graph and edges connected between all neighbor 129 
residues within 12 Å (Figure 1B). EGNNs use graph-based convolutions with message passing 130 
between connected nodes based on node features and the edge features (distances) (50). We explored 131 
many variations of these neural network architectures; the Supporting Information includes data 132 
supporting our architecture and data representation choices. 133 
The carbohydrate-binding residues comprise 5.2% of the dataset. To ameliorate the effect of data 134 
imbalance, we followed Stepniewska-Dziubinska et al. and chose the complement of the Dice 135 
similarity coefficient (d) as our loss function (𝐿 = 1 − 𝑑) (21). The Dice coefficient is normalized by 136 
both the correctly and incorrectly predicted residues: 137 

𝑑 = 	 !∗#$
(#$&'$)&(#$&'))

 , (Eq 1) 138 

where TP = true positives, FP = false positives, and FN = false negatives. Since d does not depend on 139 
true negative labels, this loss function is insensitive to imbalanced datasets where the positive label is 140 
observed much less than the negative label (21). 141 

2.3 CAPSIF predicts carbohydrate-binding residues with encouraging accuracy 142 

CAPSIF:V and CAPSIF:G are novel architectures for predicting carbohydrate binding residues; 143 
however, they use 512 structures to train with a substantial data imbalance. We therefore investigated 144 
the performance of CAPSIF on a held-out test set to determine whether the architectures accurately 145 
predict carbohydrate-binding regions despite the small amount of training data. Four representative 146 
CAPSIF:V predictions are shown in Figure 2, highlighting TP residue predictions, (green), FP residues 147 
(blue), and FN residues (red). CAPSIF:V captures the binding pocket visually for an endoglucanase 148 
(2A), xylanase (2B), and β-glucanase (2C), but it performs poorly on the HINT protein that binds 149 
ribose (2D), a five membered ring carbohydrate that is commonly associated with nucleotides. 150 
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 151 
Figure 2: Prediction of carbohydrate binding sites on a protein surface using CAPSIF:Voxel. (A) Two 152 
representations of binding residues for cellotriose bound to endoglucanase (6GL0), surface (left) and sticks 153 
(right);  Predicted surface representation of (B) xylanase bound to a xylose 3-mer (3W26), (C) β-glucanase 154 
bound to a glucose 3-mer (5A95), and (D) HINT protein bound to a ribose monomer (4RHN) predictions. True 155 
positive residue predictions are colored green, false positives are blue, false negatives are red, true negatives are 156 
gray, and the bound carbohydrate is cyan; Dice is defined by eq (1) and DCC is distance from center to center 157 
of the predicted binding regions. 158 

For comparison, we evaluated how small molecule binding site predictors FTMap (28) and Kalasanty 159 
(21) perform for carbohydrate-binding tasks. We assessed these methods using the following metrics: 160 
the Dice coefficient (Eq 1), distance from the center of the crystal to the center of the predicted binding 161 
location (DCC), positive predictive value (PPV), sensitivity, and Matthews correlation coefficient 162 
(MCC). Similar to the Dice coefficient, the MCC is suited for unbalanced datasets; it has been reported 163 
in previous carbohydrate binding site studies (35–37). MCC is:  164 

𝑀𝐶𝐶	 = 	 (#$∗#)*'$∗'))
+(#$&'$)∗(#$&'))∗(#)&'$)∗(#)&'))

 (Eq 2) 165 

where TN = true negatives. MCC ranges from -1 (worst) to +1 (best). The Dice coefficient measures 166 
the overlap of correctly predicted interacting residues to all predicted interacting residues. We define 167 
a success as a Dice score greater than 0.6 or, following Stepniewska-Dziubinska et al., a DCC under 4 168 
Å (21). 169 
On the CAPSIF test set, FTMap achieved an average Dice coefficient of 0.351 and average DCC of 170 
10.5 Å, and Kalasanty achieved an average Dice of 0.108 and average DCC of 14.6 Å (Table 1). 171 
Further, FTMap predicted 16.8% of test structures with greater than 0.6 Dice and 16.8% of test 172 
structures with less than 4 Å DCC, while Kalasanty predicted 0% of test structures with greater than 173 
0.6 Dice and 21.4% of test structures with less than 4 Å DCC (Table 1, Figure 3A,B).  174 
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Table 1: Average metric for each method on test set. Dice similarity coefficient is defined by eq (1), PPV is 175 
positive predictive value = TP / (TP + FP), Sensitivity = TP / (TP + FN), DCC is distance from center to center 176 
of predicted versus experimentally determined residues and only calculated for proteins that yield predictions 177 
(coverage), MCC is Matthews correlation coefficient and defined by eq (2). Bold face indicates best performance 178 
for each metric. 179 

Model Dice PPV Sensitivity DCC (Å) MCC Coverage (%) 
FTMap 0.351 0.284 0.505 10.56 0.222 100.0 
Kalasanty 0.108 0.080 0.207 14.62 -0.624 90.0 
CAPSIF:V 0.597 0.598 0.647 4.48 0.599 94.4 
CAPSIF:G 0.543 0.541 0.590 5.85 0.538 83.2 

  180 
Figure 3: Distributions of CAPSIF:V and CAPSIF:G assessment metrics compared to FTMap (28) and 181 
Kalasanty (21). (A) Distribution of Dice similarity coefficient for all methods smoothed with a Gaussian kernel 182 
density estimate (KDE, bandwidth h = 0.04); (B) Distance from center to center (DCC) of predicted to 183 
experimental carbohydrate binding residues (smoothed with a Gaussian KDE, h = 0.75 Å); (C) Per-target 184 
comparison of CAPSIF:V to FTMap and (D) CAPSIF:G Dice coefficients. 185 

We then investigated whether our CAPSIF models, which are specifically tuned for carbohydrate 186 
binding, predict the carbohydrate binding regions more accurately than Kalasanty and FTMap. On the 187 
held-out CAPSIF test set, CAPSIF:V achieves an average .0596 Dice coefficient and 4.48 Å DCC 188 
metric, and CAPSIF:G achieves an average 0.543 Dice coefficient and 5.85 Å DCC metric (Table 1). 189 
Further CAPSIF:V successfully predicts 62.7% of test structures with greater than 0.6 Dice and 56.5% 190 
of test structures with less than 4 Å DCC, and CAPSIF:G successfully predicts 55.2% of test structures 191 
with less than 0.6 Dice and 46.0% of test structures with less than 4.0 Å DCC. Both CAPSIF models 192 
have a most probable prediction at 0.77 Dice and 2.5 Å DCC (Table 1, Figure 3A,B). 193 
Since CAPSIF is ML based and FTMap is energy based, FTMap may predict more accurately on 194 
different cases compared to CAPSIF. We compared the CAPSIF:V and FTMap Dice scores for each 195 
structure (Figure 3C). FTMap achieves a significantly higher Dice coeffiecents (difference greater 196 
than 0.15 Dice) than CAPSIF:V in 10.9% of cases, and CAPSIF:V predicts the binding region with a 197 
significantly greater Dice coefficient than FTMap in 67.9% of cases. We also compared the computer 198 
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time. On The FTMap server, FTMap requires an hour or more to predict the binding region for a single 199 
structure, whereas both CAPSIF:V and CAPSIF:G predict binding sites within seconds on a single 200 
CPU. Thus, on average, CAPSIF:V and CAPSIF:G outperform current small molecule binding site 201 
predictors for carbohydrate binding. 202 
Finally, we compared the CAPSIF:V architecture to the CAPSIF:G architecture. CAPSIF:V has an 203 
average Dice coefficient of 0.596 and CAPSIF:G has an average Dice coefficient of 0.543 across the 204 
test dataset (Table 1). When comparing the Dice on the test set, CAPSIF:V predicts 27.3% of structures 205 
with greater than 0.15 Dice than CAPSIF:G, while CAPSIF:G predicts 11.2% of structures with greater 206 
than 0.15 Dice than CAPSIF:V (Figure 3D). Thus, CAPSIF:V outperforms CAPSIF:G on 207 
carbohydrate binding site prediction. 208 
Carbohydrates are unique biomolecules that bind to different lectins with high specificity. Both 209 
CAPSIF architectures treat all carbohydrates agnostically, meaning that all sugar residue types are 210 
considered equivalent for predictions. Nonetheless, we compared prediction results across different 211 
sugar residue types. (File SI1). CAPSIF:V performs best on glucose (Glc), galactosamine (GalN), 212 
arabinose (Ara), xylose (Xyl), ribose (Rib), and galacturonic acid (GalNAc). It predicts regions that 213 
bind neuraminic acid (Neu/Sia), fucose (Fuc), and Glucuronic acid (GlcNAc) with less than an average 214 
0.5 Dice coefficient. The weaker performance could stem from the chemical differences or differences 215 
in the size of the training data. Neu and Fuc are substantially chemically distinct carbohydrates, as Neu 216 
is a 9-carbon structure and Fuc adopts an (L) conformation; both are sparse in our dataset. 217 
2.4 CAPSIF:Voxel performs equivalently on AlphaFold2 structures 218 

Both CAPSIF models were trained and tested on bound crystal structures; however, experimental 219 
protein structure determination can be expensive, even in the absence of a carbohydrate. We therefore 220 
investigated whether CAPSIF:V could usefully predict carbohydrate binding structures from 221 
computationally modeled structures. We reconstructed the test protein structure dataset with the Colab 222 
implementation of AlphaFold2 (AF2) (20, 51) and predicted the carbohydrate binding residues of the 223 
predicted structures and evaluated the same performance metrics (Table 2). CAPSIF:V predicts the 224 
carbohydrate binding regions with similar Dice coefficients of 0.597 and 0.586 for protein databank 225 
versus AF2 predicted structures, respectively. Figure 4A shows that the Dice distribution is similar 226 
between PDB and AF2 structures. CAPSIF:V predicts the center of the carbohydrate binding region 227 
more accurately on AF2 structures with a DCC of 3.8 Å, compared to 4.5 Å on crystal structures. 228 
Although CAPSIF:V has a lower average DCC on AF2 structures compared to experimental structures, 229 
CAPSIF:V fails to predict any sites at all on 15% of AF2 structures, whereas it fails in only 5% of PDB 230 
structures.  231 
The multiple outliers where CAPSIF:V fails to predict the region of carbohydrate binding in only AF2 232 
predicted structures are sorted in Figure 4B. CAPSIF:V predicts a Dice coefficient of at least 0.15 233 
units higher for PDB structures in 14.9% of structures and predicts AF2 structures with a 0.15 Dice 234 
coefficient or higher for 8.7% of test structures. AF2 generated structures can be inaccurate; however, 235 
in most of the test cases, AF2 captures the structures with angstrom level accuracy and the carbohydrate 236 
binding residues with high pLDDT confidence; unfortunately the pLDDT confidence measure does 237 
not correlate with the CAPSIF success rate (Figure S8).  238 
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Table 2: Metrics for CAPSIF:Voxel inputting PDB or AF2 structures. Dice, PPV, Sensitivity, DCC, MCC, 239 
and defined in Table 1. 240 

Structures Dice PPV Sensitivity DCC (Å) MCC Coverage (%) 
PDB 0.597 0.598 0.647 4.48 0.599 94.4 
AF2 0.586 0.508 0.744 3.76 0.598 85.0 

 241 

 242 
Figure 4: Dice coefficient assessment of CAPSIF:Voxel on PDB and AlphaFold 2 (AF2) structures. (A) 243 
Kernel density estimate (h = 0.04) showing the distribution of Dice coefficient for both methods; (B) 244 
Comparison of each test structure between CAPSIF:V on PDB and AF2 structures. 245 

2.5 CAPSIF assists ab initio prediction of bound protein-carbohydrate structures 246 

CAPSIF:V predicts the carbohydrate binding site on the majority of proteins with high accuracy, 247 
suggesting that it might be used in a pipeline to predict bound protein-carbohydrate structures. As a 248 
proof-of-concept, we developed a prospective pipeline and tested it on five proteins from the 249 
GlycanDock (24) test dataset that were not included the CAPSIF dataset. 250 
We constructed the following rudimentary pipeline. We predicted the binding site from each unbound 251 
protein’s experimentally determined structure with CAPSIF:V and constructed the known 252 
carbohydrate with Rosetta. The carbohydrate’s center of mass (CoM) was then placed in the CoM of 253 
the predicted binding region and manually rotated to align with the binding region shape. Next, we 254 
used the Rosetta FastRelax (52) protocol to remove steric clashes. Then we used Rosetta’s standard 255 
GlycanDock (24) to predict the bound structures. To find the highest rated bound structure, we filtered 256 
9,500 decoys by their computed interaction energy. 257 
We tested the pipeline on five experimentally solved unbound proteins: P. aeruginosa lectin 1, a glycan 258 
binding protein (GBP, 1L7L), two carbohydrate binding modules (CBMs, 1GMM and 2ZEW), a 259 
glycoside hydrolase enzyme (1OLR), and an anti-HIV-1 antibody (Ab) (6N32). Figure 5 shows 260 
structures and the root mean squared deviation (RMSD) of each predicted carbohydrate structure from 261 
the experimental structure. CAPSIF:V predicted carbohydrate binding residues near the correct site on 262 
four of the five proteins, but it failed to predict any binding residues on the antibody (6N32). For three 263 
of the proteins, CAPSIF:V predicts the region with high accuracy, but on 1GMM, CAPSIF:V predicts 264 
regions flanking the binding site, but still provides a similar CoM to the actual binding region. For the 265 
for carbohydrates with identified sites, the standard GlycanDock protocol was able to refine the 266 
carbohydrate structure to an RMSD of less than 8 Å for the entire ligand and less than 6 Å for register-267 
adjusted values, where the termini were removed before calculating RMSD. The 3-mer Gal GBP 268 
(1L7L) has the worst RMSD (6 Å register adjusted, Figure 5B), likely because the holo conformation 269 
(2VXJ) undergoes a conformational change at the carbohydrate-binding site. These predictions 270 
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demonstrate the potential of CAPSIF to help inform experimental hypotheses or for high throughput 271 
predictions of bound protein-carbohydrate structures. 272 

 273 
Figure 5: Results of CAPSIF:V-GlycanDock pipeline. CAPSIF-predicted residues are shown in green. Wild 274 
type unbound structures are shown in surface representation in gray with the experimentally determined 275 
carbohydrate in gray sticks and predicted bound carbohydrate in purple sticks. RMSD of entire ligand and 276 
RMSD of register-adjusted ligand are shown below. (A) a carbohydrate binding module (CBM), 1GMM 277 
(unbound PDB)/1UXX (bound PDB), (B) a glycan binding protein (GBP), 1L7L/2VXJ, (C) an enzyme, 278 
1OLR/1UU6, (D) a CBM, 2ZEW/2ZEX, and (E) an antibody (Ab), 6N32/6N35. 279 

3 Discussion 280 

We demonstrated that both CAPSIF models predict residues of proteins that bind carbohydrates with 281 
much higher accuracy than prior approaches. CAPSIF:V uses a voxelized approach and predicts 62.7% 282 
of crystal structures with a distance from the center of the predicted region to the center of the 283 
experimentally determined region (DCC) within 4 Å. CAPSIF:G performs strongly on the dataset 284 
predicting 55.2% of crystal structures with a DCC less than 4 Å, with CAPSIF:V performing similarly 285 
or outperforming CAPSIF:G in most cases. CAPSIF:V is robust to errors in protein structure of the 286 
magnitude in AF2 structures: the algorithm predicts similar carbohydrate-binding residue regions 287 
independent of whether the input structure is experimentally determined or predicted by AF2. This 288 
algorithm is a substantial improvement over surrogate ligand site predictors Kalasanty and FTMap. 289 
Further, CAPSIF outperforms previous methods specifically tuned for carbohydrate binding. 290 
CAPSIF:V achieves a 0.599 MCC and CAPSIF:G achieved a 0.538 MCC on the test dataset. Tsia et 291 
al’s method using probability density maps achieved a 0.45 MCC on their independent test dataset of 292 
108 proteins (35), SPOT-Struc achieved a ~0.45 MCC on their test dataset of 14 proteins (36), and 293 
SPRINT-CBH achieves a MCC of 0.27 MCC on their test set of 158 proteins (37). While these datasets 294 
differ from ours, ours is a similarly constructed non-homologous dataset of 162 structures, and CAPSIF 295 
has markedly stronger MCC. 296 
Although CAPSIF accurately captures the protein-carbohydrate binding interface, there are limitations. 297 
CAPSIF is carbohydrate-agnostic, so it only predicts that a protein residue will bind one of 16 298 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.14.531382doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.531382
http://creativecommons.org/licenses/by-nc/4.0/


 
10 

carbohydrate monomers. That is, CAPSIF predicts the location of carbohydrate binding but not which 299 
carbohydrate preferentially binds there. Further, CAPSIF was only trained and tested on known 300 
carbohydrate binding proteins, therefore CAPSIF may not be informative on non-carbohydrate binding 301 
proteins. Another limitation is that CAPSIF fails to predict any binding on about three times as many 302 
AF2 predicted structures as crystal structures. Unfortunately, CAPSIF prediction accuracy on AF2 303 
structures is not correlated with pLDDT confidence metrics so it is not possible to know when it will 304 
fail. 305 
The scope of CAPSIF makes it well suited for a computational pipeline. We suggest the use of DeepFRI 306 
(53), a deep learning model that predicts protein function, to first determine if the protein is a 307 
carbohydrate binding protein. If the protein is a carbohydrate binding protein, then LectinOracle(41) 308 
or GlyNet (42) can be used to predict which carbohydrates bind the protein. CAPSIF can then predict 309 
binding locations, either from an experimental structure or AF2 generated structures, and then 310 
GlycanDock(24) can predict a docked protein-carbohydrate structure. 311 
We tested part of this pipeline by predicting the binding region using CAPSIF:V and docking the 312 
known carbohydrate binder to the region with GlycanDock (24). CAPSIF:V predicted binding sites on 313 
four of the five proteins. The antibody case, which failed, binds a carbohydrate at the complementary 314 
determining region (CDR) loops, split over two chains, but CAPSIF was trained only on single chain 315 
data. When register adjusted, each structure yielded a ligand RMSD less than 6 Å. We anticipate that 316 
a more well-tuned pipeline could yield higher accuracy structures ab initio from sequence only. 317 
To our knowledge, voxelized and graph-based site prediction has not been presented simultaneously 318 
before. Existing studies have used graphs to either predict binding affinity (54) or a docked structure 319 
(in coordination with diffusion techniques) (55), but they have not been used to determine small 320 
molecule binding regions. We tested two architectures utilizing either voxel or graph representations. 321 
We showed that CAPSIF:V outperforms CAPSIF:G, both of which use convolutions to predict the 322 
carbohydrate binding ability of residues with the same residue representation. We can speculate about 323 
the reason by considering the differences between the approaches. CAPSIF:V discretizes the protein 324 
structure over a 3D grid, which can obscure the Cβ position by a few Ångströms, whereas CAPSIF:G 325 
uses the coordinates without any loss of spatial information. CAPSIF:V encodes the initial ~1.4M 326 
feature input to a lower dimensionality of a 512-feature vector to encode the entire structure, whereas 327 
CAPSIF:G lifts the data from an Nres x 30 to a higher dimensionality of Nres x 64. CAPSIF:V has ~102M 328 
parameters and CAPSIF:G has ~236K parameters, reflecting how graph-based methods capture the 329 
spatially equivariant information in fewer parameters. One characteristic of using the voxel 330 
representation is that the grid contains voxels with the protein and the voxels outside the protein, 331 
including binding pocket cavities, whereas the graph representation only contains the protein. The 332 
voxel network reasoning over the surface pocket volume may be the key factor for improved 333 
carbohydrate-binding residue prediction. 334 

Building on this initial screen, future studies could focus on improving the CAPSIF data representation 335 
for improved accuracy and extending these models to predict which carbohydrate monomer a residue 336 
most preferentially binds as well as whether the protein is a carbohydrate-binding protein. Although 337 
lectins are well known for carbohydrate binding, some protein families, such as G protein coupled 338 
receptors (GPCRs) and antibodies, do not exclusively bind carbohydrates (56, 57). High throughput 339 
methods like these could enable proteomic scale sorting of carbohydrate binding capabilities.  340 
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4 Methods 341 

4.1 Dataset 342 

No dataset of nonhomologous bound protein-carbohydrate structures existed that leveraged the total 343 
size of the current PDB, so we constructed one. Simply selecting all RCSB (43) structures with 344 
carbohydrates gives all docked protein-carbohydrate structures but also inherently returns all 345 
glycosylated proteins, glycosylated peptides, as well as all protein structures that use carbohydrates as 346 
crystallization agents. We desired to determine all true physiological protein-carbohydrate interactions, 347 
so therefore we manually removed nonspecific crystallization buffers or glycoproteins. Next, we 348 
removed all proteins with resolution over 3 Å. Then we removed all homologous protein structures 349 
over 30% sequence identity to remove all sequentially redundant proteins. Some structures containing 350 
sugars with modified monosaccharides and cyclic carbohydrates were unreadable in the PyRosetta (58) 351 
software and therefore additionally removed. 352 
The final dataset consists of 808 structures, with a split of 521 training structures, 125 validation 353 
structures, and 162 test structures. Each structure has one or more of the following carbohydrate 354 
monomers: glucose (Glc), glucosamine (GlcNAc), glucuronic acid (GlcA), fucose (Fuc), mannose 355 
(Man), mannosamine (ManNAc), galactose (Gal), galactosamine (GalNAc), galacturonic acid (GalA), 356 
neuraminic acid (Neu)/sialic acid (Sia), arabinose (Ara), xylose (Xyl), ribose, rhamnose (Rha), 357 
abequose (Abe), and fructose (Fru). The numbers of each monomer per structure and Dice coefficient 358 
for each carbohydrate monomer type from CAPSIF:V are included in Supplementary File S1. For all 359 
following work, we defined a carbohydrate-interacting residue as residues with any heavy atom that is 360 
within 4.2 Å of a carbohydrate heavy atom. 361 

4.2 CAPSIF:V Data Processing 362 

Convolutional neural networks are not rotation invariant, and so data augmentation by rotations 363 
improves their performance (59). Therefore, we augmented the input data for CAPSIF:V during 364 
training to overcome the rotational variance. Each time a structure was used in training, it was rotated 365 
in Cartesian space by a random angle in {-180°,180°} around an axis defined by a randomly-chosen 366 
residue’s location and the protein center-of-mass. With the random rotation for each epoch, the network 367 
learned approximately 1,000 different orientations of each structure in the data set. If the protein was 368 
too large for the grid size, the protein was split into separate grids and run separately (about 22% of 369 
the training points).  370 

4.3 Neural Network Architectures 371 

4.3.1 Features 372 
Due to the small dataset size of 808 structures, we chose residue-level representations instead of 373 
atomistic. We assigned all residue information to the Cβ atom of each residue because the position of 374 
the Cβ is similar in apo and holo states (47). The features are listed in Table 3. The SASA, 375 
hydrophobicity, H bond donor/acceptor indices were calculated using pyRosetta (58), and 376 
aromatophilicty was indexed by Hirano and Kameda (49). 377 
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Table 3: List of features and the associated encoding size used for both CAPSIF models. 378 

Feature Type Encoding Size 

Amino acid (one-hot) 20 
SASA 1 

Hydrophobicity 1 
Aromatophilicity 1 

H Bond Donor/Acceptor 2 
Orientation (Voxel only) 3 

Torsion (Graph only) 4 
4.3.2 CAPSIF:Voxel 379 
CAPSIF:V utilizes a UNet architecture, encoding and decoding the input structure to predict 380 
carbohydrate binding residues with residual connections. CAPSIF:V inputs a grid of 36 x 36 x 36 381 
voxels with each voxel representing 2 Å x 2 Å x 2 Å. We input a tensor of size (28,36,36,36), with the 382 
28 features from Table 3, where orientation is the normalized components of the Cα to Cβ bond vector. 383 
All voxels without a Cβ within are input as zero-vectors. 384 
CAPSIF:V contains an embedding layer and 9 convolutional blocks where 4 blocks encode the 385 
structure, 1 block forms the bottleneck, and 4 blocks decode the structural information. The embedding 386 
layer lifts the 28-channel input into a 32-dimension space. Each block has a double convolution, 387 
performing the following methods twice: 3D convolution, with the same number of input channels as 388 
number of output channels, (5x5x5) kernel with a stride of 1 and padding of 2, a batch normalization 389 
layer, and rectified linear units (ReLU) activation function. In addition, each encoding block also has 390 
a MaxPooling layer to double the size of the channels (32,64,128,256,512) while reducing 3D cubic 391 
voxel number (36,18,9,3,1). Each decoding block first concatenates the results of the encoding layer 392 
of the same size and then performs a double convolution and a 3D-transposed convolution operator, 393 
reducing the number of channels (256,128,64,32) while increasing the 3D cubic voxel number 394 
(3,9,18,36). After the 9 blocks, there is a single convolutional layer condensing the input channels (32) 395 
into a single output channel, which is then followed by a sigmoid activation function to output the 396 
probability that the voxel contains a residue that binds a sugar (Figure 6). CAPSIF:V contains 397 
102,676,001 parameters. 398 
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 399 
Figure 6: CAPSIF:V architecture. Blue arrows indicate a double convolution, red arrows indicate an encoding 400 
layer, and green arrows indicate a decoding layer. 401 
CAPSIF:V was trained for 1,000 epochs with a learning rate of 10-4 and batch size of 20 grids using 402 
the Adam (60) optimizer with the loss function 𝐿 = 1 − 𝑑, where d is defined by (Eq 1). 403 

4.3.3 CAPSIF:EGNN 404 
CAPSIF:G is an equivariant graph neural network (50) that performs convolutions on each node 405 
(chosen as each Cα for glycine and Cβ for all others). Graph edges are connected between neighbors 406 
(defined as all other nodes` within 12 Å) and the edge attribute is the distance between node Cβ atoms. 407 
In addition to the features used in CAPSIF:V, we include a torsional component in the node features 408 
as the sine and cosine of the φ and ψ angles of each residue (Table 3).  409 
CAPSIF:G first lifts the 29-feature input node into a 64-dimension space. The 64-feature vector, 410 
alongside the edge features (distances) is then input to eight consecutive equivariant graph 411 
convolutional layers (EGCLs) (50). Each EGCL contains an edge multilayer perceptron (MLP), a node 412 
MLP, a coordinate MLP, and attention MLP. The edge MLP consists of two blocks of a linear layer 413 
and a rectified linear units (ReLU) activation function. The node MLP consists of a linear layer, a 414 
ReLU activation layer, and linear layer. The coordinate MLP contains a linear layer, a ReLU activation 415 
layer, and a linear layer. The attention MLP contains a linear layer and a sigmoid activation function. 416 
All layers input and output a 64-feature vector. Finally, CAPSIF returns the embedding to a 29-feature 417 
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vector per node, adds the initial input features to the final vector, performs batch normalization, and 418 
then uses a sigmoid activation function to output a probability of carbohydrate binding of all residues. 419 
CAPSIF:G contains 236,009 parameters. 420 
This model was trained for 1,000 epochs with a learning rate of 10-4 and batch size of one protein using 421 
the Adam optimizer (60) with the loss function 𝐿 = 1 − 𝑑, where d is defined by (Eq 1). 422 
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