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Otoacoustic emissions, sounds generated in the inner ear, have become a convenient
non-invasive tool to examine the efferent modulation of cochlear mechanics. Activation
of the medial olivocochlear (MOC) efferents has been shown to alter the magnitude
of these emissions. When the effects of efferent activation on the detailed spectral
structures of these emissions have been examined, a shift of the spectral patterns
toward higher frequencies has been reported for distortion product and spontaneous
otoacoustic emissions. Stimulus frequency otoacoustic emissions (SFOAEs) have been
proposed as the preferred emission type in the study of efferent modulation due
to the simplicity of their production leading to the possibility of clearer interpretation
of results. The effects of efferent activation on the complex spectral patterns of
SFOAEs have not been examined to the best of our knowledge. We have examined
the effects of activating the MOC efferents using broadband noise in normal-hearing
humans. The detailed spectral structure of SFOAEs, known as fine structure, was
recorded with and without contralateral acoustic stimulation. Results indicate that
SFOAEs are reduced in magnitude and their fine structure pushed to higher frequencies
by contralateral acoustic stimulation. These changes are similar to those observed
in distortion product or spontaneous otoacoustic emissions and behavioral hearing
thresholds. Taken together with observations made about magnitude and phase
changes in otoacoustic emissions and hearing thresholds upon contralateral acoustic
stimulation, all changes in otoacoustic emission and hearing threshold fine structure
appear to be driven by a common set of mechanisms. Specifically, frequency shifts
in fine structure patterns appear to be linked to changes in SFOAE phase due to
contralateral acoustic stimulation.

Keywords: otoacoustic emissions, stimulus frequency otoacoustic emissions, fine structure, auditory efferents,
medial olivocochlear bundle

INTRODUCTION

Stimulus frequency otoacoustic emissions (SFOAEs) are low-level signals evoked by tonal probes,
generated in the cochlea and recorded in the ear canal (Kemp and Chum, 1980). At moderate to
high probe levels, SFOAEs arise from both linear coherent reflection and non-linear distortion
mechanisms, characterized by long and short group delays, respectively (Shera and Guinan, 1999;
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Talmadge et al., 2000; Goodman et al., 2003). At low probe
levels, linear coherent reflection is thought to dominate SFOAE
generation (Zweig and Shera, 1995) with non-linear mechanisms
theorized to be contributing at moderate and high probe levels
(Talmadge et al., 2000). A quasi-periodic pattern, demonstrated
in SFOAE level spectra, expected in phase and delay as
well, is referred to as fine structure (Talmadge et al., 2000)
or microstructure (Goodman et al., 2003). Multiple internal
reflections in the cochlea, variation in effective reflectance
along the cochlear partition, and the interaction between linear
coherent reflection and non-linear distortion mechanisms have
been implicated in generating and influencing SFOAE fine
structure (Zweig and Shera, 1995; Talmadge et al., 2000). In
guinea pigs, variation in effective reflectance along the cochlear
partition accounts for the origin of SFOAE fine structure with
moderate probe levels, whereas interference between SFOAE
components of long and short phase-gradient delays account for
SFOAE fine structure at higher probe levels (Goodman et al.,
2003). Multiple internal reflections generate the fine structure in
both the amplitude and phase of the basilar membrane transfer
function in sensitive chinchilla cochlea (Shera and Cooper,
2013). In humans, knowledge of the origin of SFOAE fine
structure as well as its probe level-dependency has potential
clinical implications and can lead to the selection of optimal
test conditions for the assessment of the cochlea as well as the
auditory efferents.

Activation of the medial olivocochlear (MOC) efferents
reduces the gain of the cochlear amplifier thereby decreasing
the input to the auditory nerve (Galambos, 1956; Fex, 1962;
Murugasu and Russell, 1996; Cooper and Guinan, 2003). MOC
efferents have traditionally been associated with many possible
functional roles, such as protection against acoustic trauma,
facilitation of speech perception in noise, and auditory attention
(for review, see Guinan, 2006). More recently, MOC efferents
have been demonstrated to delay age-related changes in the
cochlea (Liberman et al., 2014), play a role in perceptual
learning (de Boer and Thornton, 2008), and be associated with
localization in the presence of background noise (Andeol et al.,
2011; Irving et al., 2011). SFOAEs have been employed for
assessing the strength of MOC efferents (Backus and Guinan,
2007). However, the efferent influence on SFOAE fine structure
has not been explored. Activation of the MOC pathway by
contralateral noise not only alters the levels of OAEs, but also
shifts distortion product otoacoustic emission (DPOAE) fine
structure (e.g., Deeter et al., 2009), spontaneous otoacoustic
emissions (SOAEs; e.g., Zhao and Dhar, 2010; Zhao and
Dhar, 2011), and even hearing threshold fine structure (e.g.,
Dewey et al., 2014) toward higher frequencies. Since the fine
structures of OAEs and hearing thresholds as well as the
spacing between SOAEs are thought to originate from a set
of common mechanisms involving mechanical resonance and
multiple internal reflections in the cochlea, the MOC efferents
should be expected to alter SFOAE fine structure in similar
ways.

In this study, we recorded SFOAEs in humans at low to
moderate probe levels (20 and 40 dB SPL) with and without
activating the MOC efferents by a 60 dB SPL contralateral

broadband noise. The origin of, and MOC influence on, SFOAE
fine structure were explored.

MATERIALS AND METHODS

Subjects
Eleven subjects (9 female and 2 male) between 21 and 31 years
of age with normal hearing thresholds in both ears (20 dB
HL or better at octave frequencies between 250 and 8000 Hz)
participated in the experiment. These eleven subjects were chosen
from a pool of over 50 specifically because their middle ear
acoustic reflex thresholds, measured using broadband noise in
the contralateral ear using a clinical impedance audiometer, were
higher than 90 dB SPL. SFOAEs were recorded in one ear
per subject. All procedures were approved by the Northwestern
University Institutional Review Board. A written, informed
consent was obtained from each subject. Measurements were
conducted in a sound-treated audiological test booth.

Signal Generation and Recording
Stimuli were generated by a Macintosh computer connected to a
MOTU 828 MKII I/O device (sampling rate 44100 Hz, 24 bit),
amplified, and presented via transducers (MB Quart 13.01 HX)
coupled to an Etymotic Research ER-10B probe assembly using
custom software. Signals from subjects’ ear canals were passed
from the ER-10B microphone to a preamplifier (20 dB gain), then
digitized by the MOTU and stored on disk for analysis.

Measurement Procedure
Stimulus frequency otoacoustic emissions were obtained via
the compression method (Kemp and Chum, 1980) using tones
swept in frequency. A probe tone (20 and 40 dB SPL) and a
compressor tone (60 dB SPL) were swept from 800 to 1800 Hz
at a rate of 20 s/octave. MOC activity was elicited by a 60 dB
SPL contralateral broadband noise (100–10000 Hz). A total of
five conditions were interleaved: probe alone at 20 or 40 dB SPL,
compressor alone at 60 dB SPL, probe at 20 or 40 dB SPL paired
with contralateral noise. Six runs per condition were recorded
and averaged. The total ear canal pressure at the probe frequency
was estimated using a custom least-squares fit algorithm (Long
and Talmadge, 1997).

Analysis
Stimulus frequency otoacoustic emissions were extracted by
scaling the ear canal complex pressure in the compressor
condition and subtracting it from that recorded in each of the
other conditions. SFOAE without and with contralateral noise
are denoted as baseline SFOAE and SFOAEmoc, respectively
(Figure 1). The magnitude and phase of the vector pressure
change between the two are denoted as �P and α. Throughout
the paper, baseline SFOAE, SFOAEmoc and �P are color coded
using blue, red and green traces, respectively.

Absence of middle-ear muscle (MEM) contraction was
confirmed by a phase-gradient delay of �P around 10 ms near
1500 Hz (see Figures 2A,B) indicating that �P was dominated
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FIGURE 1 | Schematic of medial olivocochlear (MOC) modulation of
stimulus frequency otoacoustic emissions (SFOAE). SFOAE without and
with contralateral noise are denoted as baseline SFOAE (blue) and
SFOAEmoc (red), respectively. MOC effects were assessed via both the vector
pressure change �P (green) and phase change α.

by MOC-mediated changes in SFOAE pressure, and not MEM-
induced changes in the stimulus pressure reflected at the eardrum
(Guinan et al., 2003). This elegant method of differentiating
between MOC- and MEM-mediated changes takes advantage
of the expected phase-frequency relationship of SFOAEs versus
middle ear reflectance. The phase gradient delay of the change
vector is expected to be around 10 ms only when the change in
ear canal pressure is actually due to a change in the SFOAE. In
contrast, the phase gradient delay is expected to approximately
0 ms when the change in ear canal pressure is due to a change in
middle ear reflectance caused by an MEM reflex.

The extracted complex ear canal SFOAE estimate was
converted from the spectral to the temporal domain by
performing an inverse Fast Fourier Transform (IFFT, 300-Hz
Hann window, 20-Hz steps; Kalluri and Shera, 2001). The
magnitude of the IFFT output was normalized to its ownmaximal
value in order to assess the weight of SFOAE components
with varying delays, which appear as a vertical bands of energy
separated in time (see Figure 3). The output of the IFFT analysis
was found to be sensitive to parameters such as the width of
the analysis window and the degree of overlap between adjacent
windows. These parameters significantly affected the number of
vertical bands of energy observed and the gap in delay between
them. We developed confidence in the results of the IFFT by
subjecting synthetic data with known reflections and delays to
the analysis. To be further conservative in our approach, we
limited the included data to those within 20 dB of the peak in all
cases. Even after adopting this cautious approach we recommend

that the reader attach limited value to the specific number
of vertical bands of energy and the delays between them in
Figures 3, 4, and 6.

Equivalence of SFOAE Extraction
Methods
To assess our method of using probes swept in frequency,
we compared SFOAEs extracted by using discrete-frequency
vs. swept-frequency tones, and by the compression versus
suppression methods in two subjects. For discrete tones, the
following triplet was applied, each portion of the triplet lasting
2 s: a 20/40 dB SPL probe tone, followed by a 20/40 dB SPL
probe tone plus a 60 dB SPL suppressor 47 Hz below the
probe frequency, followed by a 60 dB SPL compressor tone.
This triplet was applied for probe frequencies between 800 and
1800 Hz in 20-Hz steps and repeated six times for each probe
frequency. SFOAE recording and extraction via the compression
method using swept-frequency tones was identical to the
process described above. Discrete- tones and swept-frequency
tones were interleaved to minimize probe drift across time.
SFOAEs extracted by the suppression method using discrete-
frequency tones, by the compression method using discrete tones,
and by the compression method using swept-frequency tones
were indistinguishable (Supplementary Figure S1) as has been
demonstrated before (Kalluri and Shera, 2007b, 2013). It should
be noted that the equivalence between otoacoustic emissions
recorded using swept- and discrete-frequency tones is heavily
dependent on various signal characteristics and analysis variables.
The rate of frequency sweep is one such important variable
and our claim of the equivalence of results between swept-
and discrete-frequency tones is made specifically and only for
slow frequency sweeps (20 s/octave) used here. In contrast,
AlMakadma et al. (2015) have recently demonstrated differences
in DPOAEs recorded using fast (1 s/octave) sweeps in stimulus
frequency depending on the direction of the frequency change.

RESULTS

Baseline SFOAE Fine Structure:
Manifestations in the Spectral and
Temporal Domains
Examples of baseline SFOAEs evoked by two probe levels (20
and 40 dB SPL) between 800 and 1800 Hz from two subjects
are presented as a function of probe frequency in Figure 2 for
subjects WTPF13 and WTPF76. Thin and thick lines represent
SFOAEs evoked by 20 and 40 dB SPL probes, respectively. For
both probe levels, the SFOAE phase slope was approximately
parallel with the reference line of a 10 ms delay (Figures 2A,B),
indicating the dominance of a generation mechanism consistent
with the properties of coherent reflection (Shera and Guinan,
1999). SFOAE phase slopes from all eleven individual subjects
included in this study are shown in Supplementary Figure S2.
Each of these exhibit a phase slope of approximately 10 ms
with occasional discontinuities at unpredictable frequencies. On
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FIGURE 2 | Baseline SFOAE as a function of probe frequency for subjects WTPF13 and WTPF76 (columns). Data obtained using 20 and 40 dB SPL
probes are represented using thin and thick traces, respectively. SFOAE phase slopes are parallel with the phase slope of 10-ms delay (dashed reference line in A,B).
Fine structure patterns of SFOAE level (C,D) and phase-gradient delay (E,F) are presented along with SOAE in panels (C) and (D) using the black traces. Vertical
dashed lines are used to mark the alignment between fine structure patterns of level and delay. Red arrows indicate (the less common) alignment between SFOAE
level valleys and phase-gradient delay peaks.

informal inspection, SFOAE phase slopes for the 20 dB SPL probe
seem steeper than those with the 40 dB SPL probe.

Stimulus frequency otoacoustic emissions levels presented in
Figures 2C,D appear to display a quasi-periodic fine structure.
Not only does the 40 dB SPL probe yield higher level SFOAEs,
the two probes also yield SFOAE fine structure with different
morphologies, in location of peaks, spacing between them, as well
as peak-to-valley depth. For subject WTPF13, SFOAEs evoked by
the 20 dB SPL probe demonstrate good alignment between local
peaks in SFOAE level and SOAEs (black trace in Figure 2C).
Phase accumulation between adjacent SFOAE level peaks is
around one cycle (Figure 2C). Similar phase accumulation
between adjacent SFOAE level peaks can also be observed
for subject WTPF76 (Figure 2D). However, the alignment
between SOAEs and SFOAE level peaks is less evident for this
subject (Figure 2D). The relationship between the location of
SFOAE level peaks, SOAEs, and the phase accumulation between
them is not as clear for SFOAEs evoked by the 40 dB SPL
probe.

Stimulus frequency otoacoustic emissions phase-gradient
delay, computed as the negative of the phase slope, is presented
as a function of probe frequency in Figures 2E,F for probe levels
of 20 and 40 dB SPL using thin and thick traces, respectively.

The SFOAE delay versus frequency function also demonstrates
periodicity that resembles the SFOAE level-frequency fine
structure. SFOAEs evoked using the 20 dB SPL probe are
associated with more prominent fine structure in both level and
delay than those with the 40 dB SPL probe. For the 20 dB SPL
probe, local peaks of the SFOAE delay-frequency function were
most commonly aligned with local peaks of the SFOAE level-
frequency function. However, delay peaks were occasionally also
found to be aligned with level valleys (marked by red arrows in
Figures 2E,F). Phase accumulation between adjacent peaks of the
SFOAE delay-frequency function was approximately one cycle as
demonstrated by the vertical dashed lines.

The temporal-domain representation of SFOAE pressure
yielded by inverse Fourier analysis is represented in Figure 3
for eight subjects, for 20 and 40 dB SPL probes. F{Pressure}
is presented in dB and color-coded. Each vertical color band
corresponds to an SFOAE component with a distinct delay.
Each raw heat plot resulting from the Fourier transform is
normalized to its own maximal value for better assessment of
the relative strength of SFOAE components of different delays.
Only data within 20 dB of the peak were included. This resulted
in the rejection of some artifacts of the Fourier analysis, which
manifested as ripples in the temporal domain.
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FIGURE 3 | Normalized results of inverse Fast Fourier Transform (IFFT) analysis on baseline SFOAE in eight subjects for 20 and 40 dB SPL probes. In
order to evaluate the weighting of components with different phase-gradient delays, each heat plot was normalized to its own maximal value. Only signals within
20 dB of the peak were retained. SFOAE components with different phase-gradient delays appear as vertical color bands on the SFOAE frequency versus
phase-gradient delay heat plots.

Stimulus frequency otoacoustic emissions recorded using a
20 dB SPL probe receive greater contribution from SFOAE
components with longer delays (sometimes up to 40ms), whereas
components of SFOAEs recorded using a 40 dB SPL probe cluster
around 10 ms (Figure 3). Multiple, evenly spaced, bands can
be observed for SFOAEs recorded using the 20 dB SPL probe.
In some subjects, components with delays around 5 ms are
demonstrated only in SFOAEs evoked by the 40 dB SPL probe
(Figure 4).

Efferent Influence on SFOAE Fine
Structure
Efferent influence on SFOAE responses for both 20 and 40 dB
SPL probes from subject WTPF13 is presented in Figure 5.
Baseline SFOAE, SFOAEmoc, and �P are presented in blue,
red, and green traces, respectively. MOC activity was elicited by
a 60 dB SPL contralateral broadband noise. Absence of MEM
contraction was confirmed by a phase-gradient delay of �P
near 10 ms (Figures 5C–F). MOC activation suppresses SFOAE

Frontiers in Systems Neuroscience | www.frontiersin.org 5 December 2015 | Volume 9 | Article 168

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Zhao et al. MOC and SFOAE Fine Structure

FIGURE 4 | Expanded heat plots of data from subjects WTPF31, WTPF53, and WTPF76 from Figure 3. SFOAE components with delays less than 10 ms are
almost exclusive to the 40 dB SPL probe (bottom row).

levels and shifts SFOAE fine structure laterally toward higher
frequencies (Figures 5A,B). The phase slope of baseline SFOAE,
SFOAEmoc and �P are parallel with the dashed reference
lines representing a delay of 10-ms (Figures 5C,D). The phase-
gradient delay versus frequency function is also shifted toward
higher frequencies by MOC activation (Figures 5E,F). Finally,
the SFOAE phase change α also exhibits periodicity as a function
of probe frequency (Figures 5G,H), much like the periodicity
in the SFOAE level-frequency function (Figures 5A,B) and the
delay-frequency function (Figures 5E,F). The phase change (α)
is almost always a phase advance, reaching up to 90 degrees
(Figures 5G,H).

Examples of the results of IFFT analysis on baseline SFOAE,
�P and SFOAEmoc are presented in Figure 6 (subject WTPF13).
Comparing the first and last columns of Figure 6 reveals the
greatest differences between SFOAEmoc (right column) and
baseline SFOAE (left column) for components with long delays.
This trend is more prominent for the 20 dB SPL probe level.
As a result, �P (middle column) is dominated by long-latency
components (>10 ms) perhaps indicating a greater dependence
of later reflections on cochlear gain and consequently greater
inhibition upon MOC activation.

Group results averaged across eleven subjects are displayed
in Figure 7. Individual differences in the delays of discrete
bands have a smearing effect on the average data, such that

the dominant component near 10 ms in the average is wider
than those from individual subjects (e.g., Figure 6), and no
discrete bands are discernable above 20 ms. The contribution
from components with delays greater than 10 ms is reduced for
SFOAEs evoked by the 40 dB SPL probe as compared to those
recorded using the 20 dB SPL probe. Interestingly �P exhibits a
prominent band of energy near 0 ms in �P for the 40 dB SPL
probe only (Figure 7E).

DISCUSSION

The goals of this study were to examine the modulation
of SFOAE fine structure by the MOC efferent system. The
general effect of MOC stimulation on SFOAEs has been
studied extensively (e.g., Lilaonitkul and Guinan, 2009). SFOAEs
and TEOAEs, both considered reflection emissions, have been
preferred over DPOAEs in acknowledgment of the inherent
complexity of DPOAE generation (multiple sites and multiple
mechanisms; Guinan et al., 2003). SFOAEs are also available
for study in a greater number of normal-hearing humans as
compared to SOAEs. However, despite previous investigations
into SFOAE fine structure, the components contributing to
this fine structure, as well as their alteration by the MOC
efferents have not been fully explored. Our results indicate
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FIGURE 5 | Medial olivocochlearmodulation of SFOAE as a function of probe frequency for subject WTPF13. Level, phase, delay, and phase change (α)
are presented in separate rows with data from 20 and 40 dB SPL probes in the two columns. Representations of the baseline SFOAE, SFOAEmoc, and �P are
made using different colors.

that lower probe levels evoke contributions from SFOAE
components with greater phase-gradient delays and these long-
latency components are affected by efferent stimulation, more
so than the shorter latency components. We also observed
a shift of SFOAE fine structure toward higher frequencies,
much like the observation in DPOAE fine structure (Abdala
et al., 2009; Deeter et al., 2009), SOAEs (e.g., Zhao and Dhar,
2010), and behavioral threshold fine structure (Dewey et al.,
2014).

SFOAE Components
Processing the complex SFOAE pressure through an IFFT
algorithm revealed roughly three groups of components
segregated by differing delays (Figures 3 and 4). For both
probe levels of 20 and 40 dB SPL, a prominent band of
SFOAE energy was observed around 10 ms, consistent with
previous observations (Kalluri and Shera, 2007a). Bands of
SFOAE pressure at delays greater than 10 ms, often spaced
regularly in time, were observed frequently for the 20 dB SPL
probe condition (Figure 3). These can be interpreted as the
outcome of multiple intracochlear reflections. Such reflections

are predicted in various models of OAEs (Shera and Zweig, 1991;
Dhar et al., 2002) and have been observed for DPOAEs and
SFOAEs previously (Dhar et al., 2002; Goodman et al., 2003).
Consistent with theoretical expectations, the band of SFOAE
pressure around 10 ms was greater in magnitude as compared
with the bands with greater delays. The dominance of a band of
energy with a delay of approximately 10 ms in a frequency band
around 1.5 kHz supports the notion of SFOAEs being generated
near the peak of the traveling wave of the probe tone. This limited
spatial distribution of SFOAE generators is consistent with model
predictions (e.g., Shera and Guinan, 1999) as well as experimental
results (Lichtenhan, 2012).

More prominent SFOAE components with delays shorter
than 10 ms were observed for the 40 dB SPL probe condition.
Often this early band of SFOAE energy was observed with a
delay in the vicinity of 5 ms. This component with a shorter
delay is consistent with the existence of sources of SFOAE
basal to the peak of the traveling wave created by the probe
(Mertes and Goodman, 2013; Charaziak and Siegel, 2015),
the possibility of a fast mode of transport (as compared to
a traditional mechanical traveling wave) of the SFOAE signal
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FIGURE 6 | Normalized results from IFFT analysis on baseline SFOAE (left column), �P (middle column) and SFOAEmoc (right column) from subject
WTPF13. Compared with baseline SFOAE, �P appears to receive greater contribution from components of delays above 10 ms.

back to the ear canal (Siegel et al., 2005), as well as a non-
linear generation mechanism (Talmadge et al., 2000). That the
early latency component was most observable for the 40 dB
SPL probe might suggest a greater contribution from a non-
linear SFOAE generation mechanism, increased involvement of
basal sources, or a combination of both at moderate probe
levels.

SFOAE Fine Structure
Fine structure was observed in both SFOAE level and group
delay for both probe levels. The morphology of fine structure
was different between the two probe conditions with narrower
and perhaps better defined peaks and valleys observed more
frequently for the 20 dB SPL probe condition (Figure 2). For this
low probe level, the peaks in SFOAE group delay were separated
by approximately one cycle of phase accumulation. These peaks
in group delay were found to be aligned almost exclusively with
peaks in SFOAE level and SOAEs. This observation would be
consistent with the expectations from amodel of global resonance
leading to both SFOAE fine structure (at low probe levels) and
SOAEs (Kemp, 1980; Shera, 2003). However, we occasionally
observed peaks in SFOAE group delay for the 20 dB SPL probe

condition to be aligned with valleys in SFOAE level (marked by
red arrows in Figure 2). The origin of this association is unclear
at this time.

For the 40 dB SPL probe condition, SFOAE fine structure
appears to be more broadly spaced. The lack of multiple
intracochlear reflections for this probe level along with a shorter
delay for the main component suggests that the source of fine
structure may be different for this probe condition as compared
to that for a 20 dB SPL probe. In this case, SFOAE fine
structure could arise from variation in the effective reflectance
along the cochlear partition (Goodman et al., 2003) or due to
interference between a linear reflection component and a non-
linear distortion component (Talmadge et al., 2000; Goodman
et al., 2003). Regardless, differences in SFOAE fine structure
morphology with probe level may indicate level-dependent
variations in the dominant SFOAE generation mechanisms and
the relative contributions of multiple internal reflections.

Efferent Modulation of SFOAE
Contralateral noise-induced MOC activity reduces SFOAE level
(Figures 5A,B) and advances SFOAE phase (Figures 5G,H). The
reduction in SFOAE level is consistent with a decrease in cochlear
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FIGURE 7 | Normalized IFFT results averaged across eleven subjects in a format similar to Figure 6. Distinctive long-latency bands in individuals (Figure 6)
are smeared after averaging across subjects. �P receives greater contribution from long-latency components than baseline SFOAE. A 0-ms band is observed in �P
only for the 40 dB SPL probe.

amplifier gain due to MOC activation. Long-latency components
(>10 ms) that arguably correspond to multiple intracochlear
reflections appear to be attenuatedmore than earlier components
relative to the baseline by MOC activation (Figures 6 and 7).
MOC activity reduces the SFOAE generating reflectance and the
influence of this reduction is visible more in each successive
reflection due to their roughly exponential dependence on the
reflectance.

Medial olivocochlear-induced advance in SFOAE phase,
denoted by α here, has previously been reported with coarse
frequency resolution (Figure 5 in Francis and Guinan, 2010),
and is consistent with the advance in basilar membrane vibration
phase upon MOC activation (Murugasu and Russell, 1996). The
quasi-periodic pattern observed when α is plotted as a function
of frequency mimics that of the phase-gradient delay versus
frequency function of the baseline SFOAE (Figure 5).

Medial olivocochlear activity shifts SFOAE fine structure
toward higher frequencies (Figures 5A,B). Similar shifts have
been observed in DPOAE fine structure (Abdala et al., 2009;
Deeter et al., 2009) and SOAE frequency (Mott et al., 1989;
Harrison and Burns, 1993; Zhao and Dhar, 2010). The models
that account for DPOAE and SOAE shifts are based on a change

in stiffness of the basilar membrane leading to a phase advance
(Mott et al., 1989). Our results suggest a similar shift in SFOAE
phase resulting in a shift in SFOAE fine structure toward higher
frequencies. It can further be concluded that the shift in SFOAE
phase is at the root of the shift toward higher frequencies of all
evoked OAE fine structure, SOAEs, and even behavioral hearing
threshold fine structure.

Plotting the two-dimensional SFOAE pressure vector as a
function of probe frequency yields a spiral in a three-dimensional
space (Figure 8A). The blue and red spirals are baseline SFOAE
and SFOAEmoc, respectively. MOC modulation of SFOAE fine
structure can be dissected in two perpendicular directions:
shrinkage along the radial axis and shift along the axial axis.
These changes are better visualized by projecting the two
spirals to the real pressure-frequency plane and the imaginary
pressure-frequency plane (Figures 8B,C). It is appealing to relate
the shrinkage along the radial axis to the reduction in the
cochlear amplifier gain, and the shift along the axial axis to the
stiffness change of the basilar membrane that alters the cochlear
characteristic frequency map.

A vertical band near 0 ms was found in the IFFT analysis
of �P in some of the subjects (as in Figure 6) and in
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FIGURE 8 | Alternative views of MOC-induced SFOAE fine structure shift. The complex SFOAE pressure is transformed into a spiral in three-dimensional
space (A). MOC modulation on this spiral can be dissected in two perpendicular directions: a radial shrinkage and an axial advance. Projecting this spiral to the
pressure (real) – frequency plane (B) and the pressure (imaginary) – frequency plane (C) provides better views of MOC effects along the two perpendicular directions.

the averaged data (Figure 7). It would be convenient to
associate this 0 ms component with activation of the MEM
reflex. However, the phase gradient of �P did not indicate
domination by the MEM reflex. Thus, even if the MEM
reflex was activated in some subjects with the 40 dB SPL
probe, it did not dominate the overall changes in SFOAE
pressure. Alternately, it is also possible that MOC activation
generated a non-linear distortion component, not documented
before.

Clinical Considerations
Disruption of, or changes in, the efferent modulation of
otoacoustic emissions is of clinical interest. For example, efferent
modulation of otoacoustic emissions is different in adults and
children with learning disabilities (e.g., Garinis et al., 2008). The
strength of efferent modulation is associated with the ability
to locate a signal in space in the presence of background
noise (Andeol et al., 2011; Irving et al., 2011; Liberman
et al., 2014). Clinicians are expressing increasing interest in
measuring efferent modulation of otoacoustic emissions for these
reasons.

In typical clinical applications, TEOAEs or DPOAEs are
measured with and without broadband noise in the contralateral
ear and the difference in magnitude caused by the background
noise is taken as a measure of the strength of efferent modulation
of otoacoustic emissions. Shifts in DPOAE fine structure due
to efferent stimulation causes significant complications in the
interpretation of clinical data. Because the entire fine structure
pattern is not evident in clinical measures at isolated frequencies,
a shift in fine structure can manifest as an enhancement of
DPOAE level due to efferent stimulation. If SFOAEs were used
for clinical measures of efferent function, the same complications
due to fine structure shift would be expected to complicate
interpretation. In the absence of full characterization of fine
structure, multiple measures at strategic frequencies near the
frequency of interest could help avoid confusion, as at least
one measure would then be expected to fall near the peak

of fine structure yielding a stable estimate of efferent strength
(see Deeter et al., 2009 for details). While we have focused on
frequency shifts in fine structure as the source of the occasional
enhancement in otoacoustic emission levels observed in the
literature, another possible cause leading to the same effect
in at least quadratic DPOAE levels (e.g., f2–f1) could be a
change in the operating point of outer hair cells (Abel et al.,
2009).

Closing Summary
To the best of our knowledge, these results are the first
demonstration of anMOC-induced shift of SFOAEfine structure.
This observation not only accounts for occasionally observed
SFOAE enhancement by contralateral noise, but also bears
clinical relevance as to the selection of SFOAE probe frequency
(peak vs. valley) for examining the strength of MOC efferents.
Finally, we argue that the shifts in all OAE and behavioral fine
structures are driven by a common source – efferent-induced
changes in SFOAE phase.
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FIGURE S1 | Comparison of stimulus frequency otoacoustic emissions
(SFOAEs) obtained through the suppression and the compression

methods using discrete or swept-frequency tones (Subjects WTPM18 and
WTPF76). SFOAE level yielded by the suppression method using discrete tones,
the compression method using discrete tones, and the compression method
using swept-frequency tones are represented by red, blue, and green colors,
respectively.

FIGURE S2 | Stimulus frequency otoacoustic emissions phase slopes are
distinctive across subjects (N = 11). For both probe levels, phase slopes are
approximately parallel with the 10-ms phase slope (dashed line).
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