
Computational and Structural Biotechnology Journal 20 (2022) 2153–2168
journal homepage: www.elsevier .com/locate /csbj
Evaluation of stromal cell infiltration in the tumor microenvironment
enable prediction of treatment sensitivity and prognosis in colon cancer
https://doi.org/10.1016/j.csbj.2022.04.037
2001-0370/� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Department of Oncology, Nanfang Hospital, Southern
Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, PR China.

E-mail address: nfyyliaowj@163.com (W. Liao).
1 These authors are contributed equally.
Rui Zhou a,1, Zhaowei Wen a,1, Yifu Liao b,1, Jingjing Wu a, Shaoyan Xi c, Dongqiang Zeng a, Huiying Sun a,
Jianhua Wu a, Min Shi a, Jianping Bin d, Yulin Liao d, Wangjun Liao a,⇑
aDepartment of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
bDepartment of Neurology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
cDepartment of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou,
Guangdong, PR China
dDepartment of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China

a r t i c l e i n f o
Article history:
Received 23 January 2022
Received in revised form 26 April 2022
Accepted 27 April 2022
Available online 30 April 2022

Keywords:
Stromal cell infiltration
Machine learnin
Gene signature
Treatment sensitivity
CRISPR library screen
Colon cancer
a b s t r a c t

Current clinical factors for screening candidates that might benefit from adjuvant chemotherapy in colon
cancer are inadequate. Tumor microenvironment, especially the stromal components, has the potential to
determine treatment response. However, clinical translation of the tumor-associated stromal character-
ization into a practical biomarker for helping treatment decision has not been established. Using machine
learning, we established a novel 31-gene signature, called stromal cell infiltration intensity score (SIIS), to
distinguish patients characterized by the enrichment of abundant stromal cells in five colon cancer data-
sets from GEO (N = 990). Patients with high-SIIS were at higher risk for recurrence and mortality, and
could not benefit from adjuvant chemotherapy due to their intrinsic drug resistance; however, the oppo-
site was reported for patients with low-SIIS. The role of SIIS in detection of patients with high stromal cell
infiltration and reduced drug efficiency was consistently validated in the TCGA-COAD cohort (N = 382),
Sun Yat-sen University Cancer Center cohort (N = 30), and could also be observed in TCGA pan-cancer
settings (N = 4898) and four independent immunotherapy cohorts (N = 467). Based on multi-omics data
analysis and the CRISPR library screen, we reported that lack of gene mutation, hypomethylation in
ADCY4 promoter region, activation of WNT-PCP pathway and SIAH2-GPX3 axis were potential mecha-
nisms responsible for the chemoresistance of patients within high-SIIS group. Our findings demonstrated
that SIIS provide an important reference for those making treatment decisions for such special patients.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Colon cancer is a disease characterized by considerable molec-
ular heterogeneity that is related to the prognosis and treatment
outcomes [1]. Although several molecular classification strategies
have been proposed to characterize distinct biological properties
[2], more effective and clinically accessible classifiers that could
complement the TNM system to enable the personalization of flu-
orouracil (FU)-based postsurgical adjuvant chemotherapy (ADJC)
in localized colon cancer remain to be explored.

The extensive literature has underscored the clinical impor-
tance of tumor microenvironment (TME) features of various cancer
types [3]. For colon cancer, a consensus immunoscore, has been
demonstrated to be a robust prognostic indicator independent of
TNM staging, thereby making colon cancer a paradigmatic tumor
for immune classification [4]. Besides its prognostic value, immu-
noscore was also revealed to be a reference for ADJC performance
[5]. The consensus immunoscore only quantifies the densities of
CD3+ and CD8+ T cells, therefore it mainly reflects degree of the
local intratumoral adaptive immune reaction. However, in addition
to T cells, some other cellular components in TME might also play
an important role in tumorigenesis and progression. For example,
our previous studies showed that the infiltration intensity of stro-
mal cells is greater than that of T cells with respect to differentiat-
ing distinct TME subtypes and predicting the likelihood of the
chemotherapeutic benefit of patients with colon cancer [6,7]. How-
ever, to date, a potential clinical translation of the stromal contex-
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ture into a marker for prognosis and therapeutic benefit prediction
has not been established.

The consensus immunoscore is detected by immunohistochem-
ical staining, a method that relies heavily on a limited repertoire of
phenotypic markers and biopsy specimens of sufficient size. In
other words, the immunohistochemical staining can only reflect
a limited number of cell types so that most of the information
regarding TME panoramic landscape features is ignored. Besides,
immunohistochemical staining is typically applied to analyze a
specific two-dimensional tissue section, so it cannot be used to
estimate the TME content across three-dimensional tissue sam-
ples. To address these issues, several computational approaches
have recently been developed to characterize TME compositions
in a high-throughput manner directly from bulk tissue gene
expression profiles [8]. Cell content data generated by these meth-
ods to establish clinical models has revealed that they are corre-
lated with the clinical outcomes of tumor patients [9,10].
However, as the operation of these computational tools requires
the whole transcriptome data as the input, they are not considered
clinically practical. Hence, in this study, we first employed the
enrichment methods single-sample gene set enrichment analysis
(ssGSEA) to calculate the enrichment scores for 23 immune and
stromal cells based on clinically annotated colon cancer gene
expression profiles, and then identified a special patient population
with high infiltration of stromal cells by cluster analysis. As a
result, we established a transcriptome-based and easy-to-use scor-
ing assay based on 31 informative genes to effectively quantify
stromal cell components of the TME in colon cancer patients,
which is a robust prognostic biomarker for distinguishing patients
who are at high risk of relapse and cannot benefit from ADJC simul-
taneously because of their intrinsic drug resistance.
2. Materials and methods

2.1. Patient cohorts used in this study

Public transcriptome data on colon cancer samples were retro-
spectively collected from the GEO (https://www.ncbi.nlm.nih.gov/-
geo/) and TCGA-COAD (https://cancergenome.nih.gov/) datasets.
For samples from the Sun Yat-sen University Cancer Center cohort,
written informed consent was obtained from all patients. This
study was approved by the Nanfang Hospital Ethics Review Board.
RNA extraction and sequencing were performed as previously
described [11]. All colon cancer samples included in the analysis
in this study were obtained before ADJC performance. Details are
provided in the Supplementary Materials and Methods.
2.2. Generation of the 31-gene-based quantitative indicator

A four-phase screening strategy was designed to filter out the
informative genes to build the ‘‘stromal infiltration intensity score
(SIIS)”. Briefly, a four-phase screening strategy was designed to fil-
ter out the informative genes to build the ‘‘stromal infiltration
intensity score (SIIS)”, including differential gene expression anal-
ysis; robust prognostic gene identification; elastic net analysis (it-
eration = 1000); and Cox proportional hazards model
(iteration = 1000) with the least absolute shrinkage and selection
operator (LASSO) penalty analysis Differential expression gene
(DEG) analysis among TMECS1 and TMECS2 clusters was con-
ducted in the GSE39582 dataset using the ‘‘LIMMA” package. The
significance criterion for DEGs was set as an absolute ‘‘log2FC”
value >0.5 and an adjusted p value < 0.05. Then, robust prognostic
DEGs were identified using the bootstrapping method (repeated
1000 times) as described previously, and DEGs that were incorpo-
rated in 70% of resample runs (achieved p < 0.05 in robustness test-
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ing) were considered as robust prognostic genes and selected for
further analysis. The elastic net analysis (iteration = 1000) and
LASSO-Cox analysis (iteration = 1000) were performed by utilizing
a R package called ‘‘glmnet”. The elastic net regularization for gen-
eralized linear models is the linear combination of LASSO and ridge
regularization methods. An elastic net model was developed to
screen out the most informative genes for distinguishing patients
within TMECS1 and TMECS2. The alpha parameter of the elastic
net was set at 0.9.

The penalized Cox regression model with LASSO penalty was
used to select the most useful prognostic markers among informa-
tive DEGs picked by the elastic net model, and the optimal values
of the penalty parameter k were determined by tenfold cross-
validations. The expression levels of informative DEGs were ana-
lyzed as binary variables in LASSO-Cox regression; the optimal
cut-off values were evaluated based on the association between
relapse-free survival and gene expression in the GEO cohort using
the ‘‘survminer” package. Among the 31 genes finally selected by
repeated LASSO-Cox regression, 11 genes had positive Cox coeffi-
cients (named DEGsb+) and the other 20 genes had negative Cox
coefficients (named DEGsb-). The final score was defined as,
SIIS = the average expression of DEGsb+ – the average expression
of DEGsb-.

2.3. The SubMap and nearest template prediction (NTP) analysis

The SubMap analysis and NTP analysis were used to explore the
internal relationship between SIIS and TMECS algorithm. The
implementation of these two algorithms is achieved through the
online module of GenePattern website (https://cloud.genepattern.
org/). Details are provided in the Supplementary Materials and
Methods.

2.4. Prediction of the chemotherapeutic response

Chemoresponse was predicted using the R package
‘‘pRRophetic” which implemented a built-in ridge regression
model based on the CTRP database and GDSC database respec-
tively. Details are provided in the Supplementary Materials and
Methods.

2.5. Pathway, immune, and metabolic score estimation

The pathway, immune, and metabolic score estimation were
achieved by different R packages. Details are provided in the Sup-
plementary Materials and Methods.

2.6. Multi-omics analysis

The genomic mutation, DNA methylation, and proteomic data
were download from TCGA-COAD dataset, details are provided in
the Supplementary Materials and Methods.

2.7. CRISPR synergistic activation mediator library screen for
identification of chemoresistance genes

The CRISPR synergistic activation mediator (SAM) library which
contains 70,290 unique sgRNA sequences targeting 23,430 human
genes (3 sgRNAs per gene) was used to generate a mutant cell pool
for high-throughput screening. The count value of sgRNAs was
transformed using the ‘‘voom” algorithm, and differentially
enriched sgRNAs between chemotherapy drug- and vehicle-
treated groups were analyzed using the ‘‘LIMMA” package. The
adjusted p-value for multiple testing was calculated using the Ben-
jamini–Hochberg correction. The criteria for screening candidate
sgRNAs were: 1) the average count values of candidate sgRNAs in
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both the chemotherapy drug-treated group and the vehicle group
should be greater than 1,000; 2) the absolute ‘‘log2FC” value calcu-
lated by difference analysis of sgRNA level of chemotherapy drug-
treated group versus vehicle group was more than 0.5. Details are
provided in the Supplementary Materials and Methods.

2.8. Connectivity map analysis

Connectivity map (Cmap) analysis was performed using the 150
genes with the most significant fold changes (up-regulated and
down-regulated) according to the instructions provided by the
Cmap website (https://clue.io/).

2.9. In vitro and in vivo experiments

To address the role of GPX3 in mediating chemoresistance in
colon cancer cells, several in vitro and in vivo experiments, includ-
ing cell culture, cell transfection, Methylthiazolyl-tetrazolium
(MTT) assay, clonogenic assay, western blotting, real-time quanti-
tative reverse-transcription polymerase chain reaction, immuno-
histochemistry staining, and subcutaneous tumor formation
assays, were performed as previously described [12].

2.10. Statistical analysis

All statistical tests were performed using R software (version
3.6.0) or SPSS software (version 25.0). Details are provided in the
Supplementary Materials and Methods.

3. Results

3.1. Identification of distinct TME clusters associated with
chemotherapeutic benefit

Using an unsupervised hierarchical cluster analysis (Fig. 1A), we
identified three distinct TME clusters based on 990 samples (Tables
S1-Tables S2) in the meta-GEO cohort, denoted as tumor microen-
vironment cell subtype1 (TMECS1; n = 369), tumor microenviron-
ment cell subtype2 (TMECS2; n = 218), and tumor
microenvironment cell subtype3 (TMECS3; n = 403). As shown in
Fig. 1B and 1C, TMECS1 was characterized by enrichment of the
highest level of stromal cells and innate immune cells with
immunosuppressive properties (these cell types are classified into
cell cluster 1), moderate level of cytotoxic lymphocytes and acti-
vated dendritic cell (these cell types were classified into cell cluster
2), and the lowest level of Th2 cells, central memory T cells, and
total T helper cells (these cell types were classified into cell cluster
3), which was recognized as immune-excluded phenotype [13].
Compared with TMECS1, TMECS2 had significantly higher abun-
dance of cell cluster 2 and 3 infiltration, while cell cluster 1 infiltra-
Fig. 1. Unsupervised clustering of TME cells in colon cancer and clinical characteristics
TMECS2, turquoise; TMECS3, blue) developed by unsupervised analysis and hierarchical
cells. (B) Heatmap showing the correlation between infiltration levels of 23 tumor micr
corresponding correlation coefficients. The survival impact of each cell was represented
risk for relapse-free survival as red. (C) Box plot of the comparison of the infiltration level
the proportions of TME subtypes in and across different molecular characteristic subgrou
subtypes in C1-C6 subtypes and CMS subtypes. (F) The survival curve of three TME su
cohorts. (G) The survival curve of adjuvant chemotherapy performance for overall surviv
fluorouracil response signatures and those with non-response signatures within and acr
estimated IC50 level of drugs in GDSC database (I) and activation levels of biological
microenvironment cell subtype; TME, tumor microenvironment; Cor, correlation; Tcm, T cen
dendritic cell; iDC, immature dendritic cell; Tgd, T gamma delta; NK, natural killer; TFH, T foll
mutant type; WT, wild type; RFS, relapse-free survival; OS, overall survival; ADJC, adjuvant
homologous recombination; OXPHOS, oxidative phosphorylation; CYP, cytochrome P; MM
interpretation of the references to color in this figure legend, the reader is referred to th
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tion was significantly decreased, indicating that the TME feature of
TMECS2 was recognized as immune-inflamed phenotype [13].
Unlike TMECS1 and TMECS2, TMECS3 exhibited lowest abundance
estimates of both cell cluster 1 and 2, which were closely linked to
previously reported immune-desert phenotypes [13]. While the
infiltration of cell cluster 3 was similar with that in TMECS2. In
terms of the correlation between TMECS and molecular features
of colon cancer, we found that TMECS2 was significant enriched
in dMMR, CIMP (+), BRAF mutation, CMS1, and C2 (CIT) tumors
(Fig. 1D, E; Table S3), while CIN (+), CMS4, C4 (CIT), and C6 (CIT)
tumors were more common in the TMECS1 cluster than in the
other two clusters (Fig. 1D, E; Table S3). However, there was no
obvious difference in the KRAS mutation or P53 mutation among
TME clusters. The survival analysis revealed that patients with
TMECS2 exhibited a prominent survival advantage for both
relapse-free survival (RFS) and overall survival (OS) among the
three TME clusters, whereas TMECS1 was associated with the
worst prognosis (Fig. 1F). Next, we evaluated the association
between TME clusters and the chemotherapeutic response. The
administration of ADJC significantly reduced the mortality risk of
patients only in the TMECS3 cluster; it did not confer survival ben-
efits to patients in the TMECS1 or TMECS2 clusters (Fig. 1G). Con-
sidering the high risk for recurrence of patients with TMECS1, we
speculated that the failure of ADJC to provide benefits to these
patients might be attributable to the existence of primary drug
resistance. To validate this hypothesis, we compared the fluo-
rouracil response rates and the predicted IC50 values of several
chemotherapeutic drugs between TMECS1 and TMECS2 clusters.
The results showed that patients in the TMECS1 cluster exhibited
the lowest fluorouracil response rate among all the clusters
(Fig. 1H) and significantly higher estimated IC50 values for the
majority of chemotherapy drugs as compared to patients in the
TMECS2 cluster (Fig. 1I). Finally, the biological analysis revealed
that the TMECS2 cluster had enriched pathways of DNA damage
repair and immune activation, whereas the TMECS1 cluster was
characterized by multiple pathways related to stromal activation,
chemoresistance, and cancer progression, such as hedgehog signal-
ing, epithelial-mesenchymal transition (EMT), cytochrome P450
metabolism, and transforming growth factor (TGF)-b signaling
(Fig. 1J).

3.2. Generation of the gene signature to distinguish patients within
TMECS1 in the meta-GEO cohort

Through two-step regressions (Fig. 2A, Fig. S1A-B), we gener-
ated a quantitative indicator consisting of 31 genes, termed the SIIS
(Fig. 2B). Boxplots show that the median SIIS was highest in the
TMECS1 cluster and lowest in the TMECS2 cluster (Fig. 2C), and
the subsequent TME correlation analysis revealed a strong positive
correlation between the SIIS and infiltration of cell cluster 1
of TME subtypes. (A) Heatmap showing the three TME subtypes (TMECS1, orange;
clustering of 23 TME cells. Rows represent the samples and columns represent TME
oenvironment cells in the meta-GEO cohort. Shading color represents the value of
by the circle on the same row. Favor for relapse-free survival was colored as green,
of each cell cluster between the different TME subtypes. (D) Bar charts summarizing
ps in the GSE39582 cohort. (E) Sankey chart displaying the distribution of the TME
btypes for relapse-free survival (left) and overall survival (right) in the meta-GEO
al in three TME subtypes. (H) Bar charts summarize the proportions of patients with
oss different TME subtypes. (I-J) Volcano plots representing the comparison of the
process (J) between patients in the TMECS1 and TMECS2 subtypes. TMECS, tumor
tral memory; Tem, T effector memory; Th, T helper; DC, dendritic cell; aDC, activated
icular helper; CIMP, CpG island methylator phenotype; CIN, chromosome instability; MT,
chemotherapy; R response; NR, nonresponse; CMS, consensus molecular subtypes; HR,
R, mismatch repair; EMT, epithelial-mesenchymal transition; FC, fold change. (For
e web version of this article.)
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Table 1
Univariate and multivariate survival analyses of SIIS model and clinical variables.

UVA (RFS) UVA (OS) MVA (RFS) MVA (OS)

HR (95%CI) p HR (95%CI) p HR (95%CI) p HR (95%CI) p

Agea 1.00 (0.99–1.01) 0.996 1.04 (1.02–1.05) <0.001 1.01 (0.99–1.02) 0.239 1.04 (1.03–1.05) <0.001
Gender (vs. Male) 0.73 (0.59–0.90) 0.003 0.82 (0.62–1.09) 0.176 0.81 (0.59–1.12) 0.199 0.63 (0.46–0.87) 0.005
SIISa 1.52 (1.36–1.70) <0.001 1.36 (1.18–1.56) <0.001 1.58 (1.26–1.96) <0.001 1.42 (1.14–1.78) 0.002
Stage (vs. stage I)
Stage II 8.24 (2.03–33.39) 0.003 1.74 (0.91–3.34) 0.097 5.96 (1.45–24.47) 0.020 1.28 (0.63–2.57) 0.493
Stage III 17.97 (4.45–72.55) <0.001 2.30 (1.20–4.41) 0.012 10.23 (2.50–41.90) 0.005 1.76 (0.87–3.56) 0.117
CMS (vs. CMS4)
CMS1 0.55 (0.35–0.86) 0.009 0.96 (0.63–1.45) 0.846 1.14 (0.63–2.06) 0.660 1.53 (0.88–2.62) 0.129
CMS2 0.59 (0.41–0.84) 0.003 0.63 (0.44–0.92) 0.015 1.33 (0.78–2.25) 0.291 1.01 (0.61–1.68) 0.969
CMS3 0.42 (0.25–0.73) 0.002 0.38 (0.20–0.72) 0.003 1.22 (0.59–2.53) 0.592 0.72 (0.33–1.54) 0.369

aContinuous variable.
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(Fig. 2D, E), especially for fibroblasts and endothelial cells, suggest-
ing that the SIIS signature could be used as a quantitative index for
measuring stromal cell infiltration intensity in colon cancer sam-
ples. Consistently, analyzing of a public colon cancer single-cell
RNA-sequencing dataset also revealed higher SIIS value distribu-
tions in fibroblasts and endothelial cells when compared to other
cell types (Fig. S2A-B). A receiver-operating characteristic curve
analysis revealed that the area under curve of SIIS in distinguishing
TMECS1 from TMECS2 and all other non-TMECS1 (including
TMECS2 and TMECS3) patients was 0.90 and 0.82 respectively
(Fig. 2F). To further clarify the internal relationship between SIIS
and TMECS algorithm, we performed NTP analysis and SubMap
analysis. As shown in Fig. S3A and S3B, the SIIS value was signifi-
cant higher in samples of predicted TMECS1 subtypes than that
in predicted non-TMECS1 subtypes (Fig. S3A) and samples of
high-SIIS group shared significant similarity in marker gene
expression with TMECS1 samples (Fig. S3B, adj p = 0.004).

Then, we sought to determine the clinical relevance of the SIIS
model to the meta-GEO cohort. As expected, patients with higher
SIIS had significantly increased relapse and mortality risks accord-
ing to both univariate (Fig. 2G) and multivariate analyses (Table 1).
Interestingly, the negative association between the SIIS and OS was
obviously increased for patients who underwent ADJC (Fig. 2G),
suggesting that this marker might have the ability to indicate the
benefits of chemotherapy. To validate this speculation, we ana-
lyzed the relationships among the SIIS, ADJC benefits, and
chemoresponses in the GSE39582 dataset. The median SIIS was
significantly higher in the fluorouracil nonresponse group, and
ADJC benefits obviously decreased with increased SIIS, especially
in patients with stage II disease (Fig. 2H-J). Similarly, the high-
SIIS group exhibited significantly higher estimated IC50 than
low-SIIS group did regarding eight chemotherapy drugs in GDSC
(Fig. 2K), and correlated with advanced stages, pMMR, CIN (+), C4
(CIT), CMS4, and activation of stromal and chemoresistant path-
Fig. 2. Construction and validation of the SIIS model in the meta-GEO cohort. (A) Workflo
and the survival impact of 31 stroma-related genes used for calculating SIIS (expressed
relapse-free survival, red; protect factor for relapse-free survival, green). (C) Box plot of
subtypes. (D) Bar chart showing the correlations between SIIS value and infiltration leve
gery. (E) Scatter plot showing the correlations between SIIS value and infiltration levels o
the SIIS model. (G) Forest plot showing the associations between SIIS and relapse-free su
subgroups. (H) Box plot of the comparison of the SIIS score between the fluorouracil respo
survival in low-SIIS (left) and high-SIIS (right) subgroups. (J) Forest plot showing the b
chemotherapy drugs in high-SIIS and low-SIIS subgroup in the GSE39582 cohort. (L) Box p
and the activation levels of biological process in the meta-GEO cohort. The values of corre
TMECS, tumor microenvironment cell subtype; TME, tumor microenvironment; DEG, deferen
infiltration intensity; Cor, correlation; Tcm, T central memory; Tem, T effector memory; Th, T h
gamma delta; NK, natural killer; TFH, T follicular helper; AUC, area under curve; CI, confiden
ADJC, adjuvant chemotherapy; R response; NR, nonresponse; CMS, consensus molecular subty
phosphorylation; UPR, unfolded protein response; FA, fatty acid. (For interpretation of the ref
article.)
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ways (Fig. 2L-M). In terms of metabolic characteristics, we found
that the majority of the items were highly upregulated in low-
SIIS group, while the glycosaminoglycan metabolism, arachidonic
acid metabolism, and retinoic metabolismwere shown to be signif-
icantly activated in low SIIS tumors (Fig. S4A).

3.3. Validation of the role of the SIIS signature in the TCGA-COAD
cohort

The performance of the SIIS signature was further evaluated
using the TCGA-COAD dataset (n = 382) (Table S2). Consistent with
the results of the meta-GEO (Fig. S3A-B), SIIS value was also signif-
icant elevated in predicted TMECS1 subtypes and the transcrip-
tome characteristics of samples in high-SIIS group of TCGA-COAD
dataset were closely linked to that of samples in TMECS1 subtypes
of meta-GEO (adj p = 0.004). Moreover, the SIIS value also corre-
lated positively with stromal component infiltration level in the
TCGA-COAD cohort (Fig. 3A), and the high-SIIS group exhibited
similar molecular traits and metabolic characteristics in the
TCGA-COAD cohort as in the meta-GEO cohort (Fig. 3B, E and
Fig. S4B). The pathway enrichment results at the transcriptome
level were further confirmed at the protein level by analyzing
the proteomic data of TCGA-COAD samples (Fig. 3C). We further
tested the correlation of SIIS in the TCGA cohort using several
known signatures obtained from the study by Thorsson et al
[14]. Consistent with our previous findings, patients in the highSIIS
group exhibited significantly higher EMT, TGF-b, and intratumoral
heterogeneity scores, whereas scores associated with tumor purity
were all down-regulated (Fig. 3D). However, there were no signif-
icant differences in terms of tumor mutation burden or the number
of neoantigens among the different SIIS groups (Fig. 3D). Clinically,
higher SIIS indicated not only increased mortality risk but also
diminished survival benefits of chemotherapy (Fig. 3F, G). Finally,
the drug response analysis indicated that higher SIIS was also nota-
w chart of the SIIS model establishment. (B) Circos plot showing the expression level
higher in TMECS1, orange; expressed higher in TMECS2, turquoise; risk factor for
the comparison of infiltration level of each cell cluster between the different TME
ls of TME cells in the meta-GEO cohort. Nonsignificant correlations are marked by
f cell clusters in the meta-GEO cohort. (F) Receiver operating characteristics curve of
rvival (left) and the associations between SIIS and overall survival (right) in various
nse and nonresponse groups. (I) The survival curves of ADJC performance for overall
enefit of ADJC in different SIIS subgroups. (K) Box plot of estimated IC50 values of
lot of SIIS values in different clinical subgroups. (M) Correlation matrix of SIIS values
lation coefficients were represented by both the shading of the color and sector size.
tially expressed genes; FC, fold change; UVCA, univariate Cox analysis; SIIS, stromal cell
elper; DC, dendritic cell; aDC, activated dendritic cell; iDC, immature dendritic cell; Tgd, T
ce interval; CIN, chromosome instability; RFS, relapse-free survival; OS, overall survival;
pes; MMR, mismatch repair; EMT, epithelial-mesenchymal transition; OXPHOS, oxidative
erences to color in this figure legend, the reader is referred to the web version of this
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bly linked to the fluorouracil nonresponse signature (Fig. 3H) and
elevated estimated IC50 of multiple chemotherapy drugs (Fig. 3I)
in analysis of the TCGA-COAD dataset. These results highlight the
robustness of our SIIS signature to predict unfavorable prognoses
for and chemoresistance in patients with colon cancer.

3.4. Validation of the role of the SIIS signature in the Sun Yat-sen
University cancer Center (SYSUCC) cohort

In addition to the meta-GEO and TCGA-COAD cohorts, we also
validated the role of SIIS in the SYSUCC cohort (Table S2). Consis-
tent with the results of the meta-GEO and TCGA-COAD databases,
the higher distribution of SIIS value in predicted TMECS1 (Fig. S3A),
the transcriptome similarity between high-SIIS group and TMECS1
(Fig. S3B), the infiltration of cell cluster 1, activation of stromal-
related and chemoresistant pathways, enrichment of fluorouracil
nonponse status and CMS4 subtypes in high-SIIS group could also
be observed in this independent cohort (Fig. 3J-M). These data
underscore the performance of the SIIS to reflect the infiltration
intensity of stromal cells in colon cancer, thus indicating strong
reproducibility.

3.5. Exploration of the role of the SIIS signature in pan cancer setting

Next, we evaluated the role of the SIIS across cancers. Transcrip-
tome data of 11 TCGA cohorts (BLCA, BRCA, CESC, ESCA, HNSC,
LIHC, LUAD, LUSC, READ, SKCM, STAD) (Table S4) were selected
for pan-cancer analyses. In terms of the TME characteristics and
transcriptome traits of SIIS value, we found that the SIIS value
was positively associated with infiltration abundance of stromal
cell (fibroblasts, endothelial cells) and mast cell, as well as the acti-
vation of TGF-b response scores and EMT signatures, but negatively
associated with total T helper cells in all cancer cohorts we ana-
lyzed, (Fig. 4A; Tables S5-S6). These results suggested that SIIS
score can also be used as an effective quantitative tool of stromal
component in pan cancer. However, different from the results of
colon cancer cohort analysis, the SIIS value in BRCA, CESC, HNSC,
LUAD, and SKCM was shown to be significant negatively correlated
with cytotoxic cell infiltration and IFNc signaling (Fig. 4A; Tables
S5-S6). As for the relationship between SIIS and chemodrug sensi-
tivity, the results showed in the BLCA, BRCA, CESC, HNSC, LUAD,
LUSC, SKCM, and STAD cohorts, the predicted IC50 values of more
than 6 drugs increased significantly in the high-SIIS group. Notably,
among these tumor types, the indication effect of SIIS model on
chemoresistance may be the strongest in HNSC, because t-
statistics of all chemotherapeutic drugs are greater than 5 (t-
statistics of 7 drugs are greater than 10). Interestingly, the down-
regulation of predicted IC50 of docetaxel in high-SIIS groups could
Fig. 3. Validation of the SIIS model in the TCGA-COAD and SYSUCC cohorts. (A) Bar chart
and scatter plot (right) showing the correlation between SIIS value and cell clusters infil
gery. (B) Correlation matrix of SIIS values and the activation levels of biological process
expression level of the pathway marker genes between patients in the high-SIIS and
published signatures in the TCGA-COAD cohort. (E) Box plot of the comparison of SIIS v
between SIIS and overall survival in various subgroups. (G) Forest plot showing the ben
between the fluorouracil response and nonresponse groups. (I) Box plot of estimated IC
COAD cohort. (J) Bar chart (upper) showing the correlations between SIIS value and infilt
SIIS value and infiltration levels of cell clusters in the SYSUCC cohort. Nonsignificant corr
levels of biological process in the SYSUCC cohort. The value of correlation coefficients wa
values in the fluorouracil response and nonresponse groups (L) and in the CMS subgrou
Tem, T effector memory; Th, T helper; DC, dendritic cell; aDC, activated dendritic cell; iDC, imm
area under curve; CI, confidence interval; ADJC, adjuvant chemotherapy; R response; NR, non
OXPHOS, oxidative phosphorylation; UPR, unfolded protein response; FA, fatty acid.
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only be observed in BRCA, ESCA and LIHC cohorts, indicating that
the role of docetaxel as a potential drug choice for patients of
high-SIIS group might be highly dependent on cancer type. We
then explored the survival impact of the SIIS model in these can-
cers. As shown in Fig. 4B, ten cohorts (except ESCA) experienced
an increase in the mortality risk when patients had higher SIIS;
however, only three of them (BLCA, SKCM, and STAD) reached sta-
tistical significance (Fig. 4B). Finally, we compared the distribution
of SIIS across different tumor types (Fig. 4C). Intriguingly, we found
that colon and breast cancers were the tumor types with the low-
est and highest SIIS distributions, respectively. We further
obtained the PAM50 subtyping information documented in the
TCGA-BRCA database. Patients with the luminal A subtype had
the highest median SIIS, whereas the median SIIS for patients with
basal-like disease (also known as triple-negative breast cancer)
was the lowest (Fig. 4D). The basal-like subtype has been reported
to be sensitive to chemotherapy; therefore, these results further
suggest that the SIIS might be capable of predicting chemotherapy
efficacy for patients with breast cancer.
3.6. SIIS signature in predicting immunotherapeutic benefits

Recent evidence has supported that the immune-excluded phe-
notype triggered by stromal cell enrichment, activation of TGF-b
signaling, and the EMT pathway are associated with a lack of
response to immunotherapy [15]. Considering the strong connec-
tion between the SIIS and stromal activation in pan-cancer cohorts,
we next investigated whether the SIIS signature could predict
immunotherapeutic benefits for solid tumors. Four independent
immunotherapy cohorts with more than 50 samples in each cohort
were analyzed (Table S8). In all cohorts, higher SIIS were signifi-
cantly associated with lower treatment response rates (Fig. 4E-
H). Moreover, the survival data showed that patients treated with
immunotherapy in the low-SIIS group had significantly prolonged
progression-free survival (GSE176307) and overall survival (Imvig-
or210) than those in the high-SIIS group (Fig. S5). The comparison
of the SIIS distribution of metastatic urothelial cancer patients with
different molecular characteristics (Fig. 4I, J) showed that SIIS were
significantly higher in the immune-excluded phenotype, low TMB,
and low NEO groups than in the other groups. In terms of the TCGA
subtype comparison (Fig. 4J), the SIIS was the highest for the ‘‘infil-
trated” subtype patients and lowest for genomically unstable
patients. However, although the SIIS tended to be decreased in
the FGFR mutant subgroup (Fig. 4I) and in the subgroup with high
PD-L1 expression on immune cells (Fig. 4J), statistical differences
were not reached. Above all, the results of these four immunother-
apy cohorts suggest that the SIIS is associated with the response to
immunotherapies and can further predict the prognosis of patients.
(left) showing the correlations between SIIS value and infiltration levels of TME cells
tration levels in the TCGA-COAD cohort. Nonsignificant correlations are marked by
in the TCGA-COAD cohort. (C) Scatter plot represents the comparison of the protein
low-SIIS groupd. (D) Forest plot showing the associations between SIIS and other
alues between the different CMS subtypes. (F) Forest plot showing the associations
efit of ADJC in different subtypes. (H) Box plot of the comparison of the SIIS score
50 values of chemotherapy drugs in high-SIIS and low-SIIS subgroup in the TCGA-
ration levels of TME cells and scatter plot (down) showing the correlations between
elations are marked by gery. (K) Correlation matrix of SIIS values and the activation
s represented by both the shading of the color and sector size. (L-M) Box plot of SIIS
ps (M). SIIS, stromal cell infiltration intensity; Cor, correlation; Tcm, T central memory;
ature dendritic cell; Tgd, T gamma delta; NK, natural killer; TFH, T follicular helper; AUC,
response; CMS, consensus molecular subtypes; EMT, epithelial-mesenchymal transition;



Fig. 4. Validation of the SIIS model in the TCGA pan cancer cohorts and the immunotherapy-treated cohorts. (A) Heatmaps showing the associations between SIIS and TME
cells (left), the associations between SIIS and other published signatures (middle), and the associations between SIIS and esitimated IC50 values of chemotherapy drugs (right)
in the TCGA pan cancer cohorts. (B) Forest plot showing the associations between SIIS and overall survival in TCGA pan cancer cohorts. (C) Violin plot of SIIS values in TCGA
pan cancer cohorts. (D) Box plot of the comparison of SIIS values between the different PAM50 subtypes and between TNBC and non-TNBC group. (E-H) Box plot (left) of the
comparison of SIIS values between the immunotherapy response and nonresponse group, and bar charts (right) summarizing the proportions of patients with
immunotherapy response and those with non-response within and across low-SIIS and high-SIIS groups in the GSE35640 (E), GSE173839 (F), GSE176307 (G), and Imvigor210
(H) cohorts. (I) Box plot of the SIIS values in patients with different FGFR mutation and TMB status in the GSE176307 cohort. (J) Box plot of the SIIS values in patients with
different immune phenotypes. SIIS, stromal cell infiltration intensity; Cor, correlation; Tcm, T central memory; Tem, T effector memory; Th, T helper; DC, dendritic cell; aDC, activated
dendritic cell; iDC, immature dendritic cell; Tgd, T gamma delta; NK, natural killer; TFH, T follicular helper; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC,
cervical squamous cell carcinoma and endocervical adenocarcinoma; ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular
carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; READ, rectum adenocarcinoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma;
ITH, intratumor heterogeneity; HRD, homologous recombination deficiency; AS, aneuploidy score; MR, macrophage regulation; CI, confidence interval; R response; NR, nonresponse;
MT, mutant type; WT, wild type; TNBC, triple negative breast cancer; NEO, neoantigen, TMB, tumor mutation burden; IC, immune cell; TC, tumour cell; IP, immune phenotype; GU,
genomically unstable; Uro, urobasal.
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3.7. Multi-omic analysis

To uncover the potential mechanisms underlying the intrinsic
chemoresistance in patients within high-SIIS group, the genomic
analysis was performed in the TCGA-COAD cohort. There were 17
genes, the mutation frequencies of which were significantly differ-
ent between patients in the high- and low-SIIS group, including 4
genes with higher mutation frequencies in the high-SIIS group
and the mutaions of the remaining 13 genes were mainly enriched
in the low-SIIS group (Fig. 5A). The co-occurrence status of these
genes was shown in Fig. 5B. Through t-test analysis, we found that
among these 13 low-SIIS related differentially mutated genes, the
mutation status of 12 genes (except SMAD4) was significantly
associated with fluorouracil sensitivity. We further constructed a
combined mutation score based on the mutation states of these
12 genes: if the patient has mutation in any of these genes, 1 point
will be counted. As shown in Fig. 5D-F, with the increase of muta-
tion score, the SIIS value (Fig. 5D-E) and fluorouracil nonresponse
rates (Fig. 5F) were both decreased. The following survival analysis
showed that patients with non-mutation of these genes (the muta-
tion score was 0) could not benefit from ADJC (Fig. 5G). Taken
together, these results suggest that lack of genetic mutation is
one of the mechanisms responsible for chemotherapy resistance
in patients with high SIIS score.

In addition to genomic mutations, we also explored the correla-
tions between gene promoter methylation level and SIIS values.
Through a comprehensive investigation into the DNA promoter
methylation landscape, we found a total of 125 probes with high
variability, the b values detected by which were significantly corre-
lated with the SIIS value (adjusted p value < 0.05, Table S9). Among
them, we noted that there are 5 probes targeting the promoter
region of ADCY4 gene, and the methylation level detected by
cg14287235 showed the strongest correlation with the SIIS value
(Fig. 5H). Thus, we focused on ADCY4 in the subsequent analysis.
As shown in Fig. 5I and 5J, the correlation analysis revealed that
ADCY4 methylation was significantly negatively correlated with
the level of stromal cell infiltration and activation of EMT and TGFb
pathways, while its transcriptional expression was positively cor-
related with these stromal-related characteristics. However, the
association between transcriptional expression and methylation
of ADCY4 was weak, suggesting that the effect of ADCY4 methyla-
tion on biological behavior may not be achieved by affecting its
transcription. Finally, the results of chemotherapy efficacy analysis
also demonstrated that the methylation level of ADCY4 decreased
significantly in patients who did not respond to fluorouracil
(Fig. 5K), and only patients with high ADCY4 methylation (b
value > 0.5) tended to benefit from ADJC (Fig. 5L). Collectively,
we proposed that DNA methylation, such as hypomethylation of
ADCY4, may offer a lens into the complexity and diversity of the
TME, especially for stromal caused chemoresistance.
Fig. 5. SIIS associated genomic alteration and methylation characteristics. (A) Oncoprin
value. (B) Matrix heatmap of interaction effect of genes mutating differentially in patien
multiple signatures between gene mutant and wild type group. Red marked square indi
marked square indicate higher value in the wild type group than in the gene mutant g
different mutation score. (F) Bar charts summarizing the proportions of patients with fluo
mutation score. (G) The survival curve of ADJC performance for overall survival in group
methylated probes in high- and low-SIIS group. (I) Scatter plot showing the correlatio
represents one sample, and corresponding TME subtypes are identified in different color
ADCY4 transcriptional expression, and multiple signatures in the TCGA-COAD cohort. (
groups. (M) Forest plot showing the benefit of ADJC in subgroups stratified by tota
chemotherapy; R response; NR, nonresponse; EMT, epithelial-mesenchymal transition; CM,
***p < 0.001. (For interpretation of the references to color in this figure legend, the read
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3.8. GPX3 and PRICKLE2 were identified as driver genes for
chemotherapy resistance of patients in the high-SIIS group

The CRISPR screen provides an efficient high-throughput tech-
nique and a powerful opportunity to access novel therapeutic
biomarkers. To identify critical genes involved in chemoresistance
of patients with high SIIS, we performed gain-of-function screen-
ing of SW480 cells utilizing the human genome-scale CRISPR/
CAS9 SAM2 pooled library with 40 lM of oxaliplatin, and 2 lM
of 5-fluorouracil (5-FU) used as an effective selection pressure
(see Materials and methods, Fig. 6A, B). From this screen, we iden-
tified a subset of 488 sgRNAs that were significantly enriched in
the oxaliplatin-treated cells (Fig. 6C, upper), whereas 279 sgRNAs
were significantly enriched in the 5-FU-treated cells (Fig. 6C, bot-
tom) when compared to the vehicle control, indicating that the
genes targeted by these sgRNAs might be potential drivers of fluo-
rouracil or oxaliplatin resistance. Through a correlation analysis of
the SIIS and expressions of these potential driver genes adjusted
for tumor purity, a total of 31 genes that were significantly posi-
tively correlated with SIIS were identified in the GSE39582 and
TCGA-COAD cohorts (Fig. 6C-E). Among these genes, GPX3 and
PRICKLE2 attracted special attention because they are intersection
genes whose sgRNA were significantly increased in both
oxaliplatin-treated and 5-FU-treated populations simultaneously,
and whose expressions were increased in samples from the high-
SIIS groups in the GSE39582 and TCGA-COAD cohorts (Fig. 6F). A
clinical relevance analysis suggested that higher GPX3 and
PRICKLE2 expressions reflected the adverse outcomes of RFS and
OS, especially for patients who underwent ADJC (Fig. 6G, left).
Moreover, ADJC increased the mortality risk for patients in the high
GPX3 and high PRICKLE2 groups (Fig. 6G, right). Boxplots (Fig. 6H,
I) show that mRNA expressions of GPX3 and PRICKLE2 were signif-
icantly elevated in the fluorouracil nonresponse and CMS4 subtype
groups. Pathway and immune analyses confirmed that the infiltra-
tion abundance of members in cell cluster 1 and stroma pathway
activation levels significantly increased as GPX3 and PRICKLE2
expressions increased in the GS39582, TCGA-COAD, and SYSUCC
cohorts (Fig. 6J).

PRICKLE2 is one of the components of the WNT/PCP pathway, a
branch of noncanonical WNT pathways controlling tissue polarity
and cell movement [16]. Because mounting evidence has uncov-
ered the role of WNT/PCP signaling deregulation in malignant phe-
notypes, including chemoresistance in cancer, we assessed the
association between SIIS and WNT/PCP activation. Interestingly,
we found that the SIIS was significantly positively correlated with
WNT/PCP activity levels in all three databases that we analyzed
(Fig. 6K), whereas the correlations between the SIIS and b-
catenin-dependent canonical WNT signaling were weak (TCGA-
COAD) or even manifested significantly negative correlations
(GSE39582 and SYSUCC) (Fig. 6K). We also observed a consistently
ts depicted the genomic alteration landscapes in the context of high- and low-SIIS
ts in the low- and the high-SIIS groups. (C) Matrix heatmap of differential value of
cates higher value in the gene mutant group than in the wild type group, and blue
roup. (D-E) Box plot (D) and scatter plot (E) of SIIS value distribution in groups of
rouracil response and those with non-response within and across groups of different
s of different mutation score. (H) Heatmap exhibited the landscape of differentially
n between the average ADCY4 methylation value and SIIS value. Every single dot
s. (J) Correlation matrix showing the associations among ADCY4 methylation level,
K) Box plot of ADCY4 methylation level in fluorouracil response and nonresponse
l ADCY4 methylation levels. SIIS, stromal cell infiltration intensity; ADJC, adjuvant
combined mutation; Cor, correlation; CI, confidence interva. *p < 0.05 and, **p < 0.01,
er is referred to the web version of this article.)
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increased GSVA score of the WNT/PCP pathway in the fluorouracil
nonresponse and CMS4 groups of the GSE39582, TCGA-COAD, and
SYSUCC colon cancer cohorts (Fig. 6L, M). Collectively, these results
suggest that the WNT/PCP pathway, but not the canonical WNT/b-
catenin pathway, mainly contributed to the biological features of
patients with high SIIS.

Because GPX3 was one of the members of the SIIS signature, we
moved forward with GPX3 in the following study. To validate the
results of our CRISPR library screen, we performed an in vitro study
by transfecting exogenous GPX3 plasmid or siRNA targeting GPX3
into SW480 (GPX3 low-expressing cells [17]) and CACO2 (GPX3
high-expressing cells [17]) colon cancer cell lines, respectively.
Consistently, exogenous GPX3 overexpression recapitulated the
chemoresistance-promoting effect of sgRNA-mediated transcrip-
tional activation in SW480 cells toward 5-FU and oxaliplatin treat-
ment, as determined by MTT (Fig. 7A) and cell colony formation
assays (Fig. 7C), whereas downregulation of GPX3 in CACO2 cells
resulted in a dramatic increase in response to 5-FU and oxaliplatin
during in vitro (Fig. 7B, C) and in vivo experiments (Fig. 7D, E). We
detected the expression and clinical significance of GPX3 in colon
cancer using a paraffin-embedded tissue microarray (Fig. 7G,
Table S2). Based on the protein level, we also confirmed that high
GPX3 expression independently identified patients with an inferior
disease-free survival (Fig. 7F, Table S10). In terms of chemotherapy
benefits, we found that ADJC, especially high-intensity chemother-
apy schemes (oxaliplatin combination, 6 months of chemotherapy,
or 8 cycles of Xeloda), tended to increase the risk of relapse or
death (Fig. 7H, I) for patients with high GPX3 protein expression.
Similar trends were also observed with the stratification of the
tumor stage (Fig. S6A-S6B).
3.9. Identification of candidate molecular targets and compounds for
chemosensitization of patients in the high-SIIS group

To identify candidate molecular targets and compounds that
may be options for achieving chemosensitization in patients with
high SIIS, we used Cmap tools. After filtering the results, we iden-
tified several most enriched candidate molecular targets
(Table S11) and compounds (Table S12) in the analysis performed
in the GSE39582 and TCGA-COAD cohorts (Fig. 7J). The mecha-
nisms of action of the compounds are shown in Fig. 7K. Among
the intersection molecular targets, we noticed that SIAH2, an
upstream regulator that is required for the maintenance of expres-
sion levels and activation of transcription activity of HIFa in cells
under hypoxic conditions [18], had the highest enrichment score
in both GSE39582 and TCGA-COAD cohorts. Coincidentally,
hypoxia was identified as a strong transcriptional regulator of
GPX3 expression through the presence of the HIF1a-binding site
on the promoter region of GPX3 [19]. Accordingly, we tested
Fig. 6. CRISPR-CAS9 SAM screening of driver genes for chemoresistance in high-SIIS g
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GPX3 expression in CACO2 cells transfected with siRNA targeting
SIAH2 (siSIAH2) and in SW480 cells transfected with SIAH2 over-
expression plasmid (oxSIAH2). We found that GPX3 mRNA and
protein levels were obviously decreased or increased by siSIAH2
and oxSIAH2 transfection (Fig. 7L). Moreover, siSIAH2 transfection
significantly increased the apoptotic cell population induced by 5-
FU or oxaliplatin in CACO2 cells (Fig. 7M), further suggesting that
SIAH2 regulated GPX3-mediated chemoresistance. Additionally,
we tested the chemosensitization effects of the compounds with
the highest enrichment scores and reported that several inhibitors,
such as the MLN8054, LY317615 (a PKCb inhibitor), and SJ-72550,
possessed the capability for chemosensitization to both 5-FU and
oxaliplatin in CACO2 cells (Fig. 7M).
4. Discussion

Given the significant heterogeneity in survival benefits
observed among patients with colon cancer who underwent ADJC,
developing an effective classifier with clinical practicability may be
helpful for accelerating the application of precision medicine. The
present guidelines for ADJC in patients with colon cancer are based
on relapse risks indicated by clinicopathological factors [20], MMR
status [21], or immunoscore proposed by Galon et al [5]. However,
recent evidence has suggested that intrinsic drug sensitivity
related to molecular heterogeneity is another fundamental factor
determining the clinical benefits of chemotherapy, independent
of relapse risk. For example, although CMS4 [22], stem-like [23],
or CCS3 subtype tumors [24] are associated with a high risk of
relapse, no statistically significant benefits from oxaliplatin treat-
ment could be observed in patients with these subtypes [25]. Sim-
ilarly, during this study, we also identified a group of patients with
colon cancer who were characterized by abundant stromal cell
infiltration, had the shortest RFS and OS, lowest chemoresponse
rate, and lacked the benefits of ADJC. These results suggest that for-
mulating ADJC strategies according to the relapse risk alone is far
from enough. Moreover, most molecular classifications are con-
structed based on global gene expression profiles derived from
microarray or RNA sequencing platforms, which are impractical
in actual clinical settings because of their exorbitant cost, long
turnaround time, and reliance on bioinformatics expertise. In view
of these facts, we designed and focused on the development of a
quantitative indicator that closely associates with major cell types,
especially stromal cells, within the TMECS1 group and can help
provide a more individualized chemotherapeutic benefit assess-
ment for patients with colon cancer. Our efforts allowed us to
establish a novel 31-gene SIIS signature, capable of identifying
colon cancer patients with both poor prognoses and intrinsic
chemotherapeutic resistance, that was successful independently
validated in multiple public datasets and in the cohort of patients
roups. (A) Experimental outline of screening and analysis. (B) Optical microscopic
, 2 lg/mL) for 96 h. (C) Volcano plots to compare differences in sgRNA abundance
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and PRICKLE2 expression with the infiltration level of TME cells (left) and with the
ohorts. (K) The correlation chord chart showing the mutual correlation between SIIS
WNT pathway, canonical WNT pathway, and WNT/PCP pathway in the GSE39582
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Fig. 7. Validation of the role of GPX3 in driving chemotherapy resistance in colon cancer. (A) Dose–response curves of SW480 cells transfected with empty vectors or GPX3
plasmid after treatment with 5-FU (left) or oxaliplatin (right) in different concentration for 24 h. (B) Dose–response curves of CACO2 cells transfected with empty vectors or
GPX3 siRNA after treatment with 5-FU (left) or oxaliplatin (right) in different concentration for 24 h. (C) Colony formation ability of shGPX3, oxGPX3 and corresponding
control cells with or without chemotherapy drug treatment. (D) Xenograft tumors of killed mice in different groups. (E) Growth curves of subcutaneous xenograft tumors in
different groups. (F) The survival curve of for disease-free survival in the tissue microarray analysis. (G) Representative micrographs of GPX3 protein expression in colon
cancer patients, as detected by immunohistochemistry. (H-I) The survival curve of ADJC performance, oxaliplatin combination, chemotherapy duration, and Xeloda cycles for
disease-free survival in the low-GPX3 (H) and high-GPX3 (I) patients. (J) Heatmaps showing the significantly enriched molecular targets (upper, enrichment score <�96) and
compounds (down, enrichment score <�90) based on the connectivity map analysis. (K) Heatmap showing the mechanisms of the action (rows) of each compound revealed
by the connectivity map analysis. (L) The mRNA (upper) and protein levels (down) of GPX3 expression in cells transfected with siSIAH2 or oxSIAH2 cells as compared to the
vehicle control. (M) Dose–response curves of CACO2 cells transfected with SIAH2 siRNA or in treatment groups based on different regimens. (N) Summary of the current
study. OXA, oxaliplatin; ADJC, adjuvant chemotherapy; SIIS, stromal cell infiltration intensity; ES, enrichment score.
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from SYSUCC. Intriguingly, through the GDSC analysis, we found
that although the estimated IC50 values of the majority of
chemotherapeutic drugs were significantly increased in the high-
SIIS group, higher SIIS were consistently associated with improved
efficiency of docetaxel. Docetaxel is mainly used to treat patients
with platinum-resistant tumors in the clinic [26]. Our results sug-
gest that docetaxel may be a potential treatment option for
patients within high-SIIS group (also harboring platinum resis-
tance). Collectively, the SIIS model has great potential to become
an effective supplement to the current TNM staging system and
could help to improve treatment decision for patients with colon
cancer. More importantly, the SIIS structure consisted of only 31
genes, thereby offering a smaller panel of genes that can be easily
translated into a simple, inexpensive, and quantitative PCR-based
assay for routine clinical testing. Besides, the SIIS value is very easy
to be calculated since it is just defined as difference between the
average expression values of the two groups of genes.

During this research, we also evaluated the application value of
the SIIS model at the pan-cancer level. The consistent positive cor-
relations of SIIS value with level of stromal cell infiltration, stromal
pathway activation, and predicted IC50 values of multiple
chemotherapy drugs across a variety of tumors indicated that SIIS
score is an universal tool for effective identification of patients
whose tumors were characterized by high stromal components
and chemoresistance. It is also encouraging to find that the SIIS
model enable prediction of immunotherapy outcomes in solid
tumors, and this may be partly due to the correlation between SIIS
value and TGFb pathway activation [15]. Therefore, trials to deter-
mine whether patients in the high-SIIS group could benefit from
the combination of TGF-b inhibition and immune checkpoint
blockade may have clinical significance.

Mounting evidence has shown that genomic alterations and
DNA methylation status can reform TME and affect therapeutic
efficacy. For example, the germline or somatic mutations in DNA
damage repair genes usually confer improved long-term survival
for patients treated with platinum-containing chemotherapy
[27–29]. Similarly, the DNA methyltransferase inhibitors have also
been shown to enhance chemosensitivity in multiple solid tumors
[30]. In this study, we reported for the first time that the lack of
multiple genetic mutation and the ADCY4 promoter hypomethyla-
tion were two potential mechanisms mediating chemoresistance
in the background of stromal cell infiltration, and they could serve
as novel biomarkers for predicting ADJC benefit in patients with
colon cancer.

Another interesting aspect of our work was the identification of
GPX3, one of the 31 genes that comprise the SIIS panel, as the dri-
ver gene contributing to chemotherapy drug resistance in the
background of stromal cell infiltration using the CRISPR screen.
GPX3 functions as a plasma antioxidant enzyme that protects cells
against oxidative damage by inactivating reactive oxygen species
[31]. Because inducing reactive oxygen species accumulation and
oxidative stress is one of the main mechanisms by which
chemotherapeutic agents exert cytotoxic effects [32], the antioxi-
dant role has led to the exploration of GPX3 as a determinant of
chemotherapeutic activities. For example, Saga et al. reported that
high GPX3 expression was linked with cisplatin resistance in ovar-
ian cancer cells [33]. Similarly, Pelosof et al. discovered that GPX3
promoter hypermethylation, which leads to reduced GPX3 mRNA
and protein expression, increased oxaliplatin and cisplatin sensi-
tivity in colon cancer cell lines [17]. Consistent with the findings
of Pelosof et al., we also found that GPX3 is a core gene that medi-
ates 5-FU and oxaliplatin resistance in colon cancer cells simulta-
neously. Moreover, using a tissue microarray analysis, we found
that the indication for GPX3 in chemotherapy resistance was also
maintained at the protein level, and that patients with high
GPX3 protein expression experienced more adverse prognostic
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events when receiving ADJC, oxaliplatin combination, and longer
durations of chemotherapy. These results are encouraging and
highlight the potential clinical significance of using GPX3 as a sim-
ple biomarker for the identification of patients in the high-SIIS
group and those who would suffer from more aggressive adjuvant
treatment. However, expanding the sample size and prospective
clinical studies are required to confirm these findings. Additionally,
although our study revealed in vitro that some compounds, such as
aurora kinase inhibitors, could increase the chemosensitivity of
GPX3 highly-expressed colon cancer cells, whether these drugs
could be used as effective combined treatment strategies is also
warranted further investigations.

There were some limitations to the present study. First,
although the comprehensive analysis in this study has yielded sev-
eral important conclusions, it is still insufficient for clinical trans-
formation of SIIS model because this study is based on
retrospective datasets. Therefore, the results of our study should
be further validated in prospective clinical trials. Moreover, an
appropriate cutoff value of the SIIS model also needs to be deter-
mined for consequent clinical practice.

5. Conclusion

In conclusion, we developed and validated a novel individual
scoring system based on quantifying the tumor-associated stromal
components in the TME, that may serve as a practical and robust
biomarker for the prediction of survival and providing more pre-
cise therapeutic options in colon cancer.
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