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Abstract: Over the past two to three decades, gallium compounds have gained importance 

in the fields of medicine and electronics. In clinical medicine, radioactive gallium and 

stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders 

of calcium and bone metabolism. In addition, gallium compounds have displayed  

anti-inflammatory and immunosuppressive activity in animal models of human disease 

while more recent studies have shown that gallium compounds may function as 

antimicrobial agents against certain pathogens. In a totally different realm, the chemical 

properties of gallium arsenide have led to its use in the semiconductor industry. Gallium 

compounds, whether used medically or in the electronics field, have toxicities. Patients 

receiving gallium nitrate for the treatment of various diseases may benefit from such 

therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical 

toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems 

suggesting that environmental risks may exist for individuals exposed to this compound in 

the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly 

responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental 

effects in other organs. The use of older and newer gallium compounds in clinical 

medicine may be advanced by a better understanding of their mechanisms of action, drug 

resistance, pharmacology, and side-effects. This review will discuss the medical 

applications of gallium and its mechanisms of action, the newer gallium compounds and 

future directions for development, and the toxicities of gallium compounds in current use. 

OPEN ACCESS



Int. J. Environ. Res. Public Health 2010, 7         

 

 

2338

Keywords: Gallium; iron; iron proteins; electronics; semi-conductors; calcium and bone 

metabolism; cancer therapeutics; toxicities 

 

1. Introduction 

 

Gallium is a group IIIA metal, atomic number 31 in the periodic table of elements. First discovered 

in 1875 by Paul-Emile Lecoq de Boisbaudran in France, the name of this metal appears to be derived 

from “Gallia”, the Latin word for France. However, it is also thought that perhaps the discoverer 

Lecoq named the metal after himself by calling it gallum, the Latin translation for a cock. Gallium is 

present at a concentration of 5–15 mg/kg in the earth’s crust and is obtained as a byproduct from the 

extraction of aluminum and zinc ores [1]. It has a shiny, silvery-white color, with a melting 

temperature of 28.7646 oC (85.5763 oF); it is one of the few metals that is near-liquid at room 

temperature and can melt when held in the hand. Although gallium has no known physiologic function 

in the human body, certain of its characteristics enable it to interact with cellular processes and 

biologically important proteins, especially those of iron metabolism. This has led to the development 

of certain gallium compounds as diagnostic and therapeutic agents in medicine especially in the areas 

of metabolic bone disease, cancer, and infectious disease. The discovery that gallium displayed 

semiconducting properties led to its development as gallium arsenide for use in the electronics industry 

[2]. In the USA, more than 95% of gallium consumed is for optoelectronic devices and integrated 

circuits [1]. The application of gallium in medicine raises questions about the pharmacology, clinical 

efficacy, and potential  

side-effects of gallium compounds as drugs. The use of gallium arsenide in the electronics industry 

raises questions about the potential risks of exposure to this compound as an environmental toxin. The 

reader is also referred to earlier reviews on gallium [3-8]. The present review will provide an update of 

the medical applications of gallium and the toxicities of gallium compounds in medicine and the 

electronics industry. 

 

2. Medical Applications of Gallium Compounds 

 

2.1. Radiogallium Compounds as Tumor Imaging Agents 

 

Early studies demonstrated that radioactive gallium (67Ga citrate) injected into tumor-bearing 

animals localized in malignant cells [9]. This observation led to the development of the 67Ga scan for 

the detection of malignant tumors in patients [10]. Over the past two decades, 67Ga scanning has been 

used most frequently in patients with Hodgkin’s and non-Hodgkin’s lymphomas to detect residual 

disease or disease that has relapsed following treatment with chemotherapy or radiotherapy [11-14]. 

The level of 67Ga incorporation into lymphoma cells reflects the metabolic activity of the tumor and is 

indicative of the presence of viable malignant cells. Hence, a positive 67Ga scan after treatment of 

lymphoma generally indicates the presence of residual malignancy and the need for further therapy. 

The intensity of 67Ga uptake by malignancies such as lymphoma correlates with their proliferative rate; 
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67Ga scanning thus provides a valuable insight into the aggressiveness of a tumor [12]. Gallium may 

also be taken up by macrophages and thus, areas of inflammation may show 67Ga-positivity on the 
67Ga scan. Recently, the 67Ga scan in lymphoma has been replaced by the Positron Emission 

Tomography (PET) scan which is based on the uptake of 18F-fluorodeoxyglucose (FDG) by tumors 

[15]. However, the 67Ga scan remains an important diagnostic modality in geographical locations 

where the 18F-FDG PET scan may not be available. 

Although tumor imaging with 18F-FDG PET is now being increasingly used for a variety of 

malignancies, it has its limitations. Tumors with a low growth rate such as hepatocellular carcinoma, 

neuroendocrine tumors, prostate cancer, and indolent (slow-growing) lymphomas may not take up 

FDG. Conversely, tumors surrounded by or adjacent to normal tissue with high metabolic activity 

(such as the brain) may be difficult to assess by 18F-FDG PET because of high background FDG 

uptake by the normal tissue (i.e., a low ratio of tumor/normal tissue FDG uptake). As a result of these 

limitations, there has been considerable interest in the development of 68Ga-labeled 

radiopharmaceuticals for molecular tumor imaging (reviewed in references 16 and 17). This gallium 

isotope has a short half-life of approximately 68 minutes which is an advantage to its clinical use. 

Peptides labeled with radiometals are showing promising clinical activity as imaging agents for the 

diagnosis and management of neuroendocrine tumors, neural crest tumors (pheochromocytomas and 

paragangliomas), meningiomas, and prostate cancer. Somatostatin, which targets the somatostatin 

receptor subtypes present in increased numbers on these cells, has been the most developed model for 

synthetic peptides. The somatostatin analogue D-Phe1-Tyr3-octreotide (TOC) coupled to the 

bifunctional chelate DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-teraacetic acid) labeled with 
68Ga (68Ga-DOTATOC) has been used with great success for the imaging of neuroendocrine tumors in 

patients. In other studies, 68Ga-DOTA-D-Phe1-Tyr3-Thr8-octreotide (68Ga-DOTA-TATE) PET was 

used to image the somatostatin receptor in recurrent pheochromocytoma and meningiomas in patients 

and in the latter disease led to changes in radiotherapy planning. Imaging of neuroendocrine tumors 

with another somatostatin analogue, 68Ga-DOTANOC has also shown promise [18], while  
68Ga-DOTA-alpha melanocyte-stimulating hormone analog has been used for imaging metastases in 

melanoma [19]. In addition 68Ga labeled-DOTA coupled to bombesin (68Ga-DOTA-BOM) PET has 

been used to diagnose prostate cancer expressing the bombesin receptor, while 67Ga- and 68Ga-

deferoxamine (DFO)-folate have been used to image tumors that express high levels of cell surface 

folate receptors in a tumor xenograft model [20,21].  

2.2. Antineoplastic Activity of Gallium Nitrate in Cancer Treatment  

The ability of 67Ga to localize in tumor cells prompted investigators at the National Cancer Institute 

(NCI) to investigate the antineoplastic activities of salts of the group IIIa metals aluminum, gallium, 

indium, and thallium in tumor-bearing CDF1 mice and Sprague-Dawley rats [22]. Of these metal 

compounds, gallium nitrate proved to be both highly effective in suppressing the growth of 

subcutaneously implanted tumors and least toxic. As a result, it was advanced to NCI investigational 

drug status (NSC 15200) for assessment of toxicity and antitumor efficacy in Phase 1 and Phase 2 

clinical trials [23]. In those clinical studies, gallium nitrate was administered by two different 
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schedules: a brief (15–30 minutes) intravenous infusion or a continuous intravenous infusion given 

over 24 hours for 5 to 7 days.  

While the clinical efficacy of continuous infusion gallium nitrate has been examined in a number of 

different malignancies, this drug has displayed its strongest antineoplastic activity in the treatment of 

non-Hodgkin’s lymphoma and bladder cancer. At least 4 separate clinical trials have demonstrated the 

anti-lymphoma activity of gallium nitrate administered as a single agent [24-27], while 3 additional 

trials have used it in combination with other antineoplastic agents to improve treatment  

outcome [28-30]. In all these studies, gallium nitrate was assessed in patients with relapsed  

non-Hodgkin’s lymphoma that failed to respond to many conventional chemotherapeutic drugs and 

also to stem cell transplantation. Overall, studies indicate that approximately 30% of patients with 

relapsed lymphomas will responded to treatment with gallium nitrate. Interestingly, aggressive large 

cell and mantle cell lymphomas appear to be more responsive to gallium nitrate than other lymphoma  

subtypes [27]. The activity of gallium nitrate in advanced bladder cancer has also been confirmed in 

several clinical studies. At least three studies have demonstrated an overall response in 17–63% of 

patients treated with single agent gallium nitrate [31-33], while three additional studies using gallium 

nitrate in combination with other drugs have shown overall response rates of 12–67% [34-36]. The 

12% response rate was seen in a study that combined gallium nitrate with fluorouracil [36]. This low 

response is surprising given the higher responses seen in other studies; it raises the question as to 

whether this was the result of drug antagonism between fluorouracil and gallium nitrate. An advantage 

of gallium nitrate is that unlike many chemotherapeutic drugs, it does not produce myelosuppression 

and can therefore be used in patients with low white blood cell or platelet counts. In vitro, gallium has 

shown to be synergistic with hydroxyurea, fludarabine, interferon-alpha, gemcitabine, and paclitaxel, 

suggesting that combination therapy with these agents may be fruitful [37-41]. Moreover, gallium 

nitrate does not appear to share cross-resistance with conventional chemotherapeutic drugs since 

clinical responses have been noted in patients who have failed to respond to multiple other drugs. 

2.3. Effects of Gallium Nitrate on Malignancy-Associated Hypercalcemia and Bone Metabolism 

Studies examining the antineoplastic activity of gallium nitrate revealed that a decrease in blood 

calcium levels occurred in a significant number of patients being treated with this agent [26]. Based on 

this observation, further investigations were pursued to examine the potential of gallium nitrate as a 

treatment for elevated blood calcium levels associated with cancer [42]. The bisphosphonate drugs 

have had an established role in the treatment of hypercalcemia and osteoporosis; randomized clinical 

trials were therefore conducted to compare the efficacy of gallium nitrate with the bisphosphonates 

etidronate and pamidronate in the treatment of hypercalcemia in cancer patients [43,44]. These studies 

demonstrated continuous infusion gallium nitrate (200 mg/m2/day for 5 days) to be superior to 

etidronate and at least as effective as pamidronate in acutely controlling elevated blood calcium levels. 

Gallium nitrate was also shown to be superior to calcitonin, a non-bisphosphonate drug used for 

treatment of hypercalcemia [45]. Based on its clinical efficacy, gallium nitrate (Ganite™) was 

approved by the Food and Drug Administration (FDA) for the treatment of cancer-associated 

hypercalcemia. Zoledronic acid, a newer generation bisphosphonate, has been shown to be more potent 

than pamidronate for treatment of hypercalcemia of malignancy [46]; however, randomized trials 



Int. J. Environ. Res. Public Health 2010, 7         

 

 

2341

comparing gallium nitrate and zoledronic acid have not been conducted. Apart from its ability to 

control hypercalcemia, gallium nitrate has been shown to inhibit bone turnover and to decrease 

osteolysis in patients with multiple myeloma and in patients with bone metastases from a variety of 

different cancers [47,48]. Furthermore, administration of low, non-toxic doses of gallium nitrate to 

patients with Paget’s disease of bone, a disorder characterized by abnormal bone remodeling 

secondary to increased bone resorption by osteoclasts, led to a reduction in serum alkaline 

phosphatase, urinary hydroxyproline, and N-telopeptide, biochemical markers of bone turnover [49]. 

2.4. Potential Application of Gallium Compounds as Immunosuppressive and Anti-Inflammatory 

Agents 

Evidence that environmental gallium per se may be immunosuppressive was provided by the 

studies of Betoulle et al. in which an aquatic system was used to show that that fish (carp) exposed to 

sublethal concentrations of gallium nitrate in the water for up to 96 hours displayed a significant 

reduction in immune parameters including immunoglobulin production, phagocyte killing ability, and 

blood leukocytes [50]. Several studies using in vitro and in vivo animal systems have shown that 

gallium compounds have immunosuppressive activity in animal models of autoimmune disease. 

Gallium nitrate has been shown to suppress experimental autoimmune encephalomyelitis and prevent 

adjuvant inflammatory arthritis through suppression of macrophage function and T-cells in rat models 

[51,52]. Other studies showed that gallium nitrate can suppress lupus and prevent cardiac allograft 

rejection in murine models [53,54]. Transferrin-gallium and gallium nitrate were shown to inhibit the 

mixed lymphocyte culture response and prolong the survival of mice with severe graft-versus-host 

disease in a murine bone marrow transplant model [55]. Despite these interesting preclinical 

observations, the immunomodulatory and anti-inflammatory properties of gallium appear to have not 

been investigated in rigorous clinical studies. Further investigations appear warranted to establish 

whether the results of these in vitro and animal studies are relevant to patients with inflammatory or 

autoimmune diseases. The potential effects of gallium on inflammation and the immune system should 

be kept in mind when gallium compounds are being used for the treatment of other conditions.  

2.5. Pharmacology  

Much of our understanding of gallium’s action on cells and its toxicity is derived from 

investigations conducted to evaluate its potential as a therapeutic agent. Insights into the pharmacology 

of gallium were provided by early studies which demonstrated that radioactive 67Ga citrate injected 

into rabbits was transported in the circulation exclusively bound to transferrin, the transport protein for  

iron [56]. Harris and Sephton showed that the uptake of radiogallium by malignant cell lines in vitro 

could be significantly enhanced by the addition of transferrin to the culture medium [57]; the clinical 

relevance of this finding was underscored by the studies of Vallabhajosula et al. who showed that in 

the blood radiogallium binds to transferrin and is transported to tumor tissue [56]. In this respect, the 

initial transport of gallium in the blood resembles that of iron. However, whereas gallium shares 

certain properties with ferric iron [Fe(III)] with respect to ionic radius and bonding, trivalent gallium 

unlike Fe cannot be reduced to a divalent state. Nonradioactive gallium binds avidly to both metal-

binding sites on transferrin, but it does so with a 300-fold less affinity than ferric iron [58]. Under 
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physiologic conditions, only about one-third of circulating transferrin is occupied by iron; hence, the 

metal-binding sites of the remaining transferrin molecules are available to bind and transport gallium 

as transferrin-gallium complexes. With higher levels of gallium in the circulation, transferrin binding 

is exceeded, and gallium likely circulates as gallate, Ga(OH)4− [3].  

Gallium pharmacokinetics have been examined in Phase-1 and -2 clinical trials in which gallium 

nitrate was administered to patients as a brief or a continuous intravenous infusion. When administered 

as an intravenous infusion over 30 minutes at doses ranging from 400–700 mg/m2 gallium nitrate, a 

biphasic gallium urinary excretion pattern with an -phase half-life of 8.3–26 minutes and a β-phase 

half-life of 6.3–196 hours was noted [59]. The latter phase reflects its binding to transferrin in the 

circulation. Sixty-nine percent and 91% of the gallium dose administered was excreted in the urine 

during the first 24 and 48 hours, respectively [59]. Similar serum gallium disappearance curves were 

noted when higher concentrations of gallium nitrate (500–900 mg/m2) were administered by brief 

infusion. Hydration and co-administration of mannitol with gallium nitrate increased the amount of 

gallium excreted in the urine over the first hour [60]. In contrast to the peak serum levels of gallium 

attained when gallium nitrate is administered by brief infusion, administration of gallium nitrate by 

continuous intravenous infusion at its currently recommended dose of 200 mg/m2/day for 7 days 

results in a steady-state plasma gallium level of 0.9–1.9 µg/ml which decreases to 0.45–0.7 µg/ml at 4 

days after stopping the drug. The continuous intravenous infusion schedule for gallium nitrate has 

much less toxicity than the brief infusion schedule and allows patients to receive twice the amount of 

gallium. 

2.6. Mechanisms of Action  

2.6.1. Bone metabolism 

The mechanisms of action of gallium nitrate on bone are distinct from those of bisphosphonates. 

Gallium, at non-toxic concentrations in a dose-dependent manner, accumulates in the metaphysis and 

diaphysis of bone at the interface of the organic (collagen) and the mineral components, thus altering 

crystal solubility and rendering bone more resistant to resorption (reviewed in reference 61). 

Significant increases in bone calcium content occur in gallium-treated bone which also makes bone 

less likely to be resorbed. In addition, gallium acts by blocking osteoclast activity without affecting the 

viability of these cells [61]. Osteoclasts play a critical role in bone resorption, modeling, and 

remodeling [62]. In the rat osteoclast-like cell line, gallium nitrate reduced vitamin D3-stimulated 

osteocalcin and osteopontin mRNA levels [63] and increased type 1 collagen and fibronectin 

expression in bone and fibroblast cells [64]. Collectively, studies indicate that while gallium nitrate is 

an effective drug for lowering pathologically elevated blood calcium levels in cancer, it may also have 

a broader application in diseases associated with increased bone loss such as osteoporosis, bone 

metastases, multiple myeloma, and Paget’s disease of the bone. Presently, gallium nitrate needs to be 

given to patients by continuous intravenous administration which is cumbersome and inconvenient. 

However, an oral formulation of this drug that appears promising is being advanced in early  

clinical trials [65].  
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2.6.2. Antineoplastic activity 

Several investigations have shown that gallium is taken up by various malignant cells in vitro 

through cell surface transferrin receptor-mediated endocytosis of Ga-transferrin complexes [66-69]. 

Evidence for a role for the transferrin receptor in gallium uptake was also provided by studies showing 

that the uptake of 67Ga by leukemic cells in vitro and by melanoma tumor in a rodent model could be 

blocked by monoclonal antibodies against the transferrin receptor [67,70]. In addition to transferrin 

receptor-facilitated uptake, a certain amount of gallium may be incorporated into cells through 

transferrin-independent mechanisms [67,69,71]. Hence, both transferrin receptor-dependent and  

-independent pathways for gallium uptake exist, and it is conceivable that their relative contributions 

to gallium uptake may vary with cell type. 

The mechanisms of antineoplastic activity of gallium are complex and can be viewed as a two-step 

process in which the first step involves the targeting of gallium (as transferrin-gallium) to transferrin 

receptor-bearing tumor cells. Indeed, the high expression of transferrin receptors known to be present 

on lymphomas and bladder cancer cells may explain, in part, the preferential sensitivity of these 

malignancies to treatment with gallium nitrate [72-75]. In the second step, gallium perturbs cellular 

iron metabolism by interfering with transferrin receptor-mediated uptake of iron and with the 

endosomal release of iron from transferrin to the cytoplasm [76]. This leads to a condition of relative 

cellular iron deprivation and inhibition of the iron-dependent function of ribonucleotide reductase, the 

enzyme essential for deoxyribonucleotide synthesis [37]. Ribonucleotide reductase is a heterodimer 

protein consisting of R1 and R2 subunits; the R2 subunit contains a binuclear iron center and a tyrosyl 

free radical that are essential for enzyme function [77]. Perturbation of cellular iron homeostasis by 

gallium limits iron availability for R2 activity thus blocking ribonucleotide reductase activity and 

consequently DNA synthesis [37,78]. In addition, gallium has been shown to directly inhibit 

ribonucleotide reductase enzyme activity in cell lysates [79]; this indicates that gallium inhibits 

deoxyribonucleotide synthesis by dual mechanisms: a blockade of intracellular iron trafficking to the 

enzyme and a direct action on the enzyme that is independent of iron transport.  

Recent studies have provided additional insights into the mechanisms of gallium-induced cell death 

in lymphoma. Gallium nitrate and gallium maltolate, a new gallium compound, induce apoptosis in 

human lymphoma cell lines through an intrinsic mitochondrial pathway that involves the activation of 

proapoptotic Bax, loss of mitochondrial membrane potential, release of cytochrome c from the 

mitochondria, and the activation of caspase-3 [80,81]. Exposure of human lymphoma CCRF-CEM 

cells to gallium nitrate results in the generation of reactive oxygen species (ROS) and a decrease in the 

GSH/GSSG ratio within 4 hours of incubation, long before any loss of cell viability occurs. This is 

followed by an induction of metallothionein-2A and heme oxygenase-1 expression which can be 

inhibited by the antioxidant N-acetyl cysteine [82]. In addition, gallium exposure leads to 

phosphorylation of p38 mitogen-activated protein kinase and the activation of Nrf-2, a transcription 

factor for heme oxygenase-1 [82]. These results suggest a model in which gallium nitrate-induced 

ROS production initially leads to a cytoprotective response (induction of metallothionein and heme 

oxygenase-2 production) and that cell death ensues when this protective response is overwhelmed. A 

protective role for metallothionein-2A against the growth-inhibitory effects of gallium nitrate is also 

suggested by experiments that show that zinc-induced upregulation of metallothionein diminishes the 
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cytotoxicity of gallium in CCRF-CEM cells and that this protection decreases as metallothionein levels 

return to baseline [83].  

Additional cellular processes may be altered by gallium. Protein tyrosine phosphatase inhibition by 

gallium nitrate has been demonstrated in Jurkat and HT-29 human colon cancer cells, but a correlation 

between enzyme inhibition and cell proliferation was not found [84]. Gallium can inhibit magnesium-

dependent ATPase through competition with magnesium [85], and GaCl3 can inhibit tubulin 

polymerization, an effect that could contribute to its antineoplastic activity [86]. Early studies showed 

that DNA polymerases were partially inhibited by gallium nitrate; however, the extent of inhibition 

was insufficient to account for gallium’s antitumor activity [87]. In prostate cancer cell lines and a 

xenograft model, the proteasome was recently reported to be a target for the action of a new group of 

gallium compounds consisting of gallium complexed to ligands containing pyridine and 4-6-

substituted phenolic moieties [88]. All these effects of gallium are of interest, and their contributions to 

the antineoplastic activity of gallium warrant further investigation. 

 

2.6.3. Drug resistance 

Drug resistance to antineoplastic agents remains a major obstacle to the successful treatment of 

cancer. The basis for tumor cell resistance to gallium nitrate is not well understood, and CCRF-CEM 

lymphoma and HL60 human leukemia cell lines with an acquired resistance to gallium nitrate have 

been developed as tools to investigate the underlying mechanisms for this resistance. In HL60 cells, 

the development of resistance to growth inhibition by gallium nitrate is associated with a decrease in 

transferrin receptor-1 levels, a decrease in iron uptake, and an alteration in the intracellular trafficking 

of iron and gallium [89]. A downregulation of transferrin receptor-1 expression and gallium and iron 

uptake was seen in gallium-resistant CCRF-CEM cells [90,91]. The antiproliferative effect of gallium 

nitrate in these gallium-resistant cells could be in increased by increasing the concentration of 

exogenous transferrin in the culture medium [90,92]. These studies suggest that the development of 

gallium resistance includes changes in the uptake and intracellular transport of gallium. However, 

other processes may also be involved. Analysis of gallium-resistant and sensitive CCRF-CEM cells 

using a cDNA microarray approach that evaluated 96 genes associated with metal metabolism revealed 

a marked upregulation of metallothionein-2A, zinc transporter-1, and increased activity of metal 

responsive transcription factor-1 in cells resistant to gallium nitrate [83]. These studies suggest an 

action of gallium on proteins involved in zinc metabolism and a possible effect of metallothionein as a 

modulator of gallium sensitivity in certain cells. Metallothionein is variably expressed in different 

lymphomas in vivo [93]; therefore, a question to be addressed in future clinical trials is whether this 

expression affects the response of this malignancy to treatment with gallium compounds.  

3. Some Future Directions for the Development of Gallium Compounds in Medicine 

3.1. New Gallium Compounds with Antitumor Activity 

Gallium nitrate is a simple metal salt that can be considered to belong to a first generation of 

gallium compounds. There is considerable interest in gallium-based metallodrugs and novel gallium 

agents are in development as illustrated in Table 1. These include the oral formulations gallium 
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maltolate, G4544, and KP46, all of which are in clinical development [5,65,94]. Gallium maltolate 

inhibits hepatocellular carcinoma cell growth and induces apoptosis through action on the 

mitochondrial pathway in lymphoma cell lines [81,95]. On a mole-to-mole basis, this compound 

appears to be more cytotoxic to malignant cell lines in vitro than gallium nitrate. G4544 is being 

examined clinically for bone metastases and metabolic bone disease but may also prove to be active as 

an antineoplastic agent [65]. KP46 (Tris(8-quinolonato)Ga(III) is in clinical trials in Europe [96] and 

has been shown to induce apoptosis in a large panel of malignant cell lines [5,97]. In preclinical 

studies, gallium complexes of ligands containing pyridine and 4,6-substituted phenolate moieties with 

antitumor activity have been developed and have shown activity against prostate cancer xenografts in 

rats [88,98]. In addition, gallium thiosemicarbazones and novel organometallic gallium compounds are 

being aggressively advanced as therapeutic agents [99-102]. It is possible that these newer agents may 

have additional mechanisms of action that may be somewhat different from those of gallium nitrate. 

For example, gallium maltolate was recently shown to inhibit the growth of lymphoma cell lines with 

either acquired or inherent resistance to the cytotoxicity of gallium nitrate [81]. These data would 

suggest that the mechanisms of cell death induction by gallium maltolate occurs through pathways that 

are different than that for gallium nitrate [81]. The availability of lymphoma cell lines that are resistant 

to gallium nitrate-induced apoptosis provides the opportunity to examine whether the other newer 

gallium compounds share cross-resistance to gallium nitrate and whether these compounds may be 

more efficacious as therapeutic agents. The advancement of new gallium compounds to further 

preclinical and clinical testing is awaited with great anticipation. 

Table 1. Gallium Compounds in Clinical and Preclinical Development. 

Gallium Compounds Tumors or diseases investigated/being investigated 

First Generation–FDA-approved  
Gallium nitrate [103-106]. 

 
Hypercalcemia, metabolic bone disease 
Bladder cancer, lymphoma, other cancers  
Microbial infections  

Second generation–Preclinical and Phase 1 and 2 
 clinical trials 
 Gallium maltolate [81,95,107]  
 G4544 [65] 
 Tris(8-quinolonato)Ga(III) KP46 [5;96;97] 

 
 
Hepatoma, lymphoma, microbial infections  
Metabolic bone disease, osteoporosis, skeletal metastases 
Lung cancer, melanoma, other cancers  

Third generation–Preclinical 
 Gallium thiosemicarbazones [99-101] 
 Gallium complexes with ligands of pyridine 
 & 4-6-substituted phenolic moieties [88] 
 Organometallic gallium compounds [102] 

 
Various malignant cell lines, cryptococcus fungi  
Prostate cancer (rat model) 
 
Various malignant cell lines 

3.2. Gallium Compounds as Antimicrobial Agents 

The ability of gallium to interfere with the utilization of iron by certain microorganisms has led to 

some interesting investigations directed at exploring the potential of gallium as an antimicrobial drug. 

Gallium nitrate and transferrin-gallium were shown to block the iron-dependent growth of 

Mycobacterium tuberculosis and M. avium complex extracellularly as well as within human 
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macrophages. Gallium interfered with iron acquisition by M. tuberculosis within the macrophage 

phagosome resulting in a bactericidal action which could be prevented by excess iron [108]. In another 

study, gallium nitrate inhibited Pseudomonas aeruginosa growth and biofilm formation, and killed 

planktonic and biofilm bacteria in vitro through mechanisms that included interference with iron 

uptake and iron signaling by the transcription regulator pvdS. In this study, gallium was effective 

against P. aruginosa pneumonia in mice and prolonged their survival [106]. In a mouse model of 

thermal injury inoculated with P. aeruginosa, gallium maltolate provided a 100% survival compared 

with 100% mortality in control mice not treated with gallium [107]. Patients with cystic fibrosis often 

develop Pseudomonas lung infections that may be resistant to standard antibiotics and difficult to 

eradicate; a clinical trial is in progress to assess the efficacy of gallium nitrate in the treatment of lung 

infections in this patient population (Genta Incorporated Inc; Press release December 2, 2009). 

4. Challenges to Advancing Gallium Compounds as Therapeutic Agents in the Clinic 

Gallium nitrate is presently approved for use in the clinic; however, for optimal efficacy, this drug 

needs to be administered by continuous intravenous infusion 24-hours a day for 5–7 days. This is 

obviously a cumbersome mode of treatment. It would be highly desirable to have gallium compounds 

that could be administered orally and have at least equivalent (or greater) therapeutic efficacy than 

intravenous gallium nitrate. Hence, there is a great need to continue to develop such agents, establish 

their therapeutic index (efficacy to toxicity ratio) in preclinical studies and advance them to human 

trials. At the same time, further research is needed to understand the molecular targets of gallium and 

its mechanisms of action. Clinical experience with gallium nitrate has shown that some patients with 

lymphoma resistant to conventional chemotherapy have responded dramatically to a single course of 

treatment whereas others have responded only partially or not at all [29,109]. This begs the question as 

to why certain cancers are inherently resistant to gallium while others are exquisitely sensitive. An 

understanding of the basis of drug resistance to gallium may allow us to use molecular markers in 

tumors to identify patients most likely to benefit from gallium-based treatment and to design newer 

gallium compounds that could bypass such resistance.  

5. Toxicities of Gallium Compounds in Current Use 

5.1. Gallium Nitrate 

Treatment with continuous intravenous infusion gallium nitrate at the present recommended dose 

for hypercalcemia (200 mg/m2/day for 5 days) is generally well-tolerated, even by elderly patients. 

Higher continuous infusion doses (300 mg/m2/day for 5–7 days) are used for treatment of cancer. In 

phase 1 and 2 studies, renal toxicity was dose-limiting when gallium nitrate was administered as a 

brief intravenous infusion over 30 minutes [60]; this side-effect was seen in ~12.5% of patients treated 

for hypercalcemia by continuous intravenous infusion. With the continuous infusion schedule for 

treatment of lymphoma, diarrhea rather than renal toxicity was dose-limiting [26]. Renal toxicity can 

be minimized by ensuring adequate fluid intake and avoiding of coadministration of nephrotoxic 

drugs. Microcytic anemia may develop in patients treated with gallium nitrate; however, platelet 

counts and white blood cell counts are not suppressed [23]. The latter is a major advantage as it means 
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that unlike other chemotherapeutic drugs, gallium nitrate can be administered to patients with 

thrombocytopenia or neutropenia. Visual and auditory toxicities may occur but have been reported in 

<1% of patients. Hypocalcemia may develop in patients with normal blood calcium levels; this can be 

managed by oral supplementation with calcium carbonate. 

 

5.2. Gallium Arsenide  

Gallium arsenide is a valuable compound that is employed widely in the electronics industry. It 

possesses several advantages over silicon in that it has several-fold greater electron mobility and only 

a fraction of the electrical capacitance of silicon [110]. This property, along with its light-emitting, 

electromagnetic, and photovoltaic properties allow it to be used extensively in high-speed  

semi-conductor devices, in high power microwave and millimeter-wave devices, and in optoelectronic 

devices [1]. The latter include light-emitting diodes (LEDs), laser diodes, photodetectors and solar 

cells that are used in numerous applications.  

Workers in the microelectronics industry may be exposed to gallium arsenide during the process of 

sandblasting gallium arsenide ingots, in the slicing, grinding, and polishing of gallium arsenide-silicon 

wafers, and in clean-up of work areas [1]. For these individuals, the primary portals of entry of gallium 

arsenide into the body would be via the respiratory tract and, to a much lesser extent, the 

gastrointestinal tract. Gallium and arsenic have been shown to be elevated in ground water obtained 

from semiconductor manufacturing industrial areas, thus suggesting that contaminated drinking water 

may also be a source of environmental exposure to gallium [111]. While it is felt that the toxicities of 

gallium arsenide are related primarily to the arsenic component of this compound, the contribution of 

gallium to some of these toxicities cannot be discounted especially in light of the fact that other 

gallium compounds display antineoplastic and antimicrobial activities. Therefore, a discussion of the 

toxicities of gallium arsenide and the relative contribution of gallium to these toxicities is warranted.  

 

5.2.1. Animal studies of gallium arsenide toxicity  

An understanding of the potential risks of acute, subacute, or chronic environmental exposure to 

gallium arsenide has been gained through studies in which rats and mice were exposed to gallium 

arsenide under conditions of inhalation, intratracheal administration, or oral intake.  

 

Inhalation of gallium arsenide  

The National Toxicology Program reported the effects inhalation of gallium arsenide particles by 

F344/N rats and B6C3F1 mice produced over a period of 16 days, 14 weeks, or 2 years [112]. In the 

16-day study, animals were exposed to 0, 1, 10, 37, 75, or 150 mg/m3 gallium arsenide inhalation,  

6 hours per day, 5 days per week for the duration of each period. At the end of the study, animal 

weights were similar to controls, and there were no deaths. The liver and lung weights were increased 

in male rats exposed to >1 mg/m3 and in female rats and mice of both sexes exposed to >10 mg/m3, 

while thymus weights were decreased in male rats exposed to 10 mg/m3. Gallium arsenide particles 

were detected in the alveolar spaces and within alveolar macrophages at higher concentrations in both 

animals. Minimal histiocytic cellular infiltrate and moderate proteinosis in the lung were noted in 
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animals exposed to >10 mg/m3, while laryngeal epithelial hyperplasia and squamous metaplasia were 

noted in mice and rats exposed to >10 mg/m3 and 150 mg/m3 gallium arsenide, respectively. Mild 

chronic inflammation was noted in mice exposed to 75 or 150 mg/m3.  

With a 14-week inhalation exposure, rats and mice were exposed to gallium arsenide particulate at 

concentrations of 0, 0.1, 1, 10, 37, or 75 mg/m3, 6 hours per day, 5 days per week for 14 weeks. No 

animal deaths were observed; however, final mean body weight and weight gain were significantly 

diminished in male animals compared with controls. A microcytic anemia with increased zinc 

protoporphyrin/heme ratios, increased platelet and neutrophil counts, and increased serum alanine 

aminotransferase and sorbitol dehydrogenase was noted. In males, testicular toxicity was noted at the 

higher concentrations of gallium arsenide that was characterized by a decrease in weights of the testes, 

cauda epididymis, and epididymis. Testicular atrophy was seen at the highest concentration of gallium 

arsenide in male rats, while total spermatid heads, spermatid counts, and spermatic motility were 

significantly decreased at lower concentrations. Increases in the incidence of plasma cell hyperplasia 

of mandibular lymph notes, bone marrow hyperplasia, and hemosiderosis of the liver and spleen were 

observed with the higher concentrations of gallium arsenide. The pulmonary toxicity noted with 

gallium arsenide inhalation for 14 weeks was an extension of that seen with a 16-day exposure. Lung 

weights were increased; proteinosis, histiocytic infiltration, and epithelial hyperplasia in the lung 

accompanied by inflammation and squamous metaplasia in the larynx were observed with the higher 

concentrations of gallium arsenide. 

In a 2-year study of gallium arsenide inhalation exposure, B6C3F1 mice were exposed to 0, 0.1, 

0.5, or 1.0 mg/m3 gallium arsenide for 6 hours a day, 5 days per week for 105 weeks (males) or 106 

weeks (females). This resulted in a spectrum of inflammatory and proliferative lesions in the 

respiratory tract without the development of cancer. In another study, male and female Fischer 344/N 

rats were exposed to inhalation of 0–1 mg/m3 of gallium arsenide particles for 6 hours per day, 5 days 

a week for 105 weeks. Although there was no adverse impact on survival, inflammatory lesions, 

atypical hyperplasia, and metaplasia in the respiratory tract were noted. Particles of gallium arsenide 

were detected in the alveolar spaces and macrophages in animals exposed to the higher concentrations 

of this compound [112]. In addition to displaying a spectrum of such changes in the lung, female but 

not male rats had a gallium arsenide concentration-dependent increase in benign and malignant lung 

lesions (alveolar/bronchiolar, adeno, and squamous cell carcinomas). Females also had a gallium 

arsenide concentration-dependent increase in adrenal neoplasms, and an increased incidence of large 

granular lymphocytic leukemia with exposure to 1.0 mg/m3 of this compound.  

 

Intratracheal administration of gallium arsenide  

The toxicities of gallium arsenide administered by intratracheal installation to rodents using various 

schedules ranging from a single dose to repetitive exposure are summarized in the studies in Table 2. 

Details of these and related studies have been presented in recent reviews [1,113]. As with inhalation 

exposure, intratracheal installation of gallium arsenide produces various levels of damage to the 

respiratory tract. In addition, as shown in Table 2, this mode of gallium arsenide delivery may also 

produce testicular toxicity, inhibition of the heme biosynthetic pathway, decreases in hemoglobin 

levels, renal damage, and suppression of immunological functions.  
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Table 2. Toxicities of Intratracheal Installation of Gallium Arsenide (GaAs) in Animals. 

Organ systems and animals Outcome 

Pulmonary  

Male Fischer-344 rats; single installation of 

10, 30, or 100 mg/kg GaAs; analysis at  

14 days [114] 

 

Male Fischer-344 rats; single installation of 

100 mg/kg GaAs; analysis at 14 days [115] 

 

 

Male Fischer-344 rats; single installation of 

smaller particle diameter “respirable”  

100 mg/kg GaAs. Analysis on days 1, 3, 7, 

14, and 28 [116] 

 

Male CD rats; single installation of 50, 100, 

or 200 mg/kg GaAs [117] 

 

Syrian golden hamsters; Installation of 0.5 

mg GaAs per week for 15 weeks,  

2 year observation [118] 

 

Syrian Golden Hamsters; 7.6 mg/kg GaAs 

twice per week x 4 weeks. Evaluated at 8 and 

16 weeks [113] 

 

Weight loss; dose-dependent increase in lung weight; 14- 42% of As and 23–42% of 

gallium dose retained in lung; arsenic, but not gallium detected in the blood; increased 

urinary excretion of porphyrins 

 

Increased weight and dry lung weight with elevation of lung protein, DNA, and 4-

hydroxyproline; pulmonary retention of GaAs particles with multifocal alveolitis, 

purulent pneumonia, Type II pneumocyte hyperplasia, necrosis, and mild fibrosis 

 

Loss of body weight, pneumocyte hyperplasia, proliferative pneumonia, interstitial 

pneumonia, perivascular cuffing, lymphoid hyperplasia, edema, fibrosis, hemorrhage, 

vascular congestion, and alveolar proteinosis 

 

 

Increased lung weight, and seropurulent pneumomia; increase in Type II pneumocytes 

and alveolar macrophases; interstitial pneumonia  

 

Reduced survival and pulmonary inflammation  

 

 

 

Moderate inflammation with diffuse alveolar bronchiolar cell hyperplasia and infiltration 

with alveolar macrophages; mild interstitial fibrosis and cholesterol clefts 

Testicular 

Syrian Golden hamsters; 7.7 mg/kg GaAs, 

twice a week for 14 installations [119]  

Rats; 7.7 mg/kg GaAs, twice a week for 14 

installations [120] 

 

Sperm count reduced by 22%, 3-fold increase in spermatid retention and degeneration, 

increase in abnormal sperm 

 

Sperm count reduced by 41%; 40-fold increase in degenerating late elongated spermatids 

Renal  

Male CD rats; single installation of 50, 100, 

or 200 mg/kg GaAs [117] 

 

Syrian Golden Hamsters [113] 

 

Mitochondrial swelling in proximal tubules 

 

 

Atrophy and degenerative changes of convoluted tubules 

 

Heme biosynthesis  

Male CD rats; single intratracheal installation 

of 50, 100, or 200 mg/kg GaAs [117] 

 

 

Dose-dependent inhibition of blood delta-aminolevulinic acid dehydratase (ALAD) in 

erythrocytes (by 3 days), and kidney (by 6 days), increased urinary ALA excretion by 6 

days 

Immunologic 

B6C3F1 mice; single intratracheal dose of 

50–200 mg/kg GaAs [121-124]. 

 

Suppression of both humoral and cell-mediated immunity; inhibition of T-cell 

proliferation; altered CD25 expression; suppression of macrophage processing of 

antigens and IgM response 
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Oral administration of gallium arsenide  

Two representative studies of oral gallium arsenide in animals are summarized in Table 3. With oral 

administration, the majority of gallium and arsenide appears in the feces thus indicating that this 

compound has limited bioavailability. Not surprisingly, pulmonary toxicity is not encountered with 

oral gallium arsenide; however, Flora et al. (Table 3) found a dose-dependent inhibitory effect of oral 

gallium arsenide on heme biosynthesis and primary immune response along with evidence of hepatic 

oxidative stress [125]. Collectively, animal studies show that gallium arsenide administered by 

inhalation or by intratracheal instillation is considerably more toxic than oral gallium arsenide.  

Table 3. Toxicities of Orally Administered Gallium Arsenide in Animals. 

Animals Outcome 

Male Fischer-344 rats  
Single oral dose of 10, 100, or 1000 mg/kg GaAs; 
analysis at 14 days [114]. 
 

Dose-dependent recovery of gallium (70–99%) and 
arsenic (56–91%) in the feces. Arsenic, but not 
gallium, detected in the blood. Significant increase in 
urinary uroporphyrin excretion with highest dose. No 
pathologic changes in lungs, liver, spleen, kidney, or 
testes. 

 
Male Wistar albino rats  
Single oral dose of 10, 200, or 500 mg/kg GaAs. 
Analysis at 1, 7, and 21 days [125]. 

 
Weight loss. Increased liver weight, increased serum 
gamma-glutamyltranspeptidase and serum aspartate 
aminotransferase activity, decreased hepatic 
malondialdhyde and glutathione content.  
Increased renal alkaline phosphatase activity. 
Decreased erythrocyte delta-aminolevulinic acid 
dehydratase (ALAD); increased urinary ALA and 
protein excretion. Dose-dependent decrease in spleen 
weight and cellularity, and decreased IgM production 
by antibody-forming cells in response to sheep 
erythrocytes. 

5.2.2. Human studies  

Several studies have reported on the exposure of workers to gallium arsenide and other metals in 

the optoelectronic industry in Taiwan. Liao et al. measured gallium and arsenic levels in the blood and 

urine of 4 separate groups of workers: (1) fabrication equipment preventative maintenance workers, (2) 

dopants and thin film (dope film) workers, (3) fabrication supervisors and engineers, and (4) 

nonexposed office workers. Significantly increased levels of gallium and arsenic were detected in the 

urine of the first three groups of workers exposed to gallium arsenide compared with the non-exposed 

control group [126]. The use of masks and gloves had a protective effect against gallium arsenide 

exposure indicating that this compound may be taken up by workers through the respiratory tract and 

skin [126]. In another study, Liao et al. showed that blood and urine levels of malondialdehyde 

(MDA), the byproduct of lipid peroxidation, was elevated in electronics industry workers exposed to 

aluminum, gallium, indium, and arsenic and that MDA levels strongly correlated with urinary levels of 

gallium and arsenic [127]. In an additional investigation, Chen measured metal concentrations in the 
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inhalable air and in the urine of workers in the workplace of two major semiconductor companies in  

Taiwan [128]. The gallium concentration in inhalable air samples from the work areas of production 

operators and engineers (exposed groups) ranged from 0.34–101.26 µg/m3 while the urinary gallium 

levels ranged from 4.42–56.31 µg/L [128]. In contrast, gallium levels in the inhalable air and in the 

urine of control, unexposed individuals (office administrators) were 0.14–18.0 µg/m3 and  

0.09–8.05 µg/L, respectively [128]. 

5.3. What is the Contribution of Gallium to the Toxicities of Gallium Arsenide?  

In aqueous medium, gallium arsenide rapidly dissociates to form gallium and arsenic oxides which 

may be further hydrolyzed [114]. The toxicities of arsenic are well recognized, and it has been 

suggested that the toxicities of gallium arsenide may be largely caused by the arsenic component of 

this compound [129]. However, this may be dependent on the target organ examined and on the 

conditions under which animal experiments were conducted. The following studies shed some light on 

this matter.  

 

5.3.1 Pulmonary toxicity 

Webb et al. compared the pulmonary toxicity of a single intratracheal administration of 100 mg/kg 

gallium arsenide with that of gallium trioxide (Ga2O3) and arsenic oxide (As2O3) in male Fischer-344 

rats [115]. Histopathological changes of inflammation, necrosis, neutrophil infiltration, and fibrosis 

were noted in the animals treated with gallium arsenide and As2O3. In contrast, Ga2O3-treated animals 

displayed an increase in lipid and only mild pneumomonocyte hyperplasia. Visible particles of Ga2O3, 

nodules of macrophages, and phagocytosis of these Ga2O3 particles by macrophages were also seen in 

these lungs. Hence, gallium does not appear to be a pneumotoxicant.  

 

5.3.2. Heme synthesis  

Intratracheal administration of gallium arsenide to rats results in the suppression of the heme 

synthesis pathway via inhibition of delta-aminolevulinic acid dehydratase (ALAD) in several  

tissues [117]. In a separate study that examined the effects of gallium independent of arsenic, Goering 

and Rehm showed that within 24 hours of administration, a single intraperitoneal dose of soluble 

gallium sulfate (12.5–200 mg Ga/kg) produced a dose-dependent noncompetitive inhibition of ALAD 

in the liver, kidney, and erythrocytes (inhibition constant for ALAD was approximately 3 μM  

gallium) [130]. Interestingly, the inhibitory effects of gallium on hepatic and renal ALAD was 

attenuated by zinc suggesting that gallium’s action on this enzyme may involve displacement of zinc 

from its binding to the active sulfhydryl group of the enzyme [130]. This study clearly indicates that 

gallium per se can inhibit ALAD and may thus contribute to the inhibitory effect of gallium arsenide 

on heme synthesis; however, an important factor determining this effect may be the route of entry of 

gallium into the body.  
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5.3.3. Testicular toxicity  

The available data on the effects of gallium on the testes are conflicting. Omura et al. compared the 

testicular toxicities of gallium arsenide, indium arsenide, and As2O3 in male Wistar rats receiving these 

compounds by repetitive intratracheal instillation twice a week for 16 treatments [120]. A significant 

increase in morphologically abnormal sperm, a decrease in sperm count, and an increase in 

degenerating late spermatids were seen in the gallium arsenide-treated animals. Indium arsenide 

showed much weaker testicular toxicity than gallium arsenide while no toxicity was seen with As2O3. 

It was concluded that gallium likely contributed to the testicular toxicity of gallium arsenide [120]. In 

contrast, Colombina et al. administered increasing doses of gallium nitrate to male mice 

subcutaneously every other day for 14 days and did not see an effect of gallium on fertility, 

reproduction, sperm counts, and the testes [131]. Unfortunately, there are only a limited number of 

studies examining the effect of gallium per se on the testes, so that firm conclusions regarding this 

toxicity of gallium need to be made with caution. But, it is important to note that there were 

differences in the schedule and mode of administration of gallium (intratracheal versus subcutaneous 

injection and 8 weeks versus 14 days) in these two studies. Thus, the possibility that prolonged, 

chronic exposure to gallium may produce testicular damage cannot be excluded. 

 

5.3.4. Immunosuppression  

An important toxicity of gallium arsenide is its suppressive action on the immune system.  

Sikorski et al. compared the effects of gallium arsenide and sodium arsenite on cellular and humoral 

responses in female B6C3F1 mice 14 days after the administration of a single intratracheal installation 

of either agent [132]. A differential effect of gallium arsenide and sodium arsenite on immune 

parameters was noted. The splenic IgM response to the T-dependent antigen sheep red blood cells was 

reduced by gallium arsenide in a dose-dependent manner to a 65.5% decrease at the highest dose of 

this compound (200 mg/kg); this was accompanied by a significant decrease in spleen weight and 

cellularity. In contrast, sodium arsenite decreased the splenic IgM response by 24% and did not affect 

spleen size or cellularity. The spleen cells from gallium arsenide-treated mice displayed a dose-related 

suppression of the mixed lymphocyte response (MLR) to the presence of allogeneic stimulating cells; 

in contrast, sodium arsenite-treatment not did result in suppression of the MLR [132]. Natural killer 

cell activity was increased in gallium arsenide-treated but not in sodium arsenite-treated mice. Gallium 

arsenide treatment but not sodium arsenite treatment appeared to increase the resistance of mice to 

mortality from Listeria monocytogenes infection. However, gallium arsenide but not sodium arsenite 

decreased the resistance of mice to the growth of implanted B16F10 melanoma cells [132]. 

Collectively, these studies indicate that the effects of gallium arsenide on the immune system are not 

due to arsenic alone and that gallium contributes significantly to the action of this compound.  

In a separate study however, Burns et al. examined the individual roles of gallium and arsenic on 

the immunosuppressive activity of gallium arsenide by measuring the primary antibody-forming cell 

(AFC) response of B6C3F1 mice splenocytes to sheep erythrocytes in vitro [133]. Suppression of the 

in vitro AFC IgM response was seen with gallium arsenide, gallium nitrate, and sodium arsenite. 

However, the authors concluded that arsenic was the primary contributor to the early 
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immunosuppressive effects of gallium arsenide based on the observations that: (1) the concentration of 

gallium required to inhibit the early IgM response was greater when gallium was added to the 

incubation as gallium nitrate than when it was added as gallium arsenide and, (2) the gallium chelator 

oxalic acid did not reverse gallium arsenide-induced IgM response [133].  

Considering the results of other studies that demonstrate that gallium compounds other than gallium 

arsenide display can suppress the immune system (discussed in Section 2.4), the collective data would 

indicate that gallium per se also contributes to the immunosuppressive action of gallium arsenide. 

6. Conclusions 

Almost 135 years after its discovery, gallium continues to show promise for the treatment of certain 

diseases. However, this potential needs to be further explored and the newer gallium compounds being 

developed should be advanced to clinical trials after rigorous preclinical testing. At the same time, 

there needs to be a better understanding of gallium’s mechanisms of antineoplastic activity and its 

molecular targets. It is envisioned at such information would enable us to identify diseases and patients 

who would selectively benefit from gallium-based therapy.  
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