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YAP and TAZ were initially described as the main regulators of organ growth during
development and more recently implicated in bone biology. YAP and TAZ are regulated by
mechanical and cytoskeletal cues that lead to the control of cell fate in response to the
cellular microenvironment. The mechanical component represents a major signal for bone
tissue adaptation and remodelling, so YAP/TAZ contributes significantly in bone and
cartilage homeostasis. Recently, mice and cellular models have been developed to
investigate the precise roles of YAP/TAZ in bone and cartilage cells, and which appear
to be crucial. This review provides an overview of YAP/TAZ regulation and function, notably
providing new insights into the role of YAP/TAZ in bone biology.
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1 INTRODUCTION

YAP (yes associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) were
identified in mammals in 1995, and 2000, respectively (Sudol et al., 1995; Kanai et al., 2000). YAP/
TAZ are transcriptional cofactors considered important cellular mediators that define the cell fate,
such as differentiation, proliferation or apoptosis. Because of this central role, YAP/TAZ regulate
numerous physiological cellular processes and thereby act as major protagonists in the maintenance
of tissue homeostasis but also represent a target in different pathological contexts.

Bone and cartilage are two tissues particularly regulated by mechanical cues because tissue
adaptation and remodelling in response to loading are essential to maintain their integrity.
Dysregulation of this mechanoadaptive mechanism leads to osteoarticular pathogenesis such as
osteoporosis or osteoarthritis. Hence, YAP/TAZ signaling may represent a central mediator that
maintains constant adaptation of bone and cartilage tissues in response to modification of the
mechanical environment. For this reason, numerous recent studies have aimed to improve our
knowledge of YAP/TAZ regulation in bone and cartilage.

2 BONE AND CARTILAGE

2.1 Bone Biology
Bone is a dynamic tissue characterized by a permanent remodeling allowing adaptation to
mechanical environment. Bone integrity is maintained by its composition, its quality and its
quantity. These characteristics are tightly regulated by different soluble factors whose actions is
finely coordinated spatially and temporally by bone cells (osteoblasts, osteoclasts, and osteocytes).
The major component of bone is the extracellular matrix that is composed principally by the collagen
type I. This matrix was synthetised by osteoblasts that come from the differentiation of mesenchymal
stem cells that expressed Prx1 (Figure 1A). Young osteoblasts are characterised by the expression of
early markers such as the transcription factors Osterix (Osx), while more matures osteoblasts
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expressed the Osteocalcin (Ocn). The osteoblasts differentiation
is regulated by different factors notably Runx2 and principally by
the Wnt/β-catenin pathway. Osteocytes represents the ultimate
stage of differentiation for osteoblasts that have been included in
the bone matrix during the process of bone mineralization. Late
osteoblasts/osteocytes expressed late markers such as the Dentin
Matrix Protein 1 (DMP1). The third bone cell types are the
osteoclasts that was originated from the hematopoietic stem cells
lineage and that is responsible for bone degradation. Three mains
soluble factors are essential for osteoclastogenesis, the RANK-L,
the M-CSF, and Osteoprotegerin (OPG). These factors are
particularly important for the coupling of osteoblasts and
osteoclasts during the bone remodeling process. The renewal
of bone matrix is allowed by bone remodeling which is divided in
different phases: 1) the initiation of bone remodeling; 2) the bone
resorption; 3) the bone formation; and 4) the matrix
mineralisation. The coordinated action of osteoblasts and

osteoclasts in time and space are partly regulated by the
RANK-L/OPG. RANK-L, and its antagonists OPG, are two
ligands synthetised by osteoblasts, and whose expression is
modulated by the Wnt/β-catenin pathway in order to
maintain a balanced between formation and resorption.

The bone remodeling is regulated by systemic factors
principally hormones such as oestrogen and parathormone,
but also by growth factors that are included in the bone matrix
or by cytokines synthetized locally. TGF-β and BMPs are
released by bone matrix during resorption and allow the
regulation of osteoblastogenesis and osteoclastogenesis.
TGF-β are able to induced the recruitment and the
proliferation of osteoclasts and osteoblasts precursors. It
also regulates the expression of RANK-L/OPG by
osteoblasts and inhibits terminal differentiation of
osteoblasts. BMPs could also regulates osteoblastogenesis
by inducing the expression of Osx and Runx2, or two

FIGURE 1 | Bone and cartilage cells differentiation (A)Osteoblasts differentiation are characterized by the expression of different markers according to the stage of
differentiation. Pre-osteoblasts expressed early osteoblastic genes such as Osterix while old osteoblasts/osteocytes expressed late osteoblastic genes such as DMP-1.
(B) Chondrocytes differentiates from proliferating chondrocytes expressing Col2a1 in the surface layer through an hypertrophic phenotype characterized by the
expression of late markers such as Col10.
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antagonists of the Wnt/β-catenin pathway, Dkk1, and
sclerostin.

2.2 Cartilage Homeostasis
Cartilage is an avascular tissue composed by chondrocytes and
extracellular matrix. Cartilage matrix is composed mostly by
the collagen type II and by proteoglycans which allow their
mechanical properties. The extracellular matrix protects
chondrocytes from mechanical loading, represents a storage
area for cytokines and growth factors, and controls nutriments
diffusion and contribute to the transmission of extracellular
signals to chondrocytes. Chondrocytes at the cartilage surfaces
are characterized by a strong expression of the collagene type
II, while hypertrophic chondrocytes in the mineralized
compartment are expressing the collagen type X
(Figure 1B). The early stage of chondrocytes differentiation
is mainly modulated by the Sox9 transcription factors that
regulates the collagen type II expression, while the late stage of
hypertrophic chondrocytes is mostly controls by Runx2.
Different signaling pathway are essential for chondrogenesis
such as the Wnt/β-catenin pathway, the TGF-β/BMPs
pathway, and the sonic hedgehog pathway (Shh). TGF-β
stimulates the chondrocytes at early stage of differentiation
while it inhibits terminal differentiation. The role of the
canonical Wnt/β-catenin pathway in chondrocytes is
complex since it could inhibit chondrogenesis and
stimulates chondrocytes hypertrophy.

3 YAP AND TAZ BIOLOGY

The YAP/TAZ complex is a downstream effector of the Hippo
signaling pathway, discovered in Drosophila and described as a
main regulator of organ growth during development (Dong et al.,
2007; Pan, 2007). Several studies identified the main actors of
Hippo signaling in Drosophila: Warts (Justice et al., 1995; Xu
et al., 1995), Salvador (Kango-Singh et al., 2002; Tapon et al.,
2002), Hippo (Harvey et al., 2003; Jia et al., 2003; Pantalacci et al.,
2003; Udan et al., 2003; Wu et al., 2003), and Mats (Lai et al.,
2005). The mutation of each of these proteins leads to a hyper-
proliferative phenotype that allowed for identifying Hippo
signaling as a regulator of tissue homeostasis. Yorki, the YAP/
TAZ ortholog, identified in 2005 as a downstream effector of this
pathway and can negatively regulate apoptosis, and induce
cellular proliferation (Huang et al., 2005). The discovery and
functional description of Hippo signaling in Drosophila allowed
for considerable progress in understanding the mechanisms in
mammals.

3.1 YAP/TAZ Functions
YAP/TAZ functions are numerous and are coordinately fine-
tuned at the cellular and nuclear level. Mostly, YAP/TAZ are
transcriptional co-factors acting directly on their target genes via
their co-factors, and notably TEAD family members. YAP/TAZ
are also signaling molecules implicated in the communication
between Hippo signaling and other signaling pathways.

3.1.1 Transcriptional Co-activation
YAP/TAZ are transcriptional co-activators without a DNA
binding domain and therefore require interaction with
molecular partners. This interaction allows for the expression
of target genes that control proliferation, growth, and cell
survival. Among those genes, the most described are CYR61,
CTGF, ANKRD1, REG, AXL, and MYC. Several transcription
factors have been described to interact with YAP/TAZ, mostly
members of the TEAD family. This family consists of four
homologous transcription factors, TEAD1-4, and which share
the same structural domain (Kaneko and DePamphilis, 1998).
The TEAD family facilitates the tumorigenic effect induced by
YAP in vivo and induces gene expression required for
proliferation and cellular growth (Zhao et al., 2008; Zhao
et al., 2009; Liu-chittenden et al., 2012). The expression of
some TEAD family members is strongly increased in a large
number of cancer types and so could be used as prognosis
markers of disease progression (Zhou et al., 2016). Finally,
YAP/TAZ can interact with other transcriptional cofactors
such as p73, the RUNX family and SMAD to induce
apoptosis, and differentiation or proliferation (Kim et al., 2018).

3.1.2 Interaction of YAP/TAZ With Others Signaling
Pathways
YAP/TAZ interacts with different signaling pathways such as the
Notch, Wnt/β-catenin, TGF-β, and BMP pathways. The Wnt/
β-catenin pathway, which is crucial for osteoblastogenesis, is
closely related to YAP/TAZ, and Hippo signaling (Figure 2).
Therefore, inhibiting YAP/TAZ via Hippo signaling could
represent a negative regulation of the Wnt canonical pathway.
Indeed, the phosphorylation of YAP/TAZ inhibits the
phosphorylation of Dvl by CK1δ/ε and subsequently the
binding between Dvl, and LRP5/6-Frizzled induced by Wnt
(Varelas et al., 2010a). Also, the Wnt ligand could activate
YAP/TAZ via the non-canonical Wnt pathway by the FZD/
Gα12/13/Rho axis to induce target genes such as DKK1, BMP4,
and IGFBP4 (Park et al., 2015). Different studies demonstrated a
direct interaction between β-catenin and YAP in the
transcriptional complex β-catenin/TCF4/YAP (Heallen et al.,
2011; Konsavage et al., 2012; Deng F. et al., 2018). Finally,
YAP/TAZ could be degraded into the cytoplasm by the
proteasome whereby YAP/TAZ interacts with β-catenin to
allow for binding to the ubiquitin ligase β-TrCP (Imajo et al.,
2012; Azzolin et al., 2014).

Many studies also demonstrated that YAP/TAZ could interact
with Smads signaling, mainly TGF-β and BMP signaling, and
implicated in osteoblastogenesis (Chen et al., 2012; Moon et al.,
2016). Indeed, YAP/TAZ are required for the TGF-β response by
interacting with phospho-Smad2/3 to translocate into the nucleus
(Hiemer et al., 2014; Mahoney et al., 2014). In response to high
cellular density, phosphorylated YAP/TAZ could be retained in
cytoplasm with Smad 2/3, and which inhibits the TGF-β response
(Varelas et al., 2010b). Finally, YAP and TAZ act in synergy after
BMP stimulation because YAP interacts with Smad1/5 to induce
target genes, and whereas TAZ induces BMP4 expression
(Alarcón et al., 2009; Lai and Yang, 2013).
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3.2 YAP/TAZ Regulation
YAP/TAZ regulation is tightly modulated and occurs at multiple
levels, notably by YAP/TAZ inactivation via phosphorylation
leading to their degradation and/or cytoplasmic sequestration to
avoid YAP/TAZ nuclear translocation (Figure 2). YAP/TAZ
regulation could depend on Hippo signaling or be
independent, via direct modulation of YAP/TAZ cellular
localization. The cellular microenvironment is really important
to take in consideration since it could restrain YAP/TAZ to
nucleus or the cytoplasm, which can totally modify the
modality of YAP/TAZ molecular regulation. In fact, for
example, large surface area, and stiff matrix or the presence of
mechanical forces lead to the nuclear translocation of YAP/TAZ.
In vitro study which are performed on stiff plastic support, is
associated with a basal activation state of YAP/TAZ due to the
stiff properties of the matrix.

3.2.1 YAP/TAZ Regulation via Hippo signaling
Hippo signaling pathway regulates a number of biological
processes such as cellular proliferation, cell fate, cellular
differentiation, organ size, and tissue homeostasis. The
pathway is composed of a complex cascade of serine/
threonine-protein kinase including the Hippo kinase core that

consists of two enzymatic complexes, LATS1/2-MOB1A/B and
MST1/2-SAV1. The kinase MST1/2, associated with its
regulatory protein SAV, activates LATS1/2-MOB1A/B via
phosphorylation (Chan et al., 2005; Praskova et al., 2008).
This active complex can phosphorylate YAP/TAZ, with effects
depending on the targeted serine (Zhao et al., 2010). YAP/TAZ
phosphorylation induces the cytoplasmic sequestration, nuclear
exclusion, and/or proteasomal degradation (Zhao et al., 2007,
2010; Lei et al., 2008; Liu et al., 2010). Among the different sites of
phosphorylation, Ser127 (Ser89 for TAZ), and Ser381 (Ser311 for
TAZ) are the most decisive for protein inactivation. In fact, the
phosphorylation of Ser381 by LATS1/2 allowed for recruitment
of the ubiquitin complex SCFβ–TRCPE3 leading to YAP/TAZ
degradation by the proteasome (Liu et al., 2010; Zhao et al.,
2010). Moreover, Ser127 phosphorylation induced YAP/TAZ
recognition by 14-3-3 protein and their cytoplasmic
sequestration (Lei et al., 2008).

Regulation of LATS1/2 phosphorylation is an indirect
regulation of YAP/TAZ activity and could be modulated by
both soluble factors and/or cellular contact. Many soluble
extracellular factors can regulate YAP/TAZ via Hippo
signaling to promote cellular migration and proliferation.
Members of the epidermal growth factor family,

FIGURE 2 | Levels of regulation of YAP and TAZ YAP/TAZ regulation is fine-tuned and mediated by external stimuli or soluble factors via LATS1/2 (in green: 1, 2,
and 3) that phosphorylates YAP/TAZ (in yellow: 4). YAP/TAZ localization and degradation could be also modulated at different levels (in blue: 5, 6, 7, and 8).
Phosphorylated inactive YAP/TAZ can induce cytoplasmic sequestration of β-catenin and inhibit Wnt/β-catenin signaling by inhibiting Dvl translocation to LRP5/6-
Frizzled complex. Phosphorylated YAP/TAZ are also present in the β-catenin proteosomal degradation complex. YAP/TAZ could also be a transcriptional co-factor
for β-catenin and its interaction with TCF/LEF. Finally, non-canonical Wnt/β-catenin signaling inhibits YAP/TAZ phosphorylation via LATS1/2.
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lysophosphatidic acid or sphingosine-1-phosphate, can inhibit
LATS1/2, and subsequent YAP/TAZ nuclear translocation
(Komuro et al., 2003; Omerovic et al., 2004; Fan et al., 2013;
Reddy and Irvine, 2013; Haskins et al., 2014). G protein-coupled
receptors can also modulate YAP/TAZ differentially depending
on the subunit and ligand. Indeed, RCPGα12/13 are mostly
activated by ligands such as LPA, and S1P or thrombin to
activate YAP/TAZ dependent on Rho GTPase (Miller et al.,
2012; Mo et al., 2012; Yu et al., 2012). However, G protein-
coupled receptors associated with the Gα/s subunit can activate
Hippo signaling via cAMP/protein kinase A signaling (Kim et al.,
2013; Yu et al., 2013).

Cellular contacts can also facilitate the YAP/TAZ axis activation
indirectly by modulating LATS1/2 activation. This activation
involves three major complexes associated with the cellular
membrane: NF2/KIBRA, SCRIB, and α-catenin/AMOT/AJUBA/
NF2 (see Figure 2 fromTotaro et al., 2018 andMeng et al., 2016 for
review). KIBRAprotein was identified upstream ofHippo signaling
and can activate LATS1/2 (Baumgartner et al., 2010; Genevet et al.,
2010; Yu et al., 2010). KIBRA can restrain proliferation notably on
polarized cells because it negatively regulates YAP/TAZ via
LATS1/2 phosphorylation (Xiao et al., 2011). Also in response
to cellular polarity, SCRIB protein, described as a scaffold protein
involved in this process, regulates Hippo signaling (Doggett et al.,
2011; Verghese et al., 2012). For example, the SCRIB membrane
delocalization observed during the epithelial–mesenchymal
transition of cancer stem cells leads to YAP/TAZ activation by
inhibiting Hippo signaling (Cordenonsi et al., 2011). The third
major complex, α-catenin/AJUBA/NF2/AMOT, regulates cellular
proliferation following adhesion, and cellular contacts. This
situation may restrain YAP/TAZ activation via LATS1/2
phosphorylation in response to adherents junctions and
cytoskeletal tension (Das Thakur et al., 2010; Kim et al., 2011;
Rauskolb et al., 2014).

3.2.2 Direct Regulation of YAP/TAZ Cellular
Localization
YAP/TAZ regulation via membrane or cytoplasmic sequestration
may occur by a distinct mechanism. YAP/TAZ sequestration at
the cellular membrane that abolishes any transcriptional activity
could be regulated by AMOT (Wang et al., 2011; Zhao et al.,
2011). AMOT can also modulate YAP nuclear localization to
facilitate its interaction with the transcriptional co-factor TEAD
and promote YAP-dependant proliferation (Moleirinho et al.,
2017). At adherents junctions, α-catenin interacts with YAP/
TAZ/14-3-3 complexes to inhibit epidermal stem cell
proliferation induced by nuclear translocation of YAP
(Schlegelmilch et al., 2011). The WW domain of YAP/TAZ
allows for direct interaction with PTPN14, which leads to
YAP/TAZ cytoplasmic sequestration, and prevents their
nuclear translocation (Liu et al., 2013; Michaloglou et al., 2013).

Cytoplasmic sequestration is not the only mechanism of YAP/
TAZ inhibition independent of Hippo signaling because YAP/
TAZ can also be inhibited at the nuclear level. This mechanism
involves direct competition between YAP/TAZ and VGGL4
protein for fixation on the transcriptional cofactor TEAD (Jiao
et al., 2014; Zhang et al., 2014).

3.3 Effect of the Cellular Microenvironment
on YAP/TAZ
YAP/TAZ localization and activity are also regulated by different
physical constraints that occur at the cellular level. These
environmental constraints depend on matrix properties, the
presence of a cellular contact or tension forces such as shear
stress.

3.3.1 YAP/TAZ Regulation via Cellular Junctions and
Adhesion
Matrix rigidity and adhesion surfaces regulate YAP/TAZ
localization and allow for modulation of cellular behaviours to
adapt to the cellular microenvironment. Indeed, a stiff matrix or
large adhesive area is associated with YAP/TAZ nuclear
translocation (Dupont et al., 2011; Aragona et al., 2013;
Totaro et al., 2017). Conversely, high cellular density inhibits
YAP/TAZ translocation (Zhao et al., 2007; Wada et al., 2011;
Hsiao et al., 2016). Therefore, YAP/TAZ are regulated by both the
presence of a matrix contact that promotes their nuclear
translocation and by the presence of a cellular contact that
inhibits this process. In this context, integrin signaling is
crucial for YAP/TAZ regulation by the organization of actin
filaments and PI3K/PDK1 signaling, and which inhibits Hippo
signaling. Indeed, the structural organization of the actin network
and the formation of stress fibres are required to activate YAP/
TAZ, independent of the ratio of G to F actin (Connelly et al.,
2010; Dupont et al., 2011; Aragona et al., 2013). Hence, the
inhibitors of actin polymerization and inhibitors of the
actomyosin network reduce YAP/TAZ activity. This regulatory
mechanism is independent of the Hippo pathway because
LATS1/2 inhibition is not sufficient to restore YAP/TAZ
activity in the presence of actin polymerization inhibitors
(Dupont et al., 2011). In recent years, different studies have
highlighted the integrin/FAK/CFC42/PP1A axis as a regulator
of YAP/TAZ nuclear translocation (Elbediwy et al., 2016; Hu
et al., 2017; Xiang et al., 2018). Notably, integrins β1 and α3 are
upstream of YAP/TAZ activation in epithelial cells and transit-
amplifying cells (Elbediwy et al., 2016; Hu et al., 2017). Also,
integrin α5 controls osteoblast mechano-sensing and is required
to induce YAP/TAZ nuclear translocation in osteoblasts under
shear stress (Kaneko et al., 2014).

The activation of integrin and focal adhesion kinase by
fibronectin stimulates PDK1 via PI3K to inhibit LATS1/2 and
promote YAP/TAZ nuclear translocation (Kim and Gumbiner,
2015). All of these studies demonstrate that integrins are part of
the cellular perception of the microenvironment and are thus
capable of regulating YAP/TAZ.

3.3.2 YAP/TAZ and Mechanical Forces
The YAP/TAZ regulatory mechanisms described above allow for
the modulation of cellular responses to the different forces
applied from the environment, notably shear stress. For
example, mechanical stress regulates cellular proliferation, and
as shown in quiescent epithelial cells. In these cells, stress activates
the expression of anti-apoptotic genes (Birc5, AREG) as well as
proliferative genes (c-Myc, Cyclin D1) via YAP and β-catenin
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nuclear translocation (Benham-pyle et al., 2015). Shear stress also
regulates YAP/TAZ cellular localization, mainly described during
atherosclerosis, and in which the hemodynamic environment
regulates endothelial cells. Hence, the modification of shear stress
induces an inflammatory response and the emergence of YAP/
TAZ-dependant lesions, and homogenous shear stress inhibits
this process (Wang K.-C. et al., 2016; Wang et al., 2016 L.). In
zebrafish, YAP/TAZ activation resulted from actin filament
reorganization in response to shear stress, and YAP/TAZ
consecutive interaction with AMOT protein (Nakajima et al.,
2017). Shear stress facilitates osteoblastogenesis from
mesenchymal stem cells (MSCs) via RhoA activation and
YAP/TAZ nuclear translocation (Kim et al., 2014).

It was also demonstrated in vitro that increasing the stiffness of
a mineralized collagen glycosaminoglycan matrix allow
osteoblastogenesis from bone marrow-derrived hMSCs
through YAP/TAZ activation (Zhou et al., 2021). This result
was elegantly confirmed during in situ bone regeneration in a
bone defect model with a self-mineralizable matrix inducing
osteoblastogenesis from MSC across time according to the
level of mineralization (Li J. et al., 2021). It was demonstrated
that stiffness could modulate YAP/TAZ through RAP2
downstream of the phospholipase Cγ1 (Meng et al., 2018).
Indeed, at low stiffness, active RAP2 could act on LATS1/2
activation which lead to YAP/TAZ inhibition.

Interestingly, Major and its collaborators demonstrated that
cellular volume should be more relevant than just stiffness of the
matrix. Indeed, they shown opposite effect of stiffness in 2D vs 3D
since 3D soft matrix favours osteoblastogenesis from adipose-
derived stem cells (Major et al., 2019).

All of these results highlight the fact that all of forces emanating
from the microenvironment are integrated at cellular level and affect
YAP/TAZ activation states. In the context of bone, osteoblast lining
cells and osteocyte matrix-embedded cells have different 3-
dimensional mechanical environment which necessarily lead to a
different regulation of YAP/TAZ.

In degenerative diseases, modifications of the matrix
properties could also lead to the modification of YAP/TAZ
activation that could contributes to the pathogenesis (Fearing
et al., 2019). For example, in the adult nucleus pulposus (NP),
cells are embedded in a soft matrix that becomes fibrotic and
stiffness with age. Modifications of mechanical cues emanating
from this altered matrix modify the cell shape and activate YAP
that is normally sequestered in the cytoplasm.

4 YAP/TAZ AND BONE BIOLOGY

Bone is a dynamic tissue associated with permanent remodelling
that is required to adapt the bone structure and density to
maintain physical integrity upon mechanical loading. Different
studies have highlighted a role for YAP/TAZ in this process.
Hence, YAP/TAZ regulates chondrogenesis and osteoblast
differentiation from MSCs to late osteoblast stage/osteocytes.
Recently, our lab and others have characterised the role of
YAP/TAZ in osteocyte perilacunar/canalicular remodeling and
in mechanotransduction.

4.1 Role of YAP/TAZ in Craniofacial and
Dental Development
YAP/TAZ and the Hippo pathway are known to be implicated
in development especially in organ size. Different works aims
to elucidated their roles on craniofacial and dental
development such as the work of Wang and its
collaborators that demonstrates the role of YAP/TAZ in
neural crest-derived craniofacial development (Wang et al.,
2016a). Deletion of YAP/TAZ in cranial neural crest using
Wnt1Cre and Wnt1Cre2SOR lead to embryonic lethality with
vascular defect probably causing haemorrhage. This work
indicates that YAP/TAZ regulate vascular development that
is known to be essential for bone development. It was also
demonstrated that YAP/TAZ modulates the secondary palate
development notably by regulating genes involved in
mineralization such as Phex, which could lead to the
regulation of collagen cross-linking in the palate shelf
mesenchyme (Goodwin et al., 2020). This suggest that YAP/
TAZ could themselves influence their matrix stiffness by
modulating gene implicated in bone mineralization.

YAP/TAZ was also study in the context of the generation of
transit-amplifying cell (TAC) populations during growth of
mouse incisor (Hu et al., 2017). It was shown in vivo that this
process is modulated by the ITGA3-FAK-CDC42 signaling axis
in order to activate YAP in a LATS-independent manner. This
regulation led to nuclear accumulation of YAP and the
maintenance of a high proliferation rate necessary to maintain
organ renewal. Interestingly, Li and its collaborators
demonstrates that the α-E catenin are able to inhibit YAP in
the mouse incisor (Li et al., 2016). This regulation allows the
establishment of non-dividing cells for dental mesenchymal
condensation and epithelial invagination.

4.2 Role of YAP/TAZ in Bone and Cartilage
Stem Cells Differentiation
YAP/TAZ allow for the MSC commitment toward an
osteoblastic lineage while inhibiting adipogenesis and
chondrogenesis (Figure 3) (Hong et al., 2005;
Lorthongpanich et al., 2019). This differentiation process is
regulated by different mechanisms such as matrix
metalloproteinase (MMP) synthesis, cellular contact and
shear stress. MSCs produce MT1-MMP (MMP-14) to
induce matrix remodelling responsible for nuclear
translocation of YAP/TAZ via the activation of integrin β1/
RhoA axis in vivo (Tang et al., 2013). Thus, the matrix
remodelling triggers the differentiation of MSCs toward an
osteoblastic lineage rather than chondrogenesis or
adipogenesis. In addition, the absence of cellular contact
induces morphological changes in MSCs such as a large
adhesion surface, thereby promoting osteoblastogenesis, and
inhibiting adipogenesis (McBeath et al., 2004). Snail/Slug
signaling also participates in vivo in the differentiation
process via YAP/TAZ activation and subsequent expression
of osteoblastic genes such as Runx2 (Tang and Weiss, 2017).

Dupont and collaborators demonstrated that the osteogenic
differentiation normally induced in MSCs on stiff matrix was
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inhibited in vitro by YAP/TAZ small interfering RNA (siRNA)
(Dupont et al., 2011). YAP/TAZ silencing enabled adipogenic
differentiation even on a stiff matrix that inhibited this process,
thus imitating a soft environment. Moreover, shear stress induced
the nuclear translocation of YAP/TAZ and the differentiation of
MSCs in vitro via the osteoblastic lineage associated with the
increased expression of Runx2, Dlx5, and Msx2 (Zhong et al.,
2013; Kim et al., 2014). This mechanism involves RhoA because
RhoA inhibition abolished the nuclear translocation of YAP/TAZ
and the concomitant to activate target genes.

Recently, a role of YAP/TAZ in subchondral bone stem/
progenitor cells (SCP-SPC) was described ex vivo in the
context of the radial extracorporeal shockwave (Zhao et al.,
2021). They demonstrated that radial shockwave influences the
self-renewal of SCB-SPC through modulation of YAP.

4.3 Role of YAP/TAZ in Osteoblastogenesis
Several studies have highlighted the role of YAP and TAZ in
regulating osteoblastogenesis and their proteins partners
(Table 1). Mostly, TAZ was described as a transcriptional co-
activator interacting with Runx2, and the master regulator gene of

osteoblastogenesis (Cui et al., 2003; Byun et al., 2014). The growth
factors FGF-2 and IGF-1 were described in vitro as inducers of
osteoblast differentiation by increasing TAZ expression and its
nuclear translocation involving ERK signaling (Xue et al., 2013;
Byun et al., 2014). Hence, the inhibition of TAZ by siRNA
abolished osteogenic differentiation induced by FGF-2 and
IGF-1 in vitro in cultures of rat bone marrow and C3H10 cell
lines. In contrast to TAZ, YAP inhibited Runx2 activity in the
osteoblast-like cells ROS 17/2.8 (Zaidi et al., 2004). Pan and
collaborators demonstrated that YAP regulates
osteoblastogenesis via Wnt/β-catenin signaling in vitro and in
vivo (Pan et al., 2018). Finally, microgravity decreased the
osteogenic differentiation induced by downregulation of TAZ
activity on MSCs isolated from rat long bones (Chen et al., 2015).
TAZ activation by lipophosphatidic acid blocked the inhibitory
effect of gravity on osteoblast differentiation by inducing ROCK
signaling.

Recently, mouse models were used to explore the role of YAP/
TAZ in bone (Table 2). These works highlighted the differential
role of YAP/TAZ according to stage of osteoblast differentiation.
YAP/TAZ double knockout in the osteoprogenitors Osx+ or

FIGURE 3 | YAP/TAZ in bone and cartilage biology YAP/TAZ regulates mesenchymal stem cell commitment toward an osteoblastic lineage and inhibits
adipogenesis and chondrogenesis by inhibiting PPARγ, and BMP, respectively. This process allows for osteoblast differentiation in relation to microenvironment
modifications such as shear stress, absence of cellular contact, and/or a stiff matrix that promotes YAP/TAZ activation. YAP/TAZ regulate osteoblastogenesis by
modulating Runx2 and the Wnt/β-catenin pathway.

TABLE 1 | Partners of YAP/TAZ in bone and cartilage.

Bone
partners

Cellular consequences References

α-catenin Cytoplamic retention of YAP to establish a group of non-dividing and specialized cells for formation of the tooth
signalling centre, the enamel knot (EK)

Li et al. (2016)

Snail/Slug Interaction inside the complex Snail/Slug-YAP/TAZ-Runx2 to stimulate MSC differentiation Tang et al. (2016)
Runx2 Stimulate Osteocalcin gene expression and osteoblastogenesis Cui et al. (2003), Hong et al. (2005)
PPARγ Inhibit adipogenesis Hong et al. (2005)
β-catenin Stimulate osteoblastogenesis Pan et al. (2018)
Smad1/5/8 Stimulate osteoblastogenesis in response to BMP-2 Wei et al. (2020)

YAP/TAZ, interacts in protein complex with different signaling pathway such as TGFβ/BMPs, and the Wnt/β-catenin pathway. YAP/TAZ, also interacts as DNA, and binding partners with
Runx2.
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Prx1+ led to a lethality induced by ribcage malformation and the
occurrence of haemorrhage, respectively, and during embryonic
development (Kegelman et al., 2018; Xiong et al., 2018). The
inducible double deletion of YAP/TAZ in Osx+ osteoprogenitors
promoted osteoblastogenesis and bone formation in compact
bone of 12-week-old mouse vertebrae. In parallel, a reduced
mineral apposition rate resulted in the absence of any
modified bone formation rate. Of note, YAPfl/+, and TAZfl/fl;
Prx1Cre mice featured a bone mass owing to increased bone
formation, and which suggests that YAP/TAZ have distinct roles
depending on the stage of differentiation (Xiong et al., 2018).
Thus, conditional deletion of YAP in fully differentiated
osteoblasts from YAPfl/fl; OcnCre mice resulted in bone loss
associated with decreased osteoblast proliferation and
differentiation. Moreover, bone marrow from YAPfl/+, TAZfl/fl;
Prx1Cre and YAPfl/fl, TAZfl/fl; OsxCre mice showed increased
osteogenic differentiation, notably with increased levels of
bone formation markers such as Osx, osteocalcin, and collagen
I (Xiong et al., 2018). This double deletion in osteoprogenitors
was associated with increased Wnt/β-catenin signaling and
Runx2 expression. Hence, single deletion of YAP or TAZ in
Osx + cells (YAP fl/fl; OsxCre, and TAZfl/fl; OsxCre) or double
deletion of YAP/TAZ at the mature osteoblast/osteocyte stage
(YAPfl/fl, TAZfl/fl; DMP1Cre) decreased bone mass, which was
associated with increased osteoclast activity, and decreased

osteoblastogenesis (Kegelman et al., 2018; Xiong et al., 2018).
YAPfl/fl, TAZfl/fl; DMP1Cre mice showed decreased osteoblast
number and bone formation rate resulting from decreased
mineralized surface and apposition mineral rate. Together,
these data show that YAP/TAZ could promote the
commitment toward an osteoblastic lineage but inhibit the
activity of fully differentiated osteoblasts/osteocytes.

The role of each co-factor was also assessed. TAZ
overexpression in osteoblasts or the administration of TAZ
lentivirus in a model of bone loss promoted the increase in
bone mass and density associated with increased levels of
osteoblast markers such as Runx2 and osteocalcin (Yang et al.,
2013; Zhang et al., 2016). Overexpression of TAZ in the osteoblast
cell line C3H10 upregulated Runx2 transcriptional activity
associated with increased TGF-β response and decreased Wnt-
β-catenin signaling (Yang et al., 2013).

Finally, YAP/TAZ could contribute to bone fracture healing
because YAP/TAZ deletion in adult mice impaired bone
formation in the callus (Kegelman et al., 2021). Thus, YAP/
TAZ accelerated bone fracture healing via the expansion and
differentiation of periosteal osteoblast precursors.

4.4 YAP/TAZ and Osteocytes
Recent studies highlighted the implication of YAP/TAZ in
osteocytes with a role in bone quality and adaptative

TABLE 2 | Bone phenotype induced by YAP and TAZ modulation.

Genotype Stage of
differentiation

Bone structure Histo-
morphometric
parameters

Age References

YAPfl/fl; TAZfl/fl; Prx1Cre Mesenchymal stem
cells

Lethality (severe hemorrhage and
edema)

— Embryonic
lethality

Xiong et al. (2018)

YAPfl/fl; TAZfl/fl; OsxCre Young osteoblasts Lethality (neonatal asphyxiation due to
ribcage malformation, fracture)

— Neonatal
lethality

Kegelman et al.
(2018)

YAPfl/+; TAZfl/fl; Prx1Cre Mesenchymal stem
cells

BV/TV + Ct. Th + Ob. N/BS +
Oc. N/BS �
MS/BS +
MAR �
BFR/BS +

12-week-old-
female

Xiong et al. (2018)

YAPfl/+; TAZfl/+; OsxCreYAPfl/fl; TAZfl/+;
OsxCre TAZfl/fl; YAPfl/+; OsxCre

Young osteoblasts BV/TV− Ct. Th − Ob. N/BS −

Oc. N/BS +
MS/BS �
MAR −

BFR/BS �

8-week-old
male

Kegelman et al.
(2018)

YAPfl/fl; OcnCre Osteoblasts BV/TV − Ct. Th � Ob. N/BS −

MAR −

BFR/BS −

3-month-old
male

Pan et al. (2018)

YAPfl/fl; TAZfl/fl; DMP1Cre Mature osteoblasts/
osteocytes

BV/TV − Ct. Th − Ob. N/BS −

Oc. N/BS +
MS/BS −

MAR −

BFR/BS −

12-week-old-
male

Xiong et al. (2018)

YAPfl/fl; TAZfl/fl; DMP1(8 kb)Cre Mature osteoblasts/
osteocytes

BV/TV − Ct. Th − Ob. N/BS −

Oc. N/BS +
MS/BS −

MAR −

BFR/BS −

Post-natal-
day 84

Kegelman et al.
(2020)

Synthesis of the bone phenotype observed in different mousemodels invalidated for YAP, and/or TAZ, at different stages of differentiation. YAP/TAZ, deletion in osteoprogenitors results in
lethality, and later invalidation using Osx, and Ocn or DMP1-Cre decreases bone volume. Obl.S/BS, osteoblast surface, Oc.S/BS, osteoclast surface, MS/BS, mineralized surface/bone
surface, MAR, mineral apposition rate, and BFR/BS, bone formation rate/bone surface.
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mechanical features. Two roles of YAP/TAZ were described in
osteocytes with specific functions in perilacunar/canalicular
remodeling and in mechanotransduction. Kegelman and
collaborators investigated the role of YAP/TAZ in osteocyte-
mediated bone remodeling by the conditional deletion of YAP
and TAZ in DMP1Cre mice (Kegelman et al., 2020). The
invalidation of YAP/TAZ in osteocytes resulted in lower bone
mass and dysregulated matrix collagen content and organization,
thereby reducing bone mechanical properties. The authors also
showed that YAP/TAZ is crucial for TGF-β-induced matrix
protease gene expression and osteocyte perilacunar/canalicular
remodeling. In line with these findings, we assessed the
implication of YAP/TAZ in osteocyte mechanotransduction
and showed that YAP/TAZ translocated to the nucleus and
activated their target genes in a 3D in vitro culture model of
the MLO-Y4 osteocyte-like cell line under mechanical
compression (Zarka et al., 2021). YAP/TAZ silencing by short
hairpin RNA partially blocked the increased M-csf and Cxcl3
gene expression induced by osteocyte loading, which suggests
their role as mediators of mechanically induced chemokine
expression in MLO-Y4 osteocytes. Moreover, transcriptomic
analysis of YAP/TAZ-deleted osteocytes under compression
strain revealed the regulation of several factors that initiate the
formation of dendrites. This observation suggests the central role
of YAP/TAZ in the formation of a perilacunar/canalicular
network and in osteocyte-mediated bone remodeling.

4.5 Role of YAP/TAZ in Chondrocyte
Function
The involvement of YAP was mostly analysed in
chondrogenesis given that YAP induces chondrocyte
proliferation and inhibits their differentiation (Karystinou
et al., 2015; Yang et al., 2017). Chondrocyte proliferation is
controlled by YAP, which induces the expression of Sox6
required for the proliferation while inhibiting the expression
of collagen type X, a marker of hypertrophic chondrocytes
in vitro and in vivo (Deng et al., 2016). Hence, inhibition of
YAP activity is necessary to allow chondrocyte differentiation
because YAP inhibits the BMP response that is essential for
chondrocyte differentiation in vitro (Karystinou et al., 2015).
Also, YAP inhibits chondrocyte differentiation in vitro by
reducing Wnt/β-catenin signaling, whereas chondrocyte de-

differentiation was found associated with increased YAP/TAZ
level induced by RhoA signaling (Yang et al., 2017).
Consistently, YAP is mostly localised in the nucleus of pre-
hypertrophic chondrocytes, and hypertrophic chondrocytes
show decreased YAP nuclear localization during
embryogenesis (Goto et al., 2018).

These data suggest that YAP/TAZ promote the commitment
of chondrocyte differentiation while blocking the final
hypertrophic differentiation as a compensatory mechanism.
These was confirmed by a recent study demonstrating the role
of TAZ during chondrogenesis in vivo (Li Y. et al., 2021). They
show that TAZ expression increased during chondrogenic
differentiation and that TAZ deletion using Col2a1Cre mice
inhibits growth plate and articular cartilage development. TAZ
was found to promote chondroprogenitors cell proliferation
while inhibiting chondrocyte maturation.

Overexpression of YAP/TAZ in chondrocytes induced by
MOB1A/B and constitutive activation of YAP in cartilage resulted
in a phenotype of chondrodysplasia (Table 3) (Goto et al., 2018;
Vanyai et al., 2020). MOB1A/B deletion in mice revealed a low
growth plate length and long bones, associated with altered
proliferation, differentiation, and endochondral ossification.
Primary chondrocytes isolated from these mice showed decreased
proliferation related to decreased Sox9 expression induced by YAP/
TAZ overexpression. In addition, Deng and collaborators
demonstrated that YAP-specific overexpression in chondrocytes,
in transgenic Col2a1-YAP mice or by Mst1/2 deletion under Cre-
recombinase Col2a1, protected articular cartilage against
osteoarthritis (Deng Y. et al., 2018). YAP overexpression
attenuated NF-κB signaling and protected against extracellular
matrix degradation by inhibiting matrix-degrading enzymes.

Recently, Vanyai and collaborators demonstrated that YAP/
TAZ conditional deletion in chondrocytes from Col2a1 Cre mice
(Yapfl/fl; Tazfl/fl; Col2a1Cre+) resulted in neonatal lethality due in
part to a cleft palate (Vanyai et al., 2020). The authors highlighted
the phenotype inconsistency between in vitro and in vivo because
YAP/TAZ are not required for cell proliferation in the cartilage
growth plate in vivo. However, this study showed that modulating
YAP/TAZ levels does not impair cell proliferation but rather
induces skeletal deformities in vivo probably via the expression of
matrix remodelling genes.

The ubiquitous expression of YAP/TAZ and the tissue-specific
regulation of the complex are clues for interactions with several other

TABLE 3 | Cartilage phenotype induced by YAP and TAZ modulation.

Genotype or model YAP/TAZ status Effect on cartilage and OA References

Mob1afl/fl; Mob1b−/−; Col2a1CreERT YAP/TAZ overexpression from P0 Chondrodysplasia phenotype Goto et al. (2018)
nls-YAP5SAKI/+; Col2a1Cre YAP overexpression Chondrodysplasia phenotype Vanyai et al. (2020)
Tg-Col2a1-YAP YAP overexpression Protects from OA Deng et al. (2018a)
Mst1fl/fl; Mst2fl/flCol2a1Cre YAP/TAZ overexpression Protects from OA Deng et al. (2018b)
Intra-articular injection of YAP siRNA YAP silencing Protects from OA Gong et al. (2019)
Intra-articular injection of YAP inhibitor, Verteporfin YAP/TAZ silencing Protects from OA Zhang et al. (2020)
YAPfl/fl; Col2a1CreERT YAP silencing from 8 week-old Protects from OA Zhang et al. (2020)
Yapfl/fl; Tazfl/fl; Col2a1Cre YAP/TAZ silencing Neonatal lethality Vanyai et al. (2020)

Synthesis of cartilage phenotypes induced by YAP, or YAP/TAZ, silencing, and upregulation in vivo found in the literature. OA, osteoarthritis.
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cell signaling pathways. The Hippo pathway interacts with NF-κB
signaling to regulate protease expression and cartilage degradation
during osteoarthritis. Conversely, the related effect was investigated
by the use of intra-articular injection of YAP siRNA or the YAP
inhibitor verteporfin: YAP inhibition protected against osteoarthritis
(Gong et al., 2019; Zhang et al., 2020). Indeed, intra-articular
injection of verteporfin or deletion of YAP by using YAPfl/fl;
Col2a1CreERT maintained cartilage homeostasis in osteoarthritic
mice (Zhang et al., 2020). Silencing YAP by siRNA inhibited
interleukin-1β–induced chondrocyte apoptosis and catabolic gene
expression (Gong et al., 2019). Of note, osteoarthritic mice treated
with YAP siRNA showed reduced subchondral bone attrition. More
studies are needed to fully elucidate and clarify the role of YAP/TAZ
in chondrocytes and environmental cells within the joints.

5 CONCLUSION

YAP and TAZ are regulators of bone and cartilage homeostasis that
allows for structural and cellular adaptation in response to the

microenvironment. YAP/TAZ contribute significantly in bone
and cartilage by feeding into the regulation of master
orchestrators such as Runx2, Osx, and Sox9. Biomechanical
components have a crucial impact on the development of bone
and cartilage diseases, so YAP/TAZ are central players for the
initiation and progression of the diseases. Therefore, members of
YAP/TAZ signaling are potential targets in treating bone and
cartilage disorders.
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