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Lymphangiogenesis is a very early step in lymphatic metastasis. It is regulated and promoted not only by the tumor cells themselves,
but also by cells of the tumormicroenvironment, including cancer associated fibroblasts, mesenchymal stem cells, dendritic cells, or
macrophages. Even the extracellularmatrix as well as cytokines and growth factors are involved in the process of lymphangiogenesis
and metastasis. The cellular and noncellular components influence each other and can be influenced by the tumor cells. The
knowledge aboutmechanisms behind lymphangiogenesis in the tumormicroenvironmental crosstalk is growing and offers starting
points for new therapeutic approaches.

1. Introduction

The spread of tumor cells via the lymphogen route into the
draining lymphnodes is common inmanymalignant tumors,
including malignant melanoma of the skin [1], head and
neck squamous cell carcinoma [2], squamous cell carcinoma
of the uterine cervix [3], colorectal carcinoma [4], breast
cancer [5], and malignant melanoma of the conjunctiva
[6–13]. Sentinel lymph node biopsy allows early detec-
tion of micrometastasis resulting in staging and treatment
changes.

The outgrowth of new lymphatic vessels from preexisting
lymphatic vessels (lymphangiogenesis) has recently gained
much interest in tumor research since it is the initial step
in lymphogenic metastasis [14]. Although the role of intratu-
moral versus peritumoral lymphangiogenesis is still debated,
its role as a decisive risk factor for tumor metastasis is now
established.

Lymphangiogenesis is mediated by binding of the lym-
phangiogenic growth factors vascular endothelial growth
factor- (VEGF-) C and VEGF-D to their specific lymphatic
receptor, VEGF receptor 3 [15]. VEGF-C and VEGF-D can
be released by a variety of tumor cells or by peritumoral
nonmalignant cells of the tumor microenvironment [16–
19], thus explaining the occurrence of tumor-associated
lymphangiogenesis.

The cellular crosstalk in the tumor microenvironment is
likely to play a role in promoting lymphangiogenesis and
thus lymphatic metastasis. A variety of factors in the tumor
microenvironment, including extracellular matrix (ECM)
with cancer-associated fibroblasts (CAFs) and mesenchymal
stem cells (MSCs), cells of the innate and adaptive immune
system (dendritic cells, macrophages, and T- and B-cells) as
well as cytokines and growth factors produced by the tumor
and stromal cells [20, 21], has been considered to contribute
to this process.
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This review focuses on the role of tumor microenviron-
mental components in tumor-associated lymphangiogenesis
and therefore the lymphaticmetastasis cascade. Better under-
standing of these mechanisms is required to improve future
therapeutic strategies aiming at minimizing the lymphatic
spread of the tumor to the regional lymph nodes in order to
the prolong survival of cancer patients.

2. Cytokines and Growth Factors
Control Lymphangiogenesis

Growth factors of the vascular endothelial growth factor
(VEGF) family are well understood in lymphangiogenesis.
VEGF is the target of one of the first therapeutics: VEGF
blocking antibody bevacizumab is used in colon cancer [22].

VEGF-D has been shown to induce the formation of
blood and lymphatic vessels in tumors and VEGF-D expres-
sion on tumor cells led to increased lymphatic metastasis
[23]. However, other authors emphasize the tissue specific
effects on blood or lymph endothelial growth of VEGF-D
[24]. In many forms of human cancer, a correlation of VEGF-
C expression within the primary tumor and lymph node
metastasis has been observed [25–30]. VEGF-C overexpres-
sion in breast cancer increased intratumoral lymphangio-
genesis and was associated with enhanced metastasis into
draining lymph nodes and lungs [31]. This might be caused
by a tumor secreted VEGF-C dependent increase of matrix
metalloproteinase- (MMP-) 9 production, followed by an
increased matrix degradation and migration [32]. Other
studies conclude that tumor derived VEGF-C draining to the
regional lymph nodes may promote the outgrowth of lymph
node metastasis [33].

Controversy exists whether VEGF-A is able to induce
lymphangiogenesis. Recent studies indicate that the VEGF-
A/VEGF-R2 signaling pathway is involved in lymphangio-
genesis [14, 34]. Hirakawa et al. detected that VEGF-A
overexpressing primary tumors can induce lymph node lym-
phangiogenesis and were associated with increased lymph
node metastasis [35]. Lymph node lymphangiogenesis per se
is thought to actively promotemetastasis [36] and can also be
induced by tumor cells [37].

Beside the VEGF family, the angiopoietins- (Ang-) 1
and Ang-2 are important in tumor angiogenesis. They bind
to their receptors Tie 1 and Tie 2 on vascular endothelial
cells and are involved in lymphangiogenesis and metastasis
[38–42]. Ang-2 is upregulated by different factors including
VEGF-A or insulin like growth factor 1 and induces angio-
genesis in the presence of VEGF-A [39]. A reduced prognosis
has been shown for different tumors overexpressing Ang-
2 [39]. Ang-2 seems to have a destabilizing effect on blood
vessels, an early step in neovascularization [43], whereasAng-
1 expressed by pericytes and others promotes stability of
vessels [38]. In pancreatic cancer, elevated circulating Ang-
2 was correlated with the extent of lymphatic metastasis and
therefore seems to participate in the control of lymphatic
metastasis [44].

Other factors that are involved in lymphangiogenesis are
platelet derived growth factor- (PDGF-) BB [45], fibroblast

growth factor- (FGF-) 2 [46], sphingosine 1 phosphate (S1P)
[47], and hepatocyte growth factor (HGF) [48].

Lymphatic endothelium cells express different markers,
including lymphatic vessel endothelial hyaluronan receptor-
1 (LYVE-1), podoplanin D2-40, prospero homeobox tran-
scription factor 1 (prox1), and VEGF-R3 [49]. Lately, besides
the significant correlation of lymphatic markers LYVE-1 and
podoplanin D2-40 [50] in many forms of cancer and their
negative correlation to prognosis mentioned above, prox1
and forkhead box (FOX) C2, regulators of angiogenesis
and lymphangiogenesis, came into focus of cancer research.
Sasahira et al. report that prox1 expression correlated with
progression, lymphatic vessel density, metastasis, and worse
prognosis [51]. Prox1 activated VEGF-C expression in vitro,
whereas FOXC2 enhances prox1 andVEGF-A expression [51].

Chemokines are important signal proteins, involved in
cell migration and chemotaxis. Chemokine ligands bind to
their specific receptors. Metastatic cells seem to adopt this
mechanism and express analogue receptors to improve their
migration to distinct tissues [52]. Many different chemokine
pathways are known and their role in cancer has been
completely and well reviewed by others [53]; therefore, in this
review we focus on chemokine axes involved in lymphatic
metastasis: the chemokine receptor 7 (CCR7) with its ligands
CCL19 and 21 and the CXCR4/CXCR12 axis.TheCCR7 axis is
a very important physiological axis for migration of immune
cells and CCL21 regulates the homing to the lymphoid tissues
[54].

Chemokines have been shown to be involved in tumor
lymphangiogenesis and metastasis; for example, VEGF-C
upregulated chemokine ligand 21 (CCL21) on lymphatic
endothelium, whereby CCR7 expressing tumor cells were
attracted towards the lymphatic vessels [32].

Many studies show that primary tumor cells and
metastatic cells express CCR7 in the draining lymph node
and that there is a significant correlation between lymph node
metastasis and CCR7 expression in many tumor entities [55–
58]. In one study the authors suggest that CCR7 enhances
metastasis by upregulating MMP-9 expression [59]. Li et al.
showed that hypoxia may induce CCR7 expression on tumor
cells to stimulate migration and invasion of lung cancer cells,
using the HIF1𝛼 and HIF2𝛼 pathway [60].

Other chemokines such as CXC chemokine type 2
(CXCR2) seem to be involved in lymphangiogenesis, as
a high expression of CXCR2 is associated with increased
lymph node metastases and a reduced prognosis in resected
esophageal carcinoma [61].

Chemokine receptor CXCR4 is involved in metastasis
of multiple cancer entities, including breast cancer [62],
gastric cancer [63], prostate cancer [64], melanoma [65],
uvealmelanoma [66], or glioblastoma [67], to name just a few.

CXCR4 is upregulated in metastatic breast cancer cell
lines and lymph node metastasis [62], and cells expressing
CXCR4 predominantly migrate to tissues that express the
ligand CXCL12 [62]. These tissues include the common
sides of breast cancer metastasis, including lung, lymph
node, brain, and bone marrow [5, 62]. Interestingly, in vivo
inhibition of the CXCR4/CXCL12 axis reduced lymph node
and lung metastasis [62]. Others showed that the de novo
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Figure 1: The prolymphangiogenic crosstalk of the tumor microenvironment: tumor cells as well as macrophages, dendritic cells, the
extracellular matrix, cancer-associated fibroblasts, and mesenchymal stem cells can promote lymphangiogenesis by secretion or expression
of different factors.

expression of CXCR4 is sufficient for metastasis to occur,
shown by the B16melanoma cell line transfectedwithCXCR4
[68]. In gastric cancer, CXCR4 expression is involved in
lymph node metastasis [63, 69].

In prostate cancer, CXCR4 expression has been shown to
increase tumor invasion andmetastasis [64]. It may therefore
serve as a prognostic marker in prostate cancer [70].

One last example is the CXCR3-CXCL9 axis: CXCR3
expression has been detected in several human melanoma
cell lines and the mouse melanoma cell line B16F10. The loss
of CXCR3 expression reduces lymph node metastasis in a
murine melanoma model [71].

To summarize, the best-studied group of growth factors is
the VEGF family, whereby inmany forms of cancer an associ-
ation between VEGF-C and metastasis has been recognized.
Within the chemokines in cancer, the CXCR4/CXCL12 axis
is currently best characterized and CXCR4 is a ubiquitously
expressed receptor on tumor cells. Chemokine expression is
often associated with elevated lymphatic metastasis. Tumor
cells seem to have adopted these migration paths for facili-
tated access into lymphatic vessels and towards the draining
lymph nodes. Cytokines and growth factors involved in

lymphangiogenesis are summarized in Figure 1 and explained
in detail in the following sections.

3. Senescence and Senescence-Associated
Secretory Phenotype: Cell Autonomous
and Nonautonomous Roles

Most mammalian cells have a limited proliferative capacity,
and after various rounds of proliferation accompanied by
telomere shortening, cells undergo permanent cell cycle
arrest and enter a state called cellular senescence. Senes-
cent cells remain viable and metabolic active and thereby
further contribute to tissue homeostasis. Senescence can be
prematurely induced by stress factors and DNA damage, for
example, upon oncogene expression or UV irradiation, and
is mediated by activation of the Arf/p53/p21 and/or p16/pRb
pathways [72]. Senescence has been observed in various cell
types of the tumor microenvironment including fibroblasts
and immune cells and is considered a physiological tumor-
suppressive mechanism in human cancers as it counteracts
proliferation of premalignant cells [73, 74]. Human nevi, for
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instance, are frequently positive for activating BRafV600E
mutations; however, these cells bear a senescent phenotype
[75]. Abrogation of such oncogene-induced senescence by
PI3K activation allows for melanoma formation [76]. Induc-
tion of cellular senescence therefore has been recognized as
promising therapeutic approach to prevent the proliferation
of cancer cells. Recently, however, it became apparent that
senescence in surrounding tissue cells might have both
tumor-suppressive as well as promoting consequences [77].
Senescent cells secrete a variety of growth and regeneration
promoting cytokines, chemokines, growth factors, and pro-
teases, a phenomenon called senescence-associated secretory
phenotype (SASP). SASP has recently been described for a
variety of cancers and is considered to significantly modulate
the properties of the specific tumormicroenvironment. SASP
factors can induce recruitment of immune cells like NK-
cells and T-cells that help eliminate premalignant cells,
and such NK-cell recruitment appears to be critical for
tumor regression in vivo [78]. On the contrary, senescent
tissue cells via SASP factors can directly promote tumor
cell proliferation, invasion, and immune-editing to escape
elimination by the immune system, thus overall providing
a tumor-permissive micromilieu. Importantly, induction of
senescence in NK cells has recently been reported to promote
vascular remodeling and angiogenesis [79], opening the
possibility that senescence and SASP may also contribute to
tumor-associated lymphangiogenesis, although this remains
to be demonstrated experimentally.

In the case of SASP of senescent fibroblasts in the tumor
microenvironment, a significant overlap of its expression
profile with that of cancer-associated fibroblasts (CAFs, see
below) has been reported. For instance, upregulation of IL-
6, IL-8, various CXCLs, and MMP-3 constitutes a common
signature of CAFs and SASP [80]. Together, though induction
of permanent cell cycle arrest within tumor cells is a desirable
feature to suppress tumorigenesis, senescence of immune
and surrounding tissue cells may have opposing outcome
on tumor progression and angiogenesis, underscoring the
importance of a better understanding of the cross-talk
between tumor cells and their particular microenvironment.

4. Extracellular Matrix (ECM)
with Cancer-Associated Fibroblasts (CAFs)
and Mesenchymal Stem Cells (MSCs)
Promote Lymphangiogenesis

Tumor-associated lymphangiogenesis may arise in the tumor
microenvironment. The tumor microenvironment is mainly
composed of the extracellular matrix (ECM) enriched with
nonmalignant stroma cells, such as cancer-associated fibrob-
lasts (CAFs) and mesenchymal stem cells (MSCs).

4.1. Extracellular Matrix (ECM). The ECM is a com-
plex three-dimensional network made of fibrous proteins,
such as collagen and fibronectin, and nonfibrous proteins,
namely, glycosaminoglycans, proteoglycans, and glycopro-
teins. Located between cell clusters in all tissues, it strength-
ens the tissues, provides a channel for communication and

migrationwithin the tissue andunder physiologic conditions,
and acts as scaffold to keep growth factors insoluble [81–
83]. Cancer cells may stimulate the tumormicroenvironment
by producing growth factors, including PDGF, transforming
growth factor- (TGF-)𝛽, VEGF, basic fibroblast growth factor
(bFGF), and interleukins [83]. The altered expression of such
mediators by tumor cells, which also have autocrine effects,
often leads to production of proteolytic enzymes by the
tumor cells [84, 85]. They may also stimulate stromal cells,
for example, fibroblasts, to secrete molecules with a similar
proteolytic effect on the ECM [86].

Therefore, not only tumor cells, but also stroma cell
activation may modify the ECM towards an environment
that promotes microinvasion of tumor cells [87]. Major
components digesting ECM and cell surface proteins include
MMPs, bone morphogenic protein 1 (BMP1), tissue serine
proteinases, and adamalysin-related membrane proteinases
[88]. Remodeling the ECMcan significantlymodulatemigra-
tory and angiogenic properties, for instance by release of
cryptic protein sites and specific new molecule fragments
[81]. Cryptic protein domains in ECM components such as
fibronectin are typically masked in a folded structure and
are thereby not accessible. Proteolytic enzymes can release
these domains and open new integrin binding sites and
antiangiogenic sequences [81] or activate latent TGF-𝛽 by
proteolytic cleavage [89].

Hyaluronan, an important mucopolysaccharide of the
ECM, provides an environment of proliferation and migra-
tion [90]. Interestingly, lymphatic endothelial cells exclusively
express a hyaluronan receptor, known as LYVE-1 [91]. The
functional impact of LYVE-1 receptors on tumor-associated
lymphangiogenesis is not fully understood. However, it was
demonstrated recently that lowmolecular weight hyaluronan
promoted lymphatic endothelial cell (LEC) proliferation,
migration, and tube formation, mediated via binding to
LYVE-1 [92]. Therefore, in the tumor context hyaluronan
seems to promote hem- and lymphangiogenesis.

In summary, dynamic remodeling of the ECM and
cell-substrate interactions display one important feature in
tumor-mediated lymphangiogenesis.

4.2. Cancer-Associated Fibroblasts (CAFs). Recently, there is
increasing evidence that fibroblasts are a prominent modifier
of cancer progression [93, 94]. CAFs are tall spindle shaped
mesenchymal cells that share characteristics with smooth
muscle cells and fibroblasts [83]. They can immunohisto-
chemically be identified with a combination of different
markers, since they show an elevated expression of 𝛼-smooth
muscle actin, vimentin, desmin, and fibroblast-activating
protein (FAP) compared to normal stromal fibroblasts [95,
96]. CAFs can promote tumor growth and progression but
also influence the stromal microenvironment by producing
large amounts of growth factors, cytokines and extracellular
matrix proteins (e.g., collagen and fibronectin), and MMPs
[21, 97, 98]. Bauer et al. showed an increased expression
of TGF-𝛽2, insulin-like growth factor-binding protein 2,
tumor necrosis factor (ligand) superfamily member 4, and
heparin-binding EGF-like growth factor in CAFs compared
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to regular fibroblasts [99]. Moreover, CAFs secrete growth
factors such as HGF or TGF-𝛽 but also ECM glycopro-
teins such as Tenascin-C (TNC) [100]. Tumor cells on
the other hand secrete TGF-𝛽 or platelet-derived growth
factor (PDGF), which are important factors for interac-
tions between tumor cells and fibroblasts. TGF-𝛽 modulates
fibroblasts andmyofibroblasts towards CAFs [101, 102].CAFs
support tumor growth and metastasis indirectly through
recruitment of immune cells such as tumor-associated
macrophages (TAMs), myeloid suppressor cells (MDSCs), or
regulatory T-cells (Tregs). All these cells are influencing the
tumor microenvironment towards an immune suppressive
environment and are thereby protecting the tumor. In vivo
experiments showed that elimination of CAFs favors a Th1
over a Th2 polarization in the tumor microenvironment of a
murine breast cancer model [103].

Themodulation of the tumor microenvironment induces
angiogenesis and lymphangiogenesis. CAFs secrete the
stromal cell-derived factor 1 (SDF1), also known as CX
chemokine ligand 12 (CXCL12), which is important in
recruitment of endothelial progenitor cells (EPCs) in tumors.
CXCL12 itself stimulates the tumor growth directly, via
the CXC-chemokine receptor 4 (CXCR4), expressed among
others on human breast carcinoma cells [104]. An elevated
amount of CAFs significantly correlated with an increased
lymphatic vessel density in ovarian cancer [105]. Another
study showed that CAFs express podoplanin in the context
of different tumors. The podoplanin expression of CAFs
positively correlated with the VEGF-C expression of the
tumor cell and the intratumoral amount of CD31+ blood
vessels. In contrast, the increased expression of podoplanin
in CAFs negatively correlated with peritumoral microvessels
and LYVE-1 positive lymphatic vessels. The expression of
podoplanin in CAFs did not correlate with the VEGF-A or
VEGF-D expression in tumor cells [106].

Summarizing, CAFs seem to be important in the tumor
microenvironment, where they indirectly contribute to lym-
phangiogenesis and metastasis by the induction of Th2 T-
cells, recruitment of suppressive immune cells, and secretion
of growth factors. However, the exact mechanisms are not
fully understood.

4.3. Mesenchymal Stem Cells (MSCs). MSCs are non-
hematopoietic multipotent cells that are able to differentiate
into bone, fat, or cartilage tissue. They are involved in tissue
repair and maintenance and have a tropism to wounded
tissue [107]. In the context of trauma or tumor, they are
capable of migrating towards these tissue sides, induced by
chemokines or inflammatory factors [108]. MSCs show a
specific migration to growth factors such as PDGF, EGF, and
VEGF and a reduced migration in the presence of specific
inhibitors, such as Glivec, Erbitux, and Avastin [109]. (More
to therapeutic approaches is listed below; see point 5.) MSC
themselves produce an amount of tumor promoting factors,
including IL-6 [86], TGF-𝛽, VEGF, and HGF [107, 110].

Using these factors, MSCs are capable of enhancing
lymphangiogenesis and lymphatic metastasis. LECs express
an HGF receptor (also known as c-Met or MET) and HGF

promotes lymphatic vessel function and formation [111]. In
vitro cocultures of MSCs and endothelial progenitor cells
(EPCs) revealed that MSCs secreted VEGF-A in bioavail-
able amounts (350 pg/mL), despite the secretion of VEGF
inhibitors (sVEGF-R1/sVEGF-R2) by EPCs [110]. Moreover,
in a syngeneic mouse model, subcutaneous coinjection of
MSCs and EPCs in Matrigel induced both blood- and lym-
phangiogenesis [110], highlighting the proangiogenic effect of
MSCs in vivo.

VEGF-A can induce proliferation and migration of
lymphatic endothelial cells (LECs). Dellinger and Brekken
showed that VEGF-R2 acts as the primary receptor control-
ling VEGF-A induced lymphangiogenesis in an ERK1/2 and
Akt-dependent manner [112]. In inflammatory neovascular-
ization, VEGF-A stimulates LECs and lymphangiogenesis
indirectly via macrophage recruitment [18].

As mentioned above, MSCs are capable of secreting IL-
6. IL-6 and a proinflammatory cytokine is upregulated in
different cancer entities. For example, a significant correlation
between IL-6 protein and VEGF-C mRNA with lymph node
metastasis in human oral squamous cell carcinoma has
been demonstrated [113]. Moreover, in vitro experiments
revealed that IL-6 induces VEGF-C expression in human
oral squamous cell carcinoma cell line [113] and VEGF-C
expression in IL-6 treated murine LECs [114].

MSCs are able to express a lymphatic phenotype, when
cultured in lymphatic induced medium and VEGF-C [115].
Vice versa, tumor cells secrete growth factors, cytokines, and
chemokines to promote the migration and survival of MSCs
[108]. Karnoub et al. reported that MSC infiltration into
tumor stroma promotes metastasis in breast cancer [116].

In conclusion, MSCs seem to have direct and indi-
rect effect on lymphangiogenesis and lymphatic metastasis,
mainly via VEGF-A, VEGF-C, HGF, and IL-6.

5. Immune Cells (Dendritic Cells,
Macrophages) Control Lymphangiogenesis

Tumor-associated lymphangiogenesis is under the influence
of innate immune cells of the tumor microenvironment,
especially dendritic cells and macrophages.

5.1. Dendritic Cells (DCs). DCs are the most potent antigen
presenting cells of the human body. They can be subdivided
into different subsets and to fully understand their functions
in the tumormicroenvironment, DC subsets should be exam-
ined individually with regard to influences on their behavior,
dependent on different local factors. DCs are involved in
tumor immunology and angiogenesis by stimulating inflam-
mation or inducting tolerance. They can internalize tumor
antigen and cross-present it to T-cells within the draining
lymphnode.This is an important step towards an antitumoral
immune reaction [117]. However, controversial data exists on
their role in the tumor microenvironment, DC activation, or
tolerance induction. On the one hand, DNA derived from
necrotized tumor cells may be involved in the DC activation
[118]. On the other hand, tumor cells have been shown to
inhibit DC maturation through the secretion of IL-10 [119].
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Within DCs, two major subsets can be differentiated: the
myeloid DCs (mDCs, also known as conventional DCs) and
the plasmacytoid DCs (pDCs) [120]. Both can be induced
towards a tumor promoting state in the tumormicroenviron-
ment: mDCs contribute to the survival of multiplemelanoma
cells [121]. pDCs seem to have immunoregulatory properties
in the tumor microenvironment and induce Tregs in the
human ovarian carcinoma [122]. pDCs also contribute to
angiogenesis by producing proangiogenic cytokines, such as
IL-8 and tumor necrosis factor alpha (TNF𝛼) in the ovarian
carcinoma [123]. pDCs were detected in solid tumor tissue
and metastatic cervical lymph nodes in head and neck squa-
mous cell carcinoma [124]. In breast cancer, pDCs infiltration
into the primary tumor was associated with shorter overall
survival [125].

In general, tumor-associated DCs (TADCs) can secrete
different proangiogenic factors, such as TGF-𝛽, granu-
locyte macrophage colony-stimulating factor (GM-CSF),
CXCL12, or TNF𝛼 [126, 127]. TADCs are able to differen-
tiate into endothelial-like cells under tumor specific cul-
ture conditions [128] and CD34− CD11c+ immature DCs
cocultured with tumor-cell conditioned media showed an
endothelial-like differentiation [129]. Whether or not DCs
participate in lymphangiogenesis is still a topic of ongoing
research.

DCs can be influenced by VEGFs. VEGF has been shown
to inhibit DC maturation by blocking NF-𝜅B transcription
[130]. In the cornea, VEGF-R3 blocking antibody reduced the
DC migration towards the draining lymph nodes [131].

DCs as antigen presenting cells are able to take up antigen
and migrate to the draining lymph node, guided through
a CCL21 gradient. Interestingly, some tumor cells express
the CCL21 receptor CCR7, thereby enabling them to access
lymphatic vessels [62, 64, 132].

Regarding surface receptors of dendritic cells, pro-
grammed cell death ligand 1, PD-L1, came into focus of
interest (see therapeutic approaches below). Also known as
B7 homolog 1, this transmembrane protein seems to play a
major role in suppressing the immune system. PD-1 and its
ligand function as a complex transmit an inhibitory signal
which downregulates T-cell activation and proliferation.
The ligand PD-L1 is expressed on antigen presenting cells,
whereas the receptor PD-1 has been found on activated T-
or B-cells, macrophages, and myeloid cells as well as multiple
tumor cells [133–136] and in vitro cell lines of uvealmelanoma
and cutaneous melanoma [137].

In breast cancer, sentinel lymph nodes with metastasis
were associated with fewer mature dendritic cells within
the lymph node [138]. Similarly, immature DCs have been
detected in melanoma metastasis [139], but also the presence
of mature DCs within the tumor tissue correlated with lymph
node metastasis [125]. High mobility group box 1 (HMGB1)
secreted by tumor cells induced the suppression of DCs and
is associated with lymph node metastasis in human colon
cancer [140]. Similarly, lymph node metastasis significantly
correlated with number of DC expression in gastric cancer
[141].

Recently a distinct population of DCs, namely the 6-sulfo
LacNAc(+)DCs (slanDCs)were detected inmetastatic tumor

draining lymph nodes. Here, slanDCs surrounded the cancer
cells, while being absent at the primary tumor side [142].

Taken together, DCs are able to secrete proangiogenic
factors and induce an immune tolerant milieu in the tumor
microenvironment. VEGF secreted by tumor cells or tumor-
associated macrophages inhibits DC maturation, and a
reduced number of mature dendritic cells can be associated
with elevated lymph node metastasis in breast cancer [138].
However, due to their various subgroups, further studies are
needed to fully understand their impact on lymphangiogen-
esis and metastasis.

5.2. Macrophages. Macrophages play an essential role in
driving tumor hem- and lymphangiogenesis [143]. Known
as tumor-associated macrophages (TAMs), they may sense
hypoxia in tumor tissue and secrete VEGFs, basic fibroblast
growth factor (bFGF), thymidine phosphorylase (TP),MMP-
2, MPP-7, MPP-9 andMPP-12 [144], and urokinase type plas-
minogen activator (uPA) [145] to induce both hem- and lym-
phangiogenesis. TAMs do not only express prolymphangio-
genic factors VEGF-C, VEGF-D, and VEGF-R3 [17], but they
can also transdifferentiate into lymphatic endothelium [146].
TAMs have also been shown to express LYVE-1 [147, 148] and
F4/80+ LYVE-1 + macrophages integrated into peritumoral
lymphatic vessels [148]. TAMs are often regulated towards an
M2 phenotype. In uveal melanoma, these M2 macrophages
were found to be mainly CD68+ CD163+ and high amounts
of these cells were associated with a poorer prognosis [149].
This observation has also been made in a variety of other
tumor entities, for example, breast cancer [150], glioma [151],
or melanoma [152]. In cutaneous squamous cell carcinoma,
elevated VEGF-C levels derived from TAMs were associated
with increased peritumoral lymphatic vessel density [153]
and may thereby coordinate metastasis [154]. Depleting
macrophages during tumor induction reduced incidence of
ocular tumors and improved survival in mice [149, 155, 156].
VEGF-A and VEGF-C as well as MMP-9, secreted by TAMs
and tumor cells, have been shown to induce peritumoral
lymphangiogenesis [17, 157]. VEGF-A hereby may stimulate
the upregulation of VEGF-C expression or through binding
on VEGF-R2 expressed on lymphatic endothelium [42].

Other proangiogenic effects of TAMs can also be achieved
indirectly, for example, via inhibition of DC maturation, and
thereby contributing to an immune tolerant status [158]. An
increased amount of immature DCs within tumor tissue was
associated with elevated tumor vascularization [158]. This
inhibitory and immune-suppressive effect is mainly achieved
by interleukin 10, prostaglandin E2 (PGE2), and TGF-𝛽
secretion of TAMs [144].

To summarize, macrophages in the tumor microenviron-
ment are amajor source of proangiogenic growth factors. Not
only do they stimulate lymphangiogenesis through activation
of endothelial cells, but they can also participate in this pro-
cess by expressing LYVE-1 or becoming integral components
of lymphatic vessels [146].

5.3. T-Cells. Recent research has led to a better under-
standing of the role of adaptive immune cells in the tumor
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microenvironment and first therapeutic options interfering
with T-cell functions have successfully been US Food and
Drug Administration (FDA) approved for antibody-based
treatments in patients with advancedmelanoma, for example,
ipilimumab (see therapeutic approaches below).

A major attempt in development of immunological treat-
ment strategies focuses on the identification of tumor-cell
specific markers that may serve as therapy targets. Antigen
recognition involves CD8+T-cells recognizing tumor antigen
[118]. Within the tumor microenvironment, two categories of
CD8+ T-cells have been described. Some tumor tissues con-
tain tumor-infiltrating T-cells, which secrete IFN-𝛾, whereas
others lack T-cell infiltration and signs of inflammation.
Whereas in the first group the tumor most likely inhibits
the immune response, in the second group the immune
system seems to ignore the ongoing tumor process (immune
ignorance).The T-cell infiltrating phenotype has been shown
for different types of cancer, including colorectal cancer [159,
160], renal cell carcinoma, melanoma, and ovarian cancer
[161–164], and may have a positive prognostic value. A very
good clinical outcome could be demonstrated for a high
CD8+ T-cell to Fop3+ Tregs ratio in the ovarian cancer tumor
microenvironment [165]. However, some melanomas still
progress despite a T-cell infiltration, possibly related to a
regress of the effectiveness of T-cells against tumor cells. This
reduced effectiveness might be induced by the immunosup-
pressive tumor microenvironment [166]. The second group
lacking tumor-infiltrating CD8+ T-cells was associated with
an increased risk for metastasis into draining lymph nodes
and decreased survival in dermal melanoma [161, 167].

Currently, the impact of T-cells on lymphangiogenesis
and whether VEGF is involved in this context are mainly
unknown. One study revealed that T-cells migrate respond-
ing to VEGF and that activated T-cells can express VEGF-R1
on their surface. Moreover, VEGF increased IL-10 secretion
of these cells and might therefore direct chemotaxis and
immune modulation of T-cells in tumor tissues [168].

5.4. B-Cells. Similar to T-cells, our knowledge on a potential
role of B-cells in lymphangiogenesis is limited. Ruddell et
al. reported B-cell accumulation in tumor draining lymph
nodes, which induced lymphangiogenesis and increased
lymphatic flow inE𝜇-c-Myc transgenicmice [169].Thesemice
exhibited increased lymphatic metastasis of lymphoma and
melanoma [170]. Harrell et al. made similar observations.
In a melanoma mouse model, B-cells were important for
lymphangiogenesis and increased lymphatic flow through
tumor draining lymph nodes [171]. However, the underlying
mechanisms still need to be investigated.

6. Future Immunotherapeutic
Strategies to Block Lymphangiogenesis and
Prevent Lymphatic Metastasis

New therapeutic approaches have made it into clinical
treatment to some extent. Although many of them are
interfering with immune cell function, a secondary effect
on lymphangiogenesis is expected, as immune activation

induces lymphangiogenesis by different factors mentioned
above. Below the latest therapeutic approaches or ideas are
listed which may be used on a regular basis in the future to
improve cancer treatment.

VEGF Inhibiting Antibodies. One of the first antibodies
interfering with VEGF function was bevacizumab (Avastin),
whichwas FDA approved for treatment ofmetastatic colorec-
tal carcinoma [22]. Only a few studies have been performed
with explicit focus on lymphangiogenesis. Sunitinib, a small
molecule interfering with VEGF-R1 and VEGF-R2, PDGF 𝛼
and PDGF 𝛽, KIT receptor, and Flt3 receptor [172], was FDA
approved in 2006 and is currently used for the treatment of
metastatic renal cell carcinoma and gastrointestinal stromal
tumors [173]. A similar molecule is sorafenib, interfering
with VEGF-R2 and VEGF-R3, PDGF receptor 𝛽, and c-KIT
receptor [174], and is FDA approved for advanced renal cell
carcinoma [175]. Studies in mice revealed that, by using RNA
interference to inhibit VEGF-C expression, the lymphan-
giogenesis, the number of lymph node metastasis has been
reduced and the survival prolonged [176]. Interfering with
VEGF-R3 resulted in similar observations [177]. A VEGF-D
blocking antibody reduced lymphaticmetastasis inmice [23].

In human colorectal cancer, it has been shown that
cyclooxygenase 2 (COX2) (involved in production of pros-
taglandins [178]) and VEGF-C are coexpressed [179]. In a
mice lung cancer model celecoxib, a selective COX2 inhibitor
reduced lymphangiogenesis and lymph nodemetastasis [180]
indicating that VEGF expression and thereby lymphangio-
genesis might be associated with prostaglandins.

Due to the increasing number of new therapeutics inter-
fering with VEGF function, we refer to excellent reviews
which address VEGF inhibitors in depth, for example, that
by Takahashi [181].

Programmed Death Ligand 1. PDL1 is an immune regulator,
expressed on APCs and in 20–50% on human cancer cells
[133, 137]. Tumor-induced PDL1 inhibits T-cell function
and induces immune tolerance but also apoptosis of T-cells
[182]. In contrast, it induces the expansion of Tregs [183].
Therefore, blocking this ligand on the tumor cells and on
antigen presenting cells improves tumor defense and T-cells
with anticancer properties restore their effector function
[184]. However, severe side effects have been reported when
interfering with the immune system [185].

Cancer Immunotherapy Using Dendritic Cells. Targeting DCs
and performance of an adoptive transfer, for example, with
antigen loaded DCs, may improve immunotherapy in the
future. There are different ways to vaccine DCs by using
tumor lysate, viral vectors, DNA plasmids, or antigen pep-
tides [186]. The optimized vaccination and administration
approaches (intralymphatic, intravenous, or intradermal,
etc.) are subject of ongoing research to improve clinical
outcomes [186]. Furthermore, the procedure is restricted
by the DC maturation state and dose finding [186]. It is
possible that DCs in vivo might become suppressive DCs,
thus counteracting antitumor immune responses. Despite its
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pros and cons, DC vaccination is a promising field for future
improvements in cancer therapy.

Genetically Modified Autologous T-Cells. Lately, there were
first reports of patients who have been treated with an
adoptive transfer of genetically modified autologous T-cells,
which could improve certain B-cell malignancies [187, 188] or
chronic lymphoid leukemia [189]. Thereby the T-cell antigen
receptor was modified to target CD19 (expressed on B-
cells) and a T-cell signaling molecule. First cases treated
with these T-cells revealed a complete remission, although
accompanied by adverse events during treatment [187–189].
Taken together, these first studies are showing promising
results from autologous T-cell transfers and might improve
cancer treatment in the future.

Anti-CTLA4 Antibodies. In physiological conditions, T-cells
are stimulated via CD28, which interacts with B7.1 and B7.2 on
dendritic cells. Besides the “on button” CD28, T-cells express
CTLA4, which can be regarded as “off button.” CTLA4 serves
as a coinhibitor on activated T-cells to regulate their immune
response [183]. Anti-CTLA4 antibodies such as ipilimumab
are immune modulatory biologics and are regarded as a
milestone in the treatment of metastatic melanoma [183].
Ipilimumab was FDA approved in 2011. It is able to block the
major inhibitor of activated T-cells CTLA4 and blocks the
interaction to its ligand B7.1 and B7.2 expressed on antigen
presenting cells [190]. T-cells are thereby effectively and
long-term activated to fight against tumor cells. However,
immune modulatory biologics may have severe side effects,
due to excessive and autoaggressive effects of the immune
system [191]. CTLA4 deficient mice die early as a result
of an uncontrolled lymphocyte proliferation that leads to
multiorgan destruction [192].

Interfering with CTLA4 can also induce immune sup-
pressive and immune tolerance: the antibody CTLA4-Ig-RFP
occupies the B7.1 andB7.2 receptor onDCs and thereby blocks
its interaction with CD28 [193].

CCR7-CCL19/21. Interfering with the CCL21-CCR7 axis to
reduce immune cell or tumor cell migration has been tried in
different approaches. Antagonists of CCL21 seem to prevent
the development of chronic graft versus host disease [194]
or reduced allergic conjunctivitis by blocking CCR7 in mice
[195]. Obstructing CCR7 expression at mRNA level in a
murine tumor model inhibited lymph node metastasis and
lymphangiogenesis [196]. Pretreatment with an allogenic
melanoma-derived cell lysate was capable of upregulating
CCR7 expression on therapeutic human tumor presenting
DCs and inducing migration to the lymph node [197].
This knowledge might be used for future improvement of
immunotherapy. However, all studies interfering with the
CCR7 axis in humans to treat cancer and metastasis are still
in very early stages.

7. Conclusions

Lymphangiogenesis is a very early step in lymphatic metasta-
sis. It is regulated and promoted not only by the tumor cells

themselves, but also by cells of the tumor microenvironment,
including cancer-associated fibroblasts, mesenchymal stem
cells, dendritic cells, or macrophages. Even the extracel-
lular matrix as well as cytokines and growth factors are
involved in the process of lymphangiogenesis and metastasis.
Many mechanisms behind lymphangiogenesis in the tumor
microenvironmental crosstalk are still incompletely under-
stood. A better insight of the underlying mechanisms might
improve future therapeutics to reduce lymphatic spread of
cancer cells to the draining lymph nodes in order to increase
the survival of cancer patients. A personalized and thereby
optimized therapy interfering with the affected parts of the
tumor microenvironment is a promising approach for future
treatment of lymphatic metastasis and thus tumor related
death.
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