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Abstract: Fibroblast growth factor 21 is a pleiotropic hormone secreted mainly by the liver in response
to metabolic and nutritional challenges. Physiologically, fibroblast growth factor 21 plays a key role
in mediating the metabolic responses to fasting or starvation and acts as an important regulator
of energy homeostasis, glucose and lipid metabolism, and insulin sensitivity, in part by its direct
action on the central nervous system. Accordingly, pharmacological recombinant fibroblast growth
factor 21 therapies have been shown to counteract obesity and its related metabolic disorders in both
rodents and nonhuman primates. In this systematic review, we discuss how fibroblast growth factor
21 regulates metabolism and its interactions with the central nervous system. In addition, we also
state our vision for possible therapeutic uses of this hepatic-brain axis.
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1. Introduction
1.1. Obesity

Changes in diet and physical activity have increased the prevalence of obesity in a
relatively short time span [1–4]. Obesity is defined as an abnormal or excessive accumula-
tion of fat that can be detrimental to health and is caused by excessive nutrient intake over
time [5].

The biological mechanisms that regulate food intake were evolutionary adapted in
periods where nutrients were scarce and the ability to overeat and store energy when food
was present was crucial for survival. This is in stark contrast to our current situation, where
food is present in excess in most societies, and our propensity to overeat when food is
available, together with the great capacity of our body to store energy in the form of fat,
rather represents a great disadvantage to modern humans and gives rise to a range of
human health problems [5].

Unlike other common diseases, obesity seems to have an obvious solution that starts
with the adjustment of food intake and energy expenditure. However, obesity is a complex
and multifactorial disease that is composed of biological, social, and behavioral influences,
and treatment by lifestyle changes has been shown to be ineffective [4,6,7]. Therefore,
biological and clinical evidence reveals an interaction between genes and the environment
that discredits the belief that body weight can be controlled exclusively voluntarily [8].

Obesity is associated with comorbidities such as cardiovascular diseases, type II
diabetes mellitus (T2DM), or cancer, among others [9,10]. Therefore, a better understanding
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of the underlying causes of obesity is urgently required in order to lay the groundwork for
the development of new therapeutic strategies [11–13].

1.2. Brain Homeostatic Mechanisms and Energy Balance

The Central Nervous System (CNS) plays a fundamental role in the control of the
metabolic homeostasis of the organism. Since one of the most important functions for
survival is to keep us fed and in good nutritional status, the regulation of the metabolism
works through a homeostatic system that balances food intake and energy expenditure. It
is a complex system, since it is essential for our survival, and food intake is also controlled
by the integration of different cognitive, hedonic, and emotional signals that lead to behav-
ioral, autonomic, and endocrine responses [14–17]. This maintenance of homeostasis is of
great biological importance in order to guarantee a perfect balance between nutrients and
energy [16–18].

The hypothalamus is a region of the brain composed of nuclei interconnected by
axonal projections and is the most studied area in terms of the regulation of food intake
and body weight [17–20]. Its anatomical location, at the base of the brain and adjacent to
the median eminence (an organ that receives abundant capillary vascularization), allows it
to capture the nutrients and hormones secreted into the bloodstream that send information
about the energy state, acting as homeostatic feedback signals in order to maintain this
metabolic balance [1,8,21].

The hypothalamus, especially the mediobasal hypothalamus, is an important site of
action. Included in this neural network are the arcuate nucleus (ARC) and the ventromedial
nucleus (VMH). The ARC nucleus is best positioned to receive signals from the periphery
and develop a homeostatic response to peripheral tissues, and is thus considered the
“master hypothalamic center” for feeding control [8,19].

In the ARC, we can distinguish two differentiated neuronal populations with antag-
onistic functions. On the one hand, a neuronal population that expresses neuropeptide
Y/Agouti-related peptide (NPY/AgRP) induces a positive energy balance; and on the
other hand, neurons that express proopiomelanocortin (POMC), which in turn, induces a
negative energy balance. Both types of neurons regulate food intake, energy expenditure,
and nutrient partitioning [22–25].

ARC neurons send projections primarily to other “second-order” neurons located in
other hypothalamic nuclei, such as the dorsomedial nucleus, paraventricular nucleus (PVH),
or lateral hypothalamic area (LHA) [19–21]. These nuclei are responsible for integrating
hormonal and nutritional metabolic signals from the peripheral circulation, generating a
coordinated response [20,22].

Peripheral signals that regulate metabolic control in the CNS may originate from many
organs. However, in recent years, the importance of the liver has gained attention and it
is considered a master metabolic organ that integrates peripheral nutrient status that is
signaled to the brain.

Therefore, in this review, we discuss how a signal derived from the liver, the peptide
fibroblast growth factor 21 (FGF21), controls food intake and energy balance and how some
of its metabolic actions are induced by its activity in the CNS.

1.3. Fibroblast Growth Factor21 and Metabolic Control

FGF21 is a pleiotropic hormone that was discovered in the year 2000 [26]. FGF21 is
secreted mainly by the liver in response to metabolic and nutritional challenges [27,28],
but is also expressed by adipose tissue, skeletal muscle, and the pancreas [29–33]. FGF21
acts through cell-surface receptors comprised of conventional FGF receptors (FGFRs), with
tyrosine kinase activity in complex with the single-pass transmembrane protein β-Klotho.
These receptors are relatively abundantly expressed, both in peripheral tissues, such as
brown adipose tissue (BAT) and white adipose tissue (WAT), as well as in some regions of
the CNS, such as the hypothalamus and hindbrain [34–43].
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FGF21 acts as an important regulator of energy homeostasis, glucose and lipid
metabolism, and insulin sensitivity (Figure 1).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 16 
 

 

such as brown adipose tissue (BAT) and white adipose tissue (WAT), as well as in some 
regions of the CNS, such as the hypothalamus and hindbrain [34–43]. 

FGF21 acts as an important regulator of energy homeostasis, glucose and lipid me-
tabolism, and insulin sensitivity (Figure 1). 

 
Figure 1. Description of the peripheral actions elicited by FGF21. FGF21 is a hepatic signal that im-
proves several metabolic parameters such as energy expenditure, BAT thermogenesis, lipolysis, and 
glucose homeostasis. Abbreviations used: BAT: brown adipose tissue; FGF21: fibroblast growth fac-
tor-21; PPARg: Peroxisome proliferator-activated receptor gamma; WAT: white adipose tissue. 

Physiologically, FGF21 plays a key role in mediating the metabolic responses to fast-
ing or starvation, including fatty acid oxidation and ketogenesis [32,33,44]. FGF21 in the 
liver may also be induced by low protein and high carbohydrate diets, and it has broad 
effects on glucose and fatty acid metabolism [34,45]. Interestingly, while low protein diets 
increase FGF21 in the liver, it has also been reported that they decrease the concentration 
in the hypothalamus [46]. Importantly, high levels of FGF21 have been associated with 
different metabolic diseases, such as obesity [47], T2DM [48], non-alcoholic steatohepatitis 
(NASH) [49], cardiometabolic disorders [50], and congenital or acquired lipodystrophy 
[51,52]. Interestingly, FGF21 levels in the muscle are associated with mitochondrial in-
flammatory myopathy, leading to altered myofiber morphology [53]. FGF21 thus serves 
as a disease marker, but rather than driving disease development, it is believed that the 
elevated FGF21 levels are not sufficient to counteract disease development. Consistently, 
pharmacological recombinant FGF21 therapies have been shown to counteract obesity 
and its related metabolic disorders in both rodents and nonhuman primates [54–59]. Fur-
thermore, FGF21 is the downstream target of both peroxisome proliferator-activated re-
ceptor-alpha (PPARa) and gamma (PPARg), and a growing body of evidence suggests 
that the glucose-lowering and insulin-sensitizing effects of the PPARg agonist thiazoli-
dinediones and the therapeutic benefits of the PPARa agonist fenofibrate on lipid profiles 
are mediated, in part, by FGF21 induction [60–62]. 

While the liver is the predominant site for FGF21 production, adipocytes are sug-
gested to be the main target of FGF21 action [35,63,64] (Figure 1). FGF21 acts directly on 
adipocytes to stimulate glucose uptake, and adiponectin secretion [55,65–67]. In WAT, 
FGF21 stimulates glucose uptake in an insulin-independent manner [56], modulates lipol-
ysis [68], and potentiates PPARg activity [61]. There is also compelling evidence showing 
that FGF21 is involved in the thermogenic functions of brown adipocytes [69,70]. In this 
sense, FGF21 is expressed and secreted in both WAT and BAT [47,69], and the autocrine 
actions of FGF21 in adipocytes play obligatory roles in mediating the metabolic benefits 
of PPARg on glucose homeostasis and peripheral insulin sensitivity by forming a feed-
forward loop with this nuclear receptor [61]. Moreover, FGF21 injection increased energy 
expenditure and adiponectin secretion from adipose tissue. Interestingly, the increased 

Figure 1. Description of the peripheral actions elicited by FGF21. FGF21 is a hepatic signal that
improves several metabolic parameters such as energy expenditure, BAT thermogenesis, lipolysis,
and glucose homeostasis. Abbreviations used: BAT: brown adipose tissue; FGF21: fibroblast growth
factor-21; PPARg: Peroxisome proliferator-activated receptor gamma; WAT: white adipose tissue.

Physiologically, FGF21 plays a key role in mediating the metabolic responses to fast-
ing or starvation, including fatty acid oxidation and ketogenesis [32,33,44]. FGF21 in
the liver may also be induced by low protein and high carbohydrate diets, and it has
broad effects on glucose and fatty acid metabolism [34,45]. Interestingly, while low pro-
tein diets increase FGF21 in the liver, it has also been reported that they decrease the
concentration in the hypothalamus [46]. Importantly, high levels of FGF21 have been
associated with different metabolic diseases, such as obesity [47], T2DM [48], non-alcoholic
steatohepatitis (NASH) [49], cardiometabolic disorders [50], and congenital or acquired
lipodystrophy [51,52]. Interestingly, FGF21 levels in the muscle are associated with mito-
chondrial inflammatory myopathy, leading to altered myofiber morphology [53]. FGF21
thus serves as a disease marker, but rather than driving disease development, it is believed
that the elevated FGF21 levels are not sufficient to counteract disease development. Con-
sistently, pharmacological recombinant FGF21 therapies have been shown to counteract
obesity and its related metabolic disorders in both rodents and nonhuman primates [54–59].
Furthermore, FGF21 is the downstream target of both peroxisome proliferator-activated
receptor-alpha (PPARa) and gamma (PPARg), and a growing body of evidence suggests
that the glucose-lowering and insulin-sensitizing effects of the PPARg agonist thiazolidine-
diones and the therapeutic benefits of the PPARa agonist fenofibrate on lipid profiles are
mediated, in part, by FGF21 induction [60–62].

While the liver is the predominant site for FGF21 production, adipocytes are suggested
to be the main target of FGF21 action [35,63,64] (Figure 1). FGF21 acts directly on adipocytes
to stimulate glucose uptake, and adiponectin secretion [55,65–67]. In WAT, FGF21 stimu-
lates glucose uptake in an insulin-independent manner [56], modulates lipolysis [68], and
potentiates PPARg activity [61]. There is also compelling evidence showing that FGF21 is
involved in the thermogenic functions of brown adipocytes [69,70]. In this sense, FGF21 is
expressed and secreted in both WAT and BAT [47,69], and the autocrine actions of FGF21
in adipocytes play obligatory roles in mediating the metabolic benefits of PPARg on glu-
cose homeostasis and peripheral insulin sensitivity by forming a feed-forward loop with
this nuclear receptor [61]. Moreover, FGF21 injection increased energy expenditure and
adiponectin secretion from adipose tissue. Interestingly, the increased energy expenditure
by FGF21 administration was attenuated in adiponectin-null mice [65,66]. The requirement
of adiponectin for the full effect of FGF21 suggests that adiponectin is important for fatty
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acid mobilization in WAT under lipolytic conditions. Notably, lipodystrophic mice with
reduced adipose tissue are refractory to both acute and chronic effects of systemic FGF21
administration, which is used to decrease blood glucose and increase insulin sensitivity.
FGF21 responsiveness was completely restored after the transplantation of WAT into these
mice, confirming that adipose tissue is a predominant site contributing to the antidiabetic
activities of FGF21 [63]. However, it is currently unclear how FGF21 controls systemic
metabolic homeostasis via its actions in adipocytes.

1.4. Central Fibroblast Growth Factor 21 Actions

FGF21 increases energy expenditure and decreases body weight and blood glucose,
insulin, and hepatic triglyceride concentrations in rodent models of obesity, in part by
acting directly on the nervous system to induce sympathetic outflow to BAT and WAT,
promoting in turn thermogenesis and “browning” in these tissues [71–74] (Figure 2).
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insulin concentrations, to induce energy expenditure and to signal WAT and BAT by SNS activation.
Abbreviations used: CNS: central nervous system; BAT: brown adipose tissue; FGF21: fibroblast
growth factor-21; Vglut2: vesicular glutamate transporter 2; WAT: white adipose tissue.

In agreement with the pharmacological data, genetic loss of function models of FGF21
aggravates obesity-induced and impairs the thermogenic response, possibly via increased
hypothalamic inflammation [75]. Interestingly, by using B-klotho tissue-specific loss-of-
function models, the actions of FGF21 on body weight were found to not rely on the ability
of FGFs to activate b-klotho in the liver or adipose tissue. In fact, FGF21 required β-klotho-
containing receptor complexes in neurons to decrease body weight and circulating glucose
and insulin concentrations in diet-induced obese mice [73] (Figure 2).

These data imply that the therapeutic efficacy of FGF-based drugs for treating metabolic
diseases relies on their ability to activate b-klotho in the CNS [74]. However, other reports
highlight the importance of FGFR1 in the FGF21 action on glucose homeostasis during
prolonged fasting. FGF21 acts directly on the hypothalamic neurons to activate the mitogen-
activated protein kinase extracellular signal-related kinase 1/2, thereby stimulating the
expression of corticotropin-releasing hormone by activation of the transcription factor
cAMP response element binding protein in a process dependent on FGFR1 [76].

On the other hand, it has been shown that physiologic, transgenic, and pharmacologi-
cal activation of FGF21 signaling increases the total caloric intake in rodents [3,56,72,77,78]
and fish [79]. Moreover, pharmacological and genetic studies show that FGF21 also in-
duces water intake in part by its actions in the hypothalamic SIM-1 positive neurons [80].
However, as we pointed out before, the genetic or pharmacological activation of FGF21 has
the primary effect of increasing thermogenesis and energy expenditure, thereby causing
overall weight loss.

In this sense, it is clear that the nervous system plays a crucial role in regulating
FGF21’s effect on the intake of liquids or food. FGF21 crosses the blood–brain barrier
through simple diffusion [81], and its effects are significantly blunted in animals lacking
FGF21-receptors broadly in neurons [78,82–85].
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It is not clear which neuronal mechanisms are behind this orexigenic action of FGF21.
Nevertheless, when β-klotho was deleted from vesicular glutamatergic transporter 2
(Vglut2)-expressing neurons, the feeding response to dietary protein was lost [86] (Figure 3).
Moreover, FGF21 acts in the ARC to increase the expression of the AgRP and NPY (Figure 3),
whereas different studies report about reducing or not affecting cocaine and amphetamine-
regulated transcripts or POMC [54,87,88].
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Furthermore, some studies show that brain FGF21 signaling is necessary not only for
normal food intake but also for macronutrient preference [78,82–84]. In this sense, it has
been proposed that β-klotho-containing receptor complexes in PVN neurons [82] are part of
the neurocircuit mechanisms underlying FGF21’s effect on sweet taste preference (Figure 3).
Moreover, deleting β-klotho from Vglut2 neurons, but not gamma-aminobutyric acid
(GABA)-ergic or dopaminergic neurons, eliminated the effect of FGF21 on the consumption
of sucrose or saccharin [83]. Conversely, genetic activation of β-klotho in Vglut2 neurons
decreased sucrose preference [85].

Interestingly, recent studies have shown that FGF21 is produced and secreted in hy-
pothalamic tanycytes [89,90] and activates GABA-containing neurons expressing dopamine
receptor 2 (DRd2) in the LHA, that in turn, has been shown to be part of the molecular
pathway of the protective effect of prolonged lactation on obesity [90] (Figure 3). Notably,
the improvement in body weight due to prolonged breastfeeding in obese mice is due to an
increase in the thermogenesis of BAT but not to reduced food intake [90].

In contrast, another study proposes that FGF21 is not expressed in the hypothalamus
and, thus, it cannot perform metabolic actions or induce sugar intake in an autocrine
manner in this brain area. Instead, it was proposed that FGF21 is exclusively produced
from the retrosplenial cortex, where it enhances spatial memory [91].

Nevertheless, accumulating evidence suggests that FGF21 is expressed and mediates
its metabolic actions in the brain, and one study links the action of FGF21 and sweet tasting
with the mesolimbic dopamine pathway, an area pertaining to the reward system (Figure 4).

Sweets activate ventral tegmental area (VTA) dopamine neurons and increase the
dopamine release in the nucleus accumbens (NAc) [87]. Another study supports this
neuronal connectivity but with opposite results, and shows that chronic FGF21 adminis-
tration significantly reduces dopamine and dopamine-related metabolites and increases
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the expression of the dopamine transporter in the NAc. Moreover, this last study showed
that the expression of catechol-O-methyl transferase, an enzyme degrading dopamine, was
reduced in the VTA but not in the NAc after FGF21 treatment [84]. These data support
the role of FGF21 in modulating dopamine signaling, but more studies are necessary to
understand the true relationship between FGF21 and the dopaminergic system.
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Interestingly, the FGF21 response to sucrose is associated with body mass index and
dorsal striatal signaling in humans, supporting previous evidence in animal models [92].

In conclusion, FGF21 regulates food preference and is proposed to act in areas pre-
training the reward system. This fact may open new therapeutic avenues for the use of
FGF21 to ameliorate diseases caused by disturbances in homeostatic and hedonic food
drives. This assumption is supported by the study of Pena Leon et al. that emphasizes
this interconnection by the action of FGF21 on DRd2 in the LHA, an area of the brain that
regulates food intake and food reward.

1.5. Therapeutic Use of FGF21

Multiple FGF21 analogues have been developed for treating metabolic diseases [93].
The FGF21 analogue LY2405319 was subcutaneously administered for 28 days to patients
with obesity and T2DM, resulting in attenuated dyslipidaemia, reduced body weight
and plasma insulin, and increased adiponectin levels [94]. Interestingly, this analogue
has also been shown to protect against other derangements induced by the metabolic
syndrome, such as neurodegeneration [95]. Moreover, the long-acting FGF21 analogue PF-
05231023 caused a marked reduction in serum triglycerides but not in body weight when
intravenously administered to hypertriglyceridemic obese people, with or without diabetes,
who were already treated with atorvastatin [96]. Further, Pegbelfermin (BMS-986036), a
PEGylated human FGF21 analogue, ameliorated dyslipidaemia, increased adiponectin
levels, and decreased the levels of fibrosis markers in T2DM patients [97]. Consistently,
pegbelfermin considerably reduced the hepatic fat fraction, the markers of hepatic injury,
and the biomarkers of fibrosis, and ameliorated dyslipidaemia and increased adiponectin
levels, without significantly changing body weight, in a phase IIa clinical trial in NASH
patients [98]. Another line of research showed that a bispecific antibody named BFKB8488A
that activates the FGFR1/B-klotho complex reduces body weight and induces a sustained
improvement in cardiometabolic parameters in obese humans. Interestingly, treatment
with BFKB8488A also led to a trend towards a reduction in preference for sweet tastes and
carbohydrate intake [99]. Moreover, an analogue of FGF19, another FGF family member
(NGM282 or Aldafermin), was tested in NASH patients with promising results [100–103].
Importantly, in a phase 2 trial, Aldafermin was shown to reduce liver fat and generated a
trend towards the improvement of hepatic fibrosis in patients suffering from NASH [103].
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Finally, it is worth mentioning that a dual agonist composed by GLP-1 and FGF21 has
superior efficacy on body weight control and glycemic control compared to a mixture of
GLP-1 and FGF21 [104,105].

Accordingly, in the light of these findings and the success of the unimolecular
polypharmacy [106] for the development of a novel generation of drugs (e.g., tirzepatide)
to treat obesity and diabetes [107], the development of dual agonists that include FGF21
may provide an interesting tool for the treatment of metabolic diseases.

2. Methods
Study Design, Literature Search and Data Collection

Our aim was to compile the most important literature that provides evidence for how
FGF21 regulates metabolism, focusing on the interaction between liver and brain. The
review was designed according to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [108]. Date restrictions were not applied during the
literature search. The literature search was primarily conducted using the PubMed database,
as well as the reference lists of the selected studies, only for manuscripts written in English.
The titles and abstracts of all electronic articles were screened to assess their eligibility.

Our search was performed using the following keywords/MeSH: [“fibroblast growth
factor 21” and “obesity”], [“fibroblast growth factor 21” and “feeding behavior”], [“fibrob-
last growth factor 21” and “liver”], [“fibroblast growth factor 21” and “brain”], [“fibroblast
growth factor 21” and “Diabetes Mellitus, Type 2”], [“fibroblast growth factor 21” and
“Non-alcoholic Fatty Liver Disease”], [“fibroblast growth factor 21” and “adipose Tissue,
Brown”], [“fibroblast growth factor 21” and “Thermogenesis”], [“fibroblast growth fac-
tor 21” and “blood glucose”], [“fibroblast growth factor 21” and “insulin resistance”],
[“fibroblast growth factor 21” and “humans”]. Two authors (E.P. and S.A.-D) indepen-
dently screened all articles for eligibility, while potential disagreements were resolved by
consensus among all authors.

We sought human studies, experimental studies, and reviews published in medical
journals prior to 29 September 2022, while case reports, editorials, conference abstracts,
and posters were excluded. Amongst the 7167 published papers considered, 1421 were
excluded after duplicate removal and 5746 were excluded during the screening phase
because they were out of the review scope as they did not concern FGF21 or not explicitly
assess changes in energy balance or glucose homeostasis.

The remaining 750 full-text papers were assessed for eligibility, and 673 were excluded
after abstract or full text screening. Finally, 77 studies were selected, plus 27 identified from
their reference lists to the review. The flow chart of the selection process is reported in
Figure 5.
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factor 21” and “brain”], [“fibroblast growth factor 21” and “Diabetes Mellitus, Type 2”], [“fibroblast
growth factor 21” and “Non-alcoholic Fatty Liver Disease”], [“fibroblast growth factor 21” and
“adipose Tissue, Brown”], [“fibroblast growth factor 21” and “Thermogenesis”], [“fibroblast growth
factor 21” and “blood glucose”], [“fibroblast growth factor 21” and “insulin resistance”], [“fibroblast
growth factor 21” and “humans”]).

3. Results and Discussion

The articles referenced in this mini-review focused on general aspects of
obesity [1–4,6,9,10,13,14,21], neuroendocrine control of metabolism [5,7,8,15–20,22–25],
non-alcoholic fatty liver disease [11,12], unimolecular polypharmacy [108], and the experi-
mental articles referred to FGF21 expression or referred to the metabolic actions elicited by
FGFRs mimetics or activators [26–105,107,108].

Among these studies, only 14 were performed on humans, and only eight of these
described an FGF analogue or FGF21 signaling activator. In three of them, the compound
reduced body weight [94,99,100], while in the other four, no changes in body weight were
observed [96–98,101]. In addition to the assessment of body weight, four studies found a
reduction in peripheral lipid profile [94,96,97,99] and four found a reduction in liver fat
content [97,100,101,103] (Table 1).

Table 1. Metabolic actions of FGF21 mimetics or FGF21 signaling activation compounds: BW: body
weight; db/db mice: mice lacking leptin receptor; DIO: diet induced obesity; EE: energy expenditure;
FGF21: Fibroblast growth hormone 21; GLP-1: Glucagon like peptide-1; ICV: intracerebroventricular;
ip: intraperitoneal; iv: intravenous; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic
steatohepatitis; ob/ob mice: mice deficient in leptin; sc: subcutaneous; TG: triglyceride.

Study Specie Administration Compound Effect

2020; Gilroy [104] Wild type mice Peripheral GLP-1 and FGF21
dual agonist

Potently reduces BW Decrease
fasting glucose

Improves NASH

2021; Pan [105] Ob/ob mice
Db/db mice Peripheral SC GLP-1 and FGF21

dual agonist

Potently reduces BW
Improves glucose
Improve NAFLD

2008; Coskun [54] Ob/ob and DIO mice Peripheral IV recombinant human FGF21

Potently reduces BW
Increases EE

Improves glucose
Improves NAFLD

2005; Kharitonenkov [55] Ob/ob and db/db mice Peripheral SC human FGF21 Reduces plasma glucose and TG

2009; Xu [57] Ob/ob and DIO mice Peripheral IP recombinant human FGF21 Improves glucose tolerance and
insulin sensitivity

2007; Kharitonenkov [58] Diabetic non human primates Peripheral IV SC recombinant human FGF21
Mild reduction of BW

Reduces plasma glucose and insulin
and improves lipid profile

2013; Adams [59] DIO Mice Peripheral SC FGF21 analogue,
LY2405319

Reduction of BW
Reduces plasma glucose and insulin

and improves lipid profile

2013; Holland [66] Ob/ob and DIO mice Peripheral SC recombinant murine FGF21
Reduces plasma glucose and
improves insulin sensitivity

Increases adiponectin and EE

2015; Douris [71] WT mice ICV recombinant murine FGF21 Energy expenditure, thermogenesis,
and “browning”

2014; Owen [72] WT Mice ICV recombinant murine FGF21 Increases thermogenesis

2017; Lan [73] DIO mice Peripheral IP FGF21 mimetic antibody Reduces BW, plasma glucose and
insulin, and improves lipid profile

2022: Pena-Leon, [90] Rats ICV recombinant human FGF21 Reduces BW
Increases thermogenesis

2013; Gaich [94] Obese and diabetic Humans Peripheral SC FGF21 analog LY2405319 Reduces BW and plasma insulin and
improves lipid profile

2017; Kim [96] Obese humans Peripheral IV PF-05231023 Not changes in BW
Potently reduces TG
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Table 1. Cont.

Study Specie Administration Compound Effect

2019; Charles [97] Obese and diabetic humans Peripheral SC
Pegbelfermin

(BMS-986036), PEGylated
FGF21

Non changes in BW
Decrease fasting glucose and insulin

sensitivity Improves lipid profile
Improve fibrosis markers

2019; Sanyal [98] overweight or obese with NASH Peripheral SC
Pegbelfermin

(BMS-986036), PEGylated
FGF21

Non changes in BW
Improves NASH

2020; Baruch [99] Non human primates Peripheral IV
bispecific anti-FGFR1/KLB

agonist antibody
BFKB8488A

Reduces BW
Reduction in preference for sweet

taste and carbohydrate intake

2020; Baruch [99] overweight or obese Peripheral SC
bispecific anti-FGFR1/KLB

agonist antibody
BFKB8488A

Transient reduction in BW
Improve lipid profile

Decrease fasting insulin

2018;Harrison [100] NASH patients Peripheral S.C. FGF19 analogue, NGM282 Reduces BW
Improves NASH

2020;Harrison [101] NASH patients Peripheral S.C. FGF19 analogue, NGM282 Improves NASH

2021;Harrison [103] NASH patients Peripheral S.C. FGF19 analogue NGM282 No changes in BW
Reduced liver fat

2015; Talukdar [84] DIO mice
Monkeys

Peripheral S.C.
I.V.

recombinant human FGF21
PF-05231023 Supresses sweet preferences

2016; Von Holstein-Rathlou [82] Mice Peripheral IP and
SC recombinant human FGF21 Suppresses sugar intake and sweet

taste preferences

These variations could be due to the different nature of the compounds, different
doses used, routes of administration, or the heterogeneity of the metabolic state of the
patients. All together, we can conclude that FGF21 analogues display an a priori high
applicability; however, although compounds based on FGF21 seem to be promising tar-
gets against metabolic diseases such as T2DM and NASH, their effect on body weight is
still suboptimal.

The quality assessment was performed by the Cochrane risk-of-bias tool for random-
ized trial RoB scale in the manuscript regarding only clinical trials (Supplemental Table S1),
while the outcomes of the qualitative synthesis are presented in Table 2.

Table 2. Quality synthesis: ANCOVA: analysis of covariance; ALT: alanine aminotransferase; AST: as-
partate aminotransferase; BW: body weight; FGF21:Fibroblast growth hormone 21; HDL: high density
lipoprotein; LDL: low density lipoprotein; LS: Least squares; NASH: non-alcoholic steatohepatitis;
SE: standard errors; SD: mean difference mean; TG: triglycerides.

Study Model Data Compound

2013; Gaich [94] Mixed effect linear model BW: LS mean change from baseline =−1.75 (0.65) p < 0.05 LY2405319

2017; Kim [96] Mixed-effects model for repeated
measurements

TG: Placebo-adjusted least squares mean
90% CI −62.1, −24.6 PF-05231023

2019; Charles [97] Longitudinal repeated-
measures analysis model

Glucose: LS mean
Estimates SE, and two-sided 90% confidence intervals

(90% CI −3.46 to 0.22)
Fibrosis markers: % of change compared with baseline

ALT—20%;
AST—8%

BMS-986036

2020; Baruch [99] Descriptive statistics.

Mean and SD % change for baseline:
BW: 2.30 (0.25)

Mean % change for baseline:
Cardiometabolic parameters:

TG: −66%
HDL: +34%
LDL: −37%

Adiponectin: +250%

BFKB8488A

2019; Sanyal [98]

Longitudinal repeated measures analysis
and unstructured covariance matrix were

used to represent
the correlation of the repeated measures

within each
patient

Hepatic fat:
Adjusted mean absolute change compared with placebo
Mean and SE, and two-sided 90% confidence intervals

(−6.8% vs. −1.3%; p = 0.0004)

BMS-986036
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Table 2. Cont.

Study Model Data Compound

2018; Harrison [100] ANCOVA

BW: LS SD, SE
(95% CI), −2.0 (0.9; 3.7

to −0.3) p = 0.023
Hepatic fat: LS means
With SE, 95% (−11.1

1.4, −13.9 to −8.3; p < 0.0001)

NGM282 (FGF19 analogue)

2020; Harrison [101] Sensitivity analysis Wilcoxon matched
pairs signed rank test

Fibrosis scores: change
compared with baseline
(0.5; 0.9 to −0) p = 0.035

NGM282 (FGF19 analogue)

2021; Harrison
[103] ANCOVA

Least squares (LS)
Means with standard

errors (SE), 95%
(difference, −5.0%; 95% CI, −8.0% to −1.9%;

p = 0.002)

FGF21 analogue aldafermin

4. Concluding Remarks

In this review, we covered the metabolic actions of FGF21 and its effect on energy
balance. This hepatic signal appears not only as a key metabolic factor directly implicated
in T2DM and non-alcoholic fatty liver disease (NAFLD)/NASH by its action in glucose and
lipid metabolism but also as regulators of food intake and body weight through its action
on the CNS. Regardless of the great expectations for the use of FGF21 as a therapeutic
target, there are differences in the physiological functions of FGF21 between mice and
humans, a fact that complicates the translational value of the peptide [109].

Therefore, in spite of the recent advances in defining the intracellular function and
regulation of FGF21, the molecular mechanisms mediating its actions and its physiological
and pathophysiological roles in CNS homeostasis are not totally understood.

In conclusion, FGF21 continues to emerge as an interesting tool for the study and
precise understanding of metabolic and liver diseases.
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