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Abstract: Flue-gas desulphurization (FGD) gypsum is a highly prevalent industrial by-product
worldwide, which can be an excellent alternative to natural gypsum due to its high content of
CaSO4·2H2O. The preparation of α-calcium sulfate hemihydrate is a high-value pathway for the
efficient use of FGD gypsum. Here, a dynamic method, or an improved autoclaved process, was
used to produce α-calcium sulfate hemihydrate from FGD gypsum. In this process, the attachment
water of the mixture of FGD gypsum and crystal modifiers was approximately 18%, and the pH
value was approximately 6.0. The mixture did not need to be pressed into bricks or made into
slurry, and it was directly sent into the autoclave reactor for reaction. It was successfully applied to
the practical production and application of FGD gypsum, citric acid gypsum and phosphogypsum.
In this work, the compositions and morphology of the product at different stages of the reaction
were examined and compared. In particular, single-crystal diffraction was used to produce the
crystal structure of CaSO4·0.5H2O, and the results were as follows: a = 13.550(3); b = 13.855(3);
c = 12.658(3); β = 117.79(3)◦; space group C2. The preferential growth along the c-axis and the
interaction mechanism between the carboxylate groups and the crystal were discussed throughout
the analysis of the crystal structure.

Keywords: α-calcium sulfate hemihydrate; dynamic method; unit cell; mechanism

1. Introduction

Flue-gas desulphurization (FGD) gypsum is an industrial by-product from heating
plants using wet desulfurization technology [1–3], whose major component is dihydrate
gypsum (CaSO4·2H2O, DH). FGD gypsum is an important alternative to natural gypsum
due to its high purity. Currently, FGD gypsum is mainly applied to produce cement
retarder [4] and calcined gypsum [5].

Hemihydrate gypsum (CaSO4·0.5H2O, HH) is a kind of air-hardening cementitious
material, which is widely applied in building and decoration materials, molding, spe-
cial binder systems, precision casting, etc. [6,7]. Depending on different preparation
conditions [8,9], it can obtain two forms of hemihydrate gypsum, α- and β- hemihydrate
gypsum, which are denoted as α-HH and β-HH, respectively. Many scholars believe that
the cell parameters of α-HH and β-HH are identical since no obvious differences between
the two forms have been concluded by modern testing and analysis techniques [8,10].
However, their physical properties are quite different, and α-HH can reach a much higher
mechanical strength and better working performance than β-HH due to differences in crys-
tallinity [8,9]. Therefore, the preparation of α-HH is one of the most profitable approaches
of FGD gypsum treatment [11].
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In general, there are two types of industrial processes for producing α-calcium sulfate
hemihydrate (α-HH), which are the hydrothermal method under pressure [12,13] and the
conventional autoclaved process [14,15]. The conventional autoclaved process is simple,
with a lower mechanical strength, whereas the product prepared using the hydrothermal
method is well-crystallized and has a higher cost. In fact, there is another method, called
a salt solution [16,17] or an alcohol–water solution [18,19] under atmospheric pressure,
which is characterized by mild reaction conditions. However, the industrial application
of this method is rarely reported due to equipment corrosion, product instability and
certain water treatment. Applying a dynamic method is an innovative way to integrate
the advantages of the conventional autoclaved process and the hydrothermal method. In
the process, the reactants remain in a loose solid state with an attachment water content
of approximately 18%, and is dynamic in the reactor, so as to be heated up quickly and
homogeneously. Moreover, the excess attachment water helps the crystals grow better, and
little water treatment is required. Thus, the dynamic method has the characteristics of being
a simple process, having a large capacity, high product quality and low cost, which makes
it suitable for the comprehensive utilization of a large amount of industrial by-product
waste, such as FGD gypsum, phosphogypsum and citric acid gypsum.

The physical properties of α-HH are closely associated with crystal morphologies,
which vary from a columnar to needle-like shape [3,20–22]. The needle-like crystals with a
high aspect ratio (length to diameter) need a higher water–gypsum weight ratio of standard
consistency, and this results in a lower strength, even lower than β-HH. In contrast, the
columnar crystals with a low aspect ratio of approximately 1 have a much higher strength
due to their much lower water demand. In order to control the morphology of α-HH
crystals, many studies have been carried out by scholars through adding different crystal
modifiers into the preparation process. Zürz et al. [23] found that this could obviously
change the morphology of α-HH crystals by adding a small quantity of carboxylic acids into
the salt solution. Panpa and Jinawath [24] took succinic acid or sodium succinate as crystal
modifiers in the preparation of α-HH from natural gypsum or FGD gypsum. Yue et al. [10]
systematically examined the effects of various modifiers and found that the aspect ratio
of the crystals could be effectively reduced to ~1 by using inorganic salt and organic acid
together. Tan et al. [25] proved that the relative growth rates of different crystal orientations
were changed due to the selective adsorption of maleic acid on different crystal faces.
Zhang et al. [26] discussed the growth habits of α-HH crystals in pure water and aqueous
solutions containing sulfate acid (salts) or organic acid medium, and they found that the
medium had a great influence on the crystal growth. Inspired by these results, potassium
sodium tartrate and aluminum sulfate were used as crystal modifiers. Through the dynamic
method, the α-HH crystals with a short columnar shape were obtained from FGD gypsum,
and the 2 h flexural strength was ~7.0 MPa, whereas the oven-dry compressive strength
was ~60 MPa.

In this work, the growth process and crystal structure of α-HH were revealed by using
test methods such as powder diffraction, scanning electron microscopy, and single-crystal
diffraction. Finally, the mechanism of the morphology transformation of α-HH crystals
was discussed.

2. Materials and Methods
2.1. Materials

Potassium sodium tartrate, aluminum sulfate, sulfuric acid and sodium hydroxide
were all purchased from Sinopharm Chemical Reagent CO., Ltd., Shanghai, China. The
chemical component of the FGD gypsum was collected from Beijing Guohua Electric Power
Corporation (Beijing, China), as shown in Table 1. The XRD pattern of FGD gypsum is
provided in Figure 1, revealing DH as the main component. Figure 2 shows the morphology
of the FGD gypsum crystals, which is a thick plate shape and obviously different from
α-HH crystals.
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Table 1. The chemical component of the Flue-gas desulphurization (FGD) gypsum (wt%).

SO3 CaO H2O SiO2 Al2O3 Fe2O3 K2O MgO Others

44.80 31.53 19.90 0.67 0.89 0.09 0.05 0.10 1.97
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Figure 2. Morphology of the FGD gypsum crystals.

2.2. Experimental Procedures

Potassium sodium tartrate and aluminum sulfate were first dissolved in the deionized
water according to a certain ratio. Then, 5 kg FGD gypsum was mixed with the solution,
and the pH value of the mixture was adjusted to approximately 6.0 through the addition of
sulfuric acid or sodium hydroxide. Subsequently, the mixture with an attachment water
content of approximately 18% was added into the autoclave reactor, heated up to the
temperature of 150 ◦C and left for 30 min. During the reaction process, the mixture was
stirred with an impeller at a constant rate of 10 rpm in the reaction stage and 20 rpm in the
drying stage.

The samples used for the XRD and SEM tests were withdrawn by terminating the
reaction at different stages, washed quickly with anhydrous ethanol three times and then
dried at 80 ◦C in an oven.

2.3. Characterization

The physical performances were assessed according to JC/T 2038-2010(China standard
for α-high strength gypsum).
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The composition of the samples at different reaction stages was determined through
an X-ray diffractometer (XRD, Ultima-IV, Rigaku Inc., Tokyo, Japan) using Cu Kα radiation
with a scanning rate of 10◦/min and a 2θ range from 5◦ to 75◦.

The crystal morphology was examined using a scanning electron microscope (SEM,
S-3400N, Hitachi, Tokyo, Japan).

The adsorption of the modifiers on the crystal surfaces was analyzed using Fourier
transform infrared spectroscopy (Nicolet470, ThermoFisher, Maltham, MA, USA) at a
resolution of 4 cm−1, with a wavenumber range of 400–4000 cm−1.

2.4. Single-Crystal Diffraction Experiment for the Crystal Structure

Single-crystal diffraction was carried out in this work in order to determine the crystal
structure and cell parameters of α-HH, which required us to choose a spherical or granular
single crystal that was as perfect as possible. However, it is difficult to culture perfect
crystals of α-HH, since there are many factors affecting crystal growth, and the crystals
are usually small and twinning. The hydrothermal method was used to obtain large
and well-crystallized single crystal. The procedure was as follows: A certain amount of
deionized water was added into the autoclave reactor, together with the mixture of FGD
gypsum, potassium sodium tartrate, aluminum sulfate and sodium hydroxide in specific
proportions, and then heated up to the temperature of 150 ◦C for 30 min. Importantly, the
heating rate was low, set as 0.3 ◦C/min. The stirring rate was 60 rpm, which was higher
than that of the dynamic method in order to avoid twin crystals as much as possible. The
sample was withdrawn immediately when the reaction was finished, and then quickly
washed with hot water at 90 ◦C, as well as with anhydrous ethanol three times. Finally, the
sample was dried in an oven. The prepared crystals were measured using a microscope.
A crystal with a length of over 0.08 mm was selected for the single-crystal diffraction
test using an X-ray single crystal diffractometer (Saturn 724+, Rigaku Inc., Tokyo, Japan).
Usually, crystals would be selected several times, and the data with the strongest diffraction
were considered as the final result.

3. Results
3.1. The Physical Performances

The performance results from the testing of the prepared α-HH plaster according to
JC/2038-2010 (China standard) are shown in Table 2. It can be seen that the α-HH plaster
has a good mechanical performance and broad application prospects.

Table 2. Physical performances of the α-hemihydrate gypsum (α-HH) plaster.

Items Standard Index [27] Results

Fineness (%) ≤5 4.0
Initial setting time(min) ≥3 15
Final setting time(min) ≤30 18

Flexural strength of 2 h (MPa) ≥6.0 7.5
Oven-dry compressive

strength (MPa) ≥50 65.0

3.2. Components and Morphology of the Samples at Different Reaction Stages

On the basis of previous research work [28], Figure 3 illustrates the XRD patterns of
the samples at different stages of the reaction. As shown in Figure 3, the HH phase began to
appear as the temperature reached 140 ◦C, and there was no characteristic diffraction peak
of DH when the temperature rose to 150 ◦C, indicating the end of DH dehydration. Over
time, the characteristic diffraction peaks of HH enhanced, which meant that the crystals
gradually improved [29]. Additionally, anhydrite gypsum (CaSO4,AH) was not detected in
the XPD test.
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150 ◦C, 150 ◦C lasting for 10 min and 150 ◦C lasting for 30 min.

The crystal morphology of the sample withdrawn at 140 ◦C is shown in Figure 4a. It
was observed that most of the crystals were still DH. In association with the XRD pattern,
this confirmed that the major component of the sample was the DH phase accompanied, to
a minor extent, by the HH phase. The morphologies of samples withdrawn at 150 ◦C and
150 ◦C for 10 min are shown in Figure 4b,c, respectively. The DH crystals are not shown
in the pictures. In accordance with the XRD patterns, the main component of the samples
was the HH phase. However, the crystal growth had not finished, especially along the
c-axis direction. The morphology of the sample withdrawn at 150 ◦C for 30 min is shown
in Figure 4d. The fiber shape disappeared and the top facet became flat, indicating that the
crystal growth had finished and the synthesis reaction of HH had been completed.
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3.3. Dehydration of FGD Gypsum with Different Contents of Attachment Water

In this experiment, DH with 15 wt% and 0 of attachment water was first mixed with
identical crystal modifiers, and then placed in a saturated steam environment to prepare
the α-HH. Crystals with two different types of morphology were obtained (Figure 5).
The crystals in Figure 5a were recrystallized into a hexagonal column shape, whereas the
crystals in Figure 5b were cleaved into lamellae, indicating that the crystal water escaped
directly from the surfaces of the DH crystals, which did not develop into the morphology
of α-HH crystals, while the excess attachment water would help the crystal growth.
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15 wt% (a) and 0 (b) of attachment water.

3.4. FTIR Results of α-HH with Different Modifier Dosages

FTIR spectroscopy is one important method to study the interaction mechanism
between chemicals and the material surfaces [18,30–32]. The corresponding characteristic
peaks will rise or show displacements after the addition of organic acid or organic acid
salt, which proves that the organic acid ions have been adsorbed on α-HH crystal surfaces.
The FTIR spectra of α-HH prepared with different dosages (0, 0.15 wt% and 0.28 wt%) of
potassium sodium tartrate is shown in Figure 6. As illustrated in Figure 6a, the peaks at
3611 cm−1, 3558 cm−1 and 1620 cm−1 can be attributed to the O-H vibration of the crystal
water molecules [10,33]. The double peaks at 1153 cm−1 and 1095 cm−1 are associated
with the stretching vibration of υ3 SO4

2−. The peak at 1008 cm−1 is related to υ1 SO4
2−

stretching. The peaks of 663 cm−1 and 601 cm−1 correspond to υ4 SO4
2− stretching [20,34].
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In order to obtain more detailed information on the interaction between potassium
sodium tartrate and the α-HH crystals, FTIR spectra was enlarged from 3250 cm−1 to
2500 cm−1 (Figure 6b). There are three obvious adsorption peaks in all of the curves. Gener-
ally, the peak of 3211 cm−1 is related to the stretching of O-H in the organic substance [35],
and the peaks of 2925 cm−1 and 2850 cm−1 can be assigned to the asymmetric and symmet-
ric stretching vibrations of methylene(−CH2−), respectively [18,36], which implicates that
there are certain organics in the samples. This result could be explained by the fact that the
FGD gypsum material might contain a small amount of organic substance [18,31]. How-
ever, as the dosage of potassium sodium tartrate increased to 0.28 wt%, these stretching
vibrations increased in intensity obviously, which might confirm the mutual reaction of the
organic acid salt and α-HH crystal [37,38]. Nevertheless, according to the result of single
crystal diffraction, neither carbon nor aluminum was found in the interior or edge of the
crystal, indicating that the modifiers were merely adsorbed on the crystal surfaces, and did
not participate in the crystal structure.
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3.5. Results of the Single-Crystal Diffraction

In spite of several differences between α-HH and β-HH, their unit cells are recognized
as identical due to their similar powder diffraction patterns [8]. The cell setting and
crystal structure of these two forms of HH have been investigated for many years. Various
experiments have been carried out to analyze the crystal structure, such as time-of-flight
neutral powder diffraction [39], in situ time-resolved synchrotron radiation powder X-ray
diffraction (SR-XRD) [40], X-ray powder diffraction [41], and single-crystal diffraction [8],
which laid the foundation for us to study the lattice parameters and crystal structure of
α-HH. The first structural model for α-HH was proposed by Gallitelli (1933) based on
single-crystal X-ray data [42]. Later, using optical data, Flörke (1952) suggested that the
structures of α-HH existed in both low- and high-temperature forms (trigonal above 318 K
and orthorhombic below this temperature) [43]. Bushuev (1982) subsequently determined
the crystal structure of the compound CaSO4·0.67H2O from single-crystal X-ray intensity
data [44,45]. Ballirano prepared the α-HH by the rehydration of γ-anhydrite and concluded
that the space group was I2 (unique axis b) [41]. According to Table 3, it can be seen
that the models proposed by different researchers differ in their crystal structure and
cell parameters.

Table 3. Crystallographic data for calcium sulfate hemihydrate (CaSO4·x H2O, 0.5 ≤ x ≤ 0.8) from
the literature.

Reference Space
Group a(Å) b(Å) c(Å) B(◦) H2O

Gallitelli
(1933) [42]

C2 11.94 6.83 12.70 ~90 0.5
P3121 6.83 6.83 12.70 120(γ) 0.5

Caspari
(1936) [46] P

–
3m1 6.82 6.82 6.24 0.5

Flörke
(1952) [43]

C222 6.83 11.49 12.70 90 0.5
P3221 6.83 6.83 12.70 90 0.5

Gay
(1965b) [47] 6.85 11.88 12.60 ~90 0.5

Frik and Kuzel
(1982) [48]

12.061 6.933 12.670 0.48
13.865 13.865 12.718 0.52

Bushuev and Borisov
(1982) [45]

I2 12.028 12.674 6.927 90.21(γ) 0.67
P3121 6.977 6.977 12.617 0.5

Abriel
(1983) [49] P3121 6.968 6.968 6.410 0.8

Lager
(1984) [39] I2 12.062 12.660 6.930 ~90(γ) 0.5

Kuzel and Hauner
(1987) [50]

I2 12.0275 6.9312 12.6919 90.18 0.5
P3121 13.8615 13.8615 12.7391 0.66

Abriel and Nesper
(1993) [51] I2 12.0275 6.9312 12.6919 90.18 0.53

Bezou et al.
(1995) [52]

I2 12.0317 6.9272 12.6711 90.265 0.5
I2 11.9845 6.9292 12.7505 90 0.6

Ballirano et al.
(2001) [41] I2 12.0350 6.9294 12.6705 90.266 0.5

Weiss and Bräu
(2009) [53] C2 17.559 6.9619 12.071 133.56 0.5

Schmidt et al.
(2011) [8]

C2 17.5180 6.9291 12.0344 133.655 0.5
P3221 13.8690 13.8690 12.7181 0.625
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In order to prepare crystals with high crystallinity, we adjusted the growth conditions
and performed hydrothermal experiments. Under the conditions of slow heating and low-
speed stirring, crystals with a uniform size and minor twinning were obtained (as shown
in Figure 7). The results of the single-crystal diffraction experiment in this work were as
follows: cell parameters a = 12.658(3) Å; b = 13.855(3) Å; c = 13.550(3) Å; β = 117.79(3)◦; space
group C2. The crystal structure is shown in Figure 8 (drawn in Diamond). The structure
contained chains of alternating CaO8 and CaO9 coordination polyhedra held together by
SO4

2− ions, which was in agreement with the conclusion in the literature [47]. The Ca-O
bond distances in the CaO8 coordination polyhedral ranged from 0.2362 to 0.2588 nm,
whereas in the CaO9 coordination polyhedral, it ranged from 0.2384 to 0.2688 nm. The
average Ca-O distances were 0.2456 and 0.2515 nm, respectively. It was clear that the
arrangement of the atoms was consistent with that in the other literature, but the values of
the unit cell parameters were slightly different. Due to the hexagonal platelet shape (with
an aspect ratio of lower than 0.5), the directions of the three axes chosen by the analyst
differed from traditional hexagonal prism-shaped crystals (with an aspect ratio of higher
than 1). As a consequence, the a-axis was identical to the c-axis in the other literature. In
the following discussion, the experimental data of the a-axis and c-axis were exchanged, in
line with the data of other researchers. Hence, the cell parameters from the single-crystal
diffraction test were modified as follows: a = 13.550(3) Å; b = 13.855(3) Å; c = 12.658(3) Å;
β = 117.79(3)◦; space group C2, and the coordinates of the atoms are shown in Table 4.
In this study, the values of the a-axis and b-axis were approximately twice of the values
found by some other authors (Table 3), which might have been caused by different methods
of crystal cells selected by analysts. Additionally, the value of β was higher than that in
most of the literature, which was approximately 90◦. Only Weiss and Bräu (2009) [53] and
Schmidt et al. (2011) [8] suggested that the value of β was approximately 133◦ through the
data of the single crystal test and refined program. In addition, the analysts did not find the
elements of Al and C inside or on the edge of the structure during the process of sample
analysis, which indicated that these elements were amorphous, were merely adsorbed on
the surface of the crystal and did not participate in constructing the structure.

Table 4. Coordinates of CaSO4·0.5H2O from the single-crystal diffraction text.

Atom x/a y/b z/c B(Å2)

Ca1 0.7364(3) 0.4037(2) 1.2848(3) 0.0125(7)
Ca2 0.5000 0.0762(3) 1.000 0.0055(8)
Ca3 0.7837(2) 0.1520(2) 0.9738(3) 0.0113(6)
Ca4 0.5000 0.0485(3) 0.5000 0.0079(8)
Ca5 0.7189(3) 0.4027(2) 0.7769(3) 0.0125(7)
Ca6 0.9910(3) 0.3109(3) 0.7450(3) 0.0175(7)
Ca7 1.2374(3) 0.1541(2) 0.5361(3) 0.0146(7)

S1 0.7287(3) 0.3995(3) 1.0342(3) 0.0085(6)
S2 0.7778(3) 0.1527(3) 1.2232(3) 0.0129(7)
S3 0.5064(3) 0.0653(3) 0.7492(3) 0.0071(6)
S4 0.7723(3) 0.1508(3) 0.7187(3) 0.0119(7)
S5 1.0000 0.3181(5) 1.0000 0.0136(9)
S6 0.7220(3) 0.4044(3) 0.5246(3) 0.0092(6)
S7 1.0000 0.3112(5) 0.5000 0.0129(9)
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Table 4. Cont.

Atom x/a y/b z/c B(Å2)

O1 0.8220(8) 0.3862(8) 1.1491(9) 0.010(1)
O2 0.6330(8) 0.4178(7) 1.0606(9) 0.0093(10)
O3 0.7433(8) 0.4816(8) 0.9684(9) 0.0099(10)
O4 0.7064(8) 0.3113(8) 0.9576(8) 0.0091(10)
O5 0.8800(8) 0.1826(8) 1.2194(10) 0.0137(10)
O6 0.6941(8) 0.1300(8) 1.0987(9) 0.0136(10)
O7 0.7995(8) 0.0707(8) 1.3021(9) 0.0135(10)
O8 0.7361(9) 0.2301(8) 1.2719(10) 0.0134(10)
O9 0.4315(8) 0.0239(7) 0.7919(9) 0.0077(10)
O10 0.5873(7) 0.1265(7) 0.8431(8) 0.0074(9)
O11 0.4406(8) 0.1245(7) 0.6415(8) 0.0083(9)
O12 0.5609(8) -0.0104(7) 0.7120(8) 0.0069(9)
O13 0.7974(8) 0.0645(8) 0.7931(9) 0.0126(10)
O14 0.6722(8) 0.1387(8) 0.6040(9) 0.0122(10)
O15 0.8643(8) 0.1707(8) 0.6912(9) 0.0131(10)
O16 0.7613(8) 0.2294(8) 0.7906(9) 0.0125(10)
O17 1.0561(9) 0.2554(9) 0.9530(9) 0.0143(12)
O18 0.9235(8) 0.3772(9) 0.8977(10) 0.0151(12)
O19 0.8075(8) 0.3808(8) 0.6445(9) 0.0107(10)
O20 0.7611(8) 0.4807(8) 0.4721(9) 0.0092(10)
O21 0.6964(8) 0.3194(8) 0.4433(8) 0.0096(10)
O22 0.6230(8) 0.4353(8) 0.5338(9) 0.010(1)
O23 1.0721(8) 0.2534(9) 0.4681(10) 0.0138(11)
O24 1.0689(8) 0.3727(8) 0.6071(9) 0.0139(11)
O25 0.5000 0.2426(19) 1.0000 0.048(6)

H25 0.5553 0.2755 1.0085 0.05800
O26 0.5485(11) 0.3174(11) 0.6886(12) 0.030(3)

H26A 0.5493 0.2700 0.7304 0.03600
H26B 0.4961 0.3513 0.6863 0.03600
O27 0.993(3) 0.491(3) 0.765(3) 0.045(7)

H27A 0.9928 0.5227 0.7087 0.05300
H27B 0.9353 0.5144 0.7640 0.05300
O29 0.039(4) 0.572(3) 0.424(5) 0.085(13)

H29A 0.0223 0.5435 0.3592 0.10200
H29B 0.0360 0.5254 0.4644 0.10200
O28 0.062(2) 0.568(2) 0.953(3) 0.039(7)

H28A 0.0626 0.5255 0.9998 0.04700
H28B 0.0099 0.6044 0.9462 0.04700
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3.6. Analysis of the α-HH Crystal Structure

Atoms in a crystal are arranged periodically, and the smallest component of the crystal
is called the unit cell. One can partially predict crystal growth and external forms according
to the crystal structure. In order to reveal the growth mechanism of the α-HH crystal,
the distance between atoms was measured, and the atoms on different crystal facets were
analyzed according to the unit cell structure.

The distance between Ca atoms and the center of SO4 tetrahedra was simplified as the
distance between Ca and S atoms. As illustrated in Figure 9, the distance was approximately
3.68 Å along the a-and b-axis, while it was approximately 3.16 Å along the c-axis. Therefore,
the bond between Ca and SO4 tetrahedra along the c-axis was stronger than that in the other
two directions.

In the XRD pattern of the α-HH crystals with a columnar shape (Figure 10), the 2θ of
the characteristic diffraction peaks were 14.77◦, 25.69◦, 29.76◦ and 31.94◦. According to the
PDF (no.41-0024) information, the corresponding crystal faces were (200), (020), (400), and
(204), respectively. The atoms on these faces were examined by building one 2 × 2 × 2 super
cell and cutting it through the operation of “create lattice planes” in Diamond. The results
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are shown in Figure 11. They indicate that the (204) plane, as one of the end surfaces, is
mainly composed of Ca2+, wheras the (400) and (200) planes consist of Ca2+ and SO4

2−,
and the (020) plane consists of O atoms. The (200), (400) and (020) planes are parallel to the
c-axis, as side planes. It can be concluded that the positive charge in the (204) plane is larger
than that of the other planes.
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4. Discussion

The growth mechanism of α-HH crystals has been investigated for many years. How-
ever, no consensus has yet been reached by authors. Generally speaking, there are three
views accepted by most scholars [10], and they are as follows: One is described as a topotac-
tic solid state reaction in initial phase, then as a dissolution–recrystallization mechanism
in the later phase. The second one assumes that the DH is first decomposed into AH and
free water, and then the AH combines with water to form HH crystals. The third one is the
dissolution–recrystallization mechanism, which is the dissolution of DH and generation of
a supersaturation with respect to HH followed by the nucleation and growth of nuclei to
macroscopic crystals from solution or on the surface of mother gypsum crystals without
directional correlation [54].

The results of XRD and Section 3.3 were contrary to the second view of the growth
mechanism above that there was no intermediate phase during the transformation from DH
to α-HH, as proven in the literature using the method of in situ time-resolved synchrotron
radiation powder X-ray diffraction [40]. However, this requires further investigation to
determine whether the growth mechanism is a topotactic solid state reaction followed by
dissolution–recrystallization or just a dissolution–recrystallization mechanism. Currently,
the dissolution–recrystallization mechanism is more acceptable.

As shown in Figure 4b–d, it could be seen that the crystal growth finished first along
the a-axis and b-axis. With the addition of an appropriate modifier, the crystal along the
c-axis was divided into many fiber strips due to the inhibition of the modifier, and the
fiber strips overlapped with each other to form a complete crystal with a short column
shape as the reaction progressed. However, without the addition of a modifier, the crystal
would grow preferentially along the c-axis into a needle shape with high aspect ratio. This
could be explained by the results of the single-crystal experiment and the Hartman–Perdok
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theory. According to the Hartman–Perdok theory [55], there are a series of uninterrupted
chains formed by strong bonds in the crystal, and the fastest direction of crystal growth
is the direction with the strongest chemical bond. In the crystal structure of α-HH, if we
ignore the effects of the water molecules in the channel, the crystal growth is mainly caused
by the package of the alternating growth units Ca and SO4, and the growth mechanism
can be revealed by measuring and comparing the distance between Ca and S atoms. As
described in Section 3.6, the bond length of the Ca -SO4 chain along the c-axis was the
shortest, and the bond was the strongest. As a result, if there is no other interference from
external factors, the crystal will preferentially grow along the c-axis, which is consistent
with the phenomenon observed from the reaction in pure water medium [26], and the
crystal will develop into a fibrous shape.

However, the morphology of the α-HH crystal will vary in the presence of different
crystal modifiers. According to the analysis of the atoms on different planes, the (204)
plane was mainly composed of Ca ions with more positive charges, which tended to absorb
carboxylate groups with negative charges. The carboxylate groups complexed Ca2+ ions to
form a network, which prevented growth unit SO4 from adhering to the crystal face. As a
consequence, the growth along the c-axis was inhibited, and the relative growth rates along
the a- and b-axis increased, resulting in a columnar shape. As the reaction proceeded, the
network formed by the carboxylate group and Ca ions was destroyed under the driving
force of temperature and supersaturation, and the top surface developed into a flat plane,
indicating that the growth along the c-axis had been completed (Figure 4d). These results
are similar to the conclusions in [10] and [18].

In addition, HH was slightly soluble in aqueous medium. With the addition of a small
amount of soluble aluminum sulfate into the reaction system, the concentration of SO4

2−

increased, accompanied by an increase in supersaturation and driving force. Then, the
nucleation rate accelerated, whereas the size of the crystals decreased, as demonstrated by
Mi Y et al. [56] and Run Yang et al. [57]. Therefore, the amount of aluminum sulfate must
be appropriate.

5. Conclusions

Based on the experiments mentioned above, it was proven that α-HH could be pro-
duced from FGD gypsum using potassium sodium tartrate and aluminum sulfate as the
crystal modifier. In the dynamic process, the phase transformation started at approximately
140 ◦C and finished after being left at 150 ◦C for 30 min.

The FTIR analysis showed that the α-HH samples were accompanied by a small
amount of organic substance due to the asymmetric and symmetric stretching vibrations of
methylene (−CH2−) and suggested that a mutual reaction might exist between potassium
sodium tartrate and the α-HH crystal since the intensity of the characteristic peak enhanced
with the increase in the dosage. In order to gain further evidence on the mutual reaction,
DH with fewer impurities should be used in the experiment.

The single-crystal diffraction test showed the arrangements of the atoms and the
structure of the α-HH. The results of the lattice parameters were as follows: a = 13.550(3);
b = 13.855(3); c = 12.658(3); β = 117.79(3)◦; space group C2. The growth mechanism of
α-HH crystals was revealed by measuring the bond length in the structure and analyzing
the atom composition of the exposure crystal surfaces. This work provided a new insight
into the structure of the unit cell. However, more perfect α-HH crystals need to be prepared
for single-crystal diffraction in order to obtain more precise cell parameters, and the growth
mechanism considering the role of the water molecules in the channel should be further
studied. At the same time, the process of α-HH production needs be improved to reduce
energy consumption and increase production efficiency.
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