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Abstract

Motivation: A large proportion of risk regions identified by genome-wide association studies

(GWAS) are shared across multiple diseases and traits. Understanding whether this clustering is

due to sharing of causal variants or chance colocalization can provide insights into shared etiology

of complex traits and diseases.

Results: In this work, we propose a flexible, unifying framework to quantify the overlap between a

pair of traits called UNITY (Unifying Non-Infinitesimal Trait analYsis). We formulate a Bayesian

generative model that relates the overlap between pairs of traits to GWAS summary statistic data

under a non-infinitesimal genetic architecture underlying each trait. We propose a Metropolis–

Hastings sampler to compute the posterior density of the genetic overlap parameters in this model.

We validate our method through comprehensive simulations and analyze summary statistics from

height and body mass index GWAS to show that it produces estimates consistent with the known

genetic makeup of both traits.

Availability and implementation: The UNITY software is made freely available to the research

community at: https://github.com/bogdanlab/UNITY.

Contact: ruthjohnson@ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have identified thousands

of regions in the genome that contain variants that contribute to risk

for many diseases. Many of these risk regions have been implicated

in multiple phenotypes such as autism and schizophrenia (Autism

Spectrum Disorders Working Group of The Psychiatric Genomics

Consortium et al., 2017), multiple autoimmune diseases (Cotsapas

et al., 2011; Ramos et al., 2011; Richard-Miceli and Criswell,

2012), Crohn’s disease and psoriasis (Ellinghaus et al., 2012), and

many others. Understanding which causal variants are shared

among diseases can provide novel etiological insight as well as pro-

vide evidence of potential shared causal mechanisms between com-

plex traits. In addition, identifying which variants contribute to

multiple traits can help decipher which molecular traits (e.g. gene

expression) contribute to disease risk (Giambartolomei et al., 2014;

Hormozdiari et al., 2016); genetic variants that causally alter gene

expression as well as disease risk can link a particular gene to a given

disease.

Genetic overlap has been analyzed both at the genome-wide level

and local level, where the latter refers to analysis done within a

given genomic region. Genetic correlation, a measure that quantifies

the similarity in the genetic effects on pairs of traits, is commonly

used for assessing the relationship between two traits and can be

applied either genome-wide or to local data (Bulik-Sullivan et al.,

2015; Shi et al., 2017). Many of the models for estimating genome-

wide genetic correlation assume an infinitesimal genetic architecture

where all SNPs, or single nucleotide polymorphisms, are assumed to

have a very small effect on the trait. In contrast to genetic correl-

ation, colocalization methods aim to estimate whether the GWAS

association signals for two traits at the same region are due to the

same causal variant across the traits or chance (Giambartolomei

et al., 2014; Hormozdiari et al., 2016). The methods that relax

the infinitesimal assumption either assume a single causal variant

per region or limit the number of potential causal variants a priori,

often due to computational considerations (Giambartolomei et al.,

2014; Hormozdiari et al., 2016). Although, both genetic correlation
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and colocalization aim to describe the genetic sharing between

traits, these methods have been utilized largely independently of

each other.

In this work, we present a unifying statistical model that ties to-

gether genetic correlation and colocalization. To accomplish this,

we present a fully generative Bayesian statistical model that models

the shared as well distinct genetic variants underlying a pair of traits.

The model allows for sparse genetic architectures (where only a

small fraction of variants are causally impacting the traits). The

model is richly parametrized: allowing us to jointly model global

parameters such as the proportion of variants that are causal for

both as well for either trait, the trait heritability, the correlation of

the effect sizes at the causal SNPs and local parameters such as the

effect of a single SNP on each of the traits.

A challenge of a non-infinitesimal genetic architecture is that

it presents a computationally challenging inference problem.

Performing inference under this model often involves explicitly enu-

merating all causal configurations of the SNPs. This exponential

search space of 22M, where M is the number of SNPs analyzed,

proves intractable given the large genetic datasets now available. We

propose Unifying Non-Infinitesimal Trait analYsis (UNITY) that

relies on Markov Chain Monte Carlo (MCMC) to approximate the

posterior probabilities of the model parameters. In this work, we

focus on estimating the proportion of shared and trait-specific

causal variants since parameters such as heritability and genetic cor-

relation can be estimated using previous methods (Bulik-Sullivan

et al., 2015). Additionally, a key advantage of the method is that it

only requires summary level association statistic data, which

bypasses many of the privacy concerns associated with individual

level data. With the widespread availability of GWAS summary sta-

tistics (Pasaniuc and Price, 2017), we expect that a method operat-

ing only on summary statistics would prove most useful for the

research community. Through comprehensive simulations and an

analysis of height and body mass index (BMI), we show that our

method can accurately estimate the proportion of shared causal

SNPs between two complex traits.

2 Materials and methods

2.1 Generative model
Here, we introduce a Bayesian framework for estimating the propor-

tion of causal variants shared between a pair of complex traits. The

input to our method is the vector of signed effect sizes at each SNP

for each trait (we only analyze SNPs for which effect size estimates

are available for both traits). We model the genetic as well as non-

genetic variances in each trait, the genetic correlation among the

traits, and the proportion of causal SNPs that are shared across

traits as well as are unique to each. The proportion of causal SNPs

shared between the traits is denoted by p11, the proportion of causal

SNPs specific to trait 1 and trait 2 as p10 and p01, respectively, and

the proportion of non-causal SNPs is denoted by p00, where

p00 þ p10 þ p01 þ p11 ¼ 1. For each trait p 2 f1;2g, we denote the

genetic variance r2
p (which is the same as its heritability as h2

p if the

trait is standardized), the environmental noise as r2
ep
¼ 1�h2

p

Np
, where

Np denotes the sample size for trait p, and the genetic correlation be-

tween the two traits as q. Altogether, our model has the following

parameters: r2
1; r

2
2; q; p00; p10;p01;p11

� �
.

We assume that trait p (p 2 f1; 2g) measured in individual i, yp;i

is a linear function of standardized genotypes x¼ xi;1; . . . ; xi;M

� �
measured across M SNPs with SNP effect sizes bp ¼ ðbp;1; . . . ; bp;MÞ

and independent additive noise term �p;i. Further, we assume that

there are no sample overlaps across the two studies.

y1;i ¼
XM
m¼1

b1;mxi;m þ �1;i y2;i ¼
XM
m¼1

b2;mxi;m þ �2;i

i 2 f1; . . . ;N1g i 2 f1; . . . ;N2g

�p;i �iidN 0; r2
ep

� �
A SNP m is causal for trait p if its true effect bp;m 6¼ 0 and it is not

causal otherwise. We denote the probability of a SNP being causal for

every combination of the two traits as: p ¼ p00; p10; p01; p11ð Þ.
Denoting the causal effect sizes for trait p; p 2 f1; 2g across all

SNPs cp ¼ ðcp;1; . . . ; cp;MÞ, we assume that the causal effect sizes for

each SNP are independent, allowing us to model the effect sizes at

SNP m for each of the two traits c1;m; c2;m

� �
as a random vector

drawn from a bi-variate normal distribution centered at zero with

the following covariance matrix:

c1;m

c2;m

 !
j r2

1;r
2
2;q;p

� �
�N

0

0

 !
;

r2
1

M p11þp10ð Þ
r1r2q
M p11ð Þ

r1r2q
M p11ð Þ

r2
2

M p11þp01ð Þ

0BBB@
1CCCA

0BBB@
1CCCA

Cp ¼ Cp;1; . . . ;Cp;M

� �
denotes the causal indicator vector for

trait p, where Cp;m ¼ 1 if SNP m is causal for trait p and 0 other-

wise. C1;m;C2;m

� �
is a random vector drawn from a discrete distribu-

tion with parameters given by p:

P
C1;m

C2;m

 !
¼

a

b

 !
j p

 !
¼ pab; a; b 2 f0; 1g

The true effect sizes for each trait p at SNP m, bp;m, conditioned

on the causal status at a SNP is the element-wise product of the

causal indicator vector and the true causal effect sizes.

b1;m

b2;m

 !
j

C1;m

C2;m

 !
;

c1;m

c2;m

 !
¼

c1;mC1;m

c2;mC2;m

 !

We can model the conditional distribution of the GWAS

summary statistics given the true effect sizes, where bbp;m is the esti-

mated marginal effect size of the mth SNP for trait p (Shi et al.,

2017):

bb1;1:M

bb2;1:M

0B@
1CAj b1;1:M

b2;1:M

0@ 1A;r2
e1
;r2

e2

0@ 1A � N Vb1;1:M

Vb2;1:M

0@ 1A;Re

0@ 1A

Re ¼
r2

e1
V 0

0 r2
e2

V

0@ 1A
V is the matrix of correlations among the SNPs, i.e. the linkage

disequilibrium (LD) matrix. V can be estimated from a reference

panel of genotypes collected from a population that is genetically

similar to the populations for which summary statistics are avail-

able. Alternately, when performing inference at the genome-wide

level, we can prune the list of SNPs such that they come from inde-

pendent LD blocks. LD-pruning creates an approximately independ-

ent subset of SNPs in which case V can be approximated by the

identity matrix, I. In this work, we restrict our attention to the case

where V � I.
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We impose a Dirichlet prior on p:

qjk � Dir kð Þ

Here k ¼ k1; k2; k3; k4ð Þ. In practice, we set k1 ¼ k2 ¼
k3 ¼ k4 ¼ k ¼ 0:20:

In principle, we can also impose priors on the remaining parame-

ters, i.e. the trait heritability r2
1; r

2
2

� �
and their genetic correlation q

and estimate all of these parameters jointly with p in a fully Bayesian

model. These parameters can be estimated using other methods

(Bulik-Sullivan et al., 2015) and, in this work, we fix the values of

these parameters to their estimates and focus on estimating p.

Given the parameters (r2
1; r2

2,q, k), the joint distribution of the

probability of causal configurations p, the causal indicator vectors

C1;C2, the causal effect sizes c1; c2, and the estimated effect sizes bb1;bb2 is given by:

P bb1; bb2;C1;C2; c1; c2; pjr2
1; r

2
2;q; k

� �
¼ P pjkð Þ

�
YM
m¼1

(
P

C1;m

C2;m

 !
jp

 !
P

c1;m

c2;m

 !
j r2

1; r
2
2; q; p

� � !

�P
bb1;mbb2;m

0@ 1Aj c1;m

c2;m

 !
;

C1;m

C2;m

 !
;r2

e1
;r2

e2

 !0@ 1A)

Integrating over the hidden variables C1;C2; c1; c2, we obtain:

Pðbb1
;bb2;pjr2

1;r
2
2;q;kÞÞ

¼P pjkð Þ�
YM
m¼1

"ÐX
C1;m

C2;m

(
P

C1;m

C2;m

 !
jp

 !
P

c1;m

c2;m

 !
j r2

1;r
2
2;q;p

� � !

�P
bb1;mbb2;m

 !
j

c1;m

c2;m

� �
;

C1;m

C2;m

� �
;r2

e1
;r2

e2

� � !)
dc1;mdc2;m

#
¼Dir p;kð Þ

�
YM
m¼1

"
p00N

bb1;mbb2;m

 !
;

0

0

� �
;

r2
e1

0

0 r2
e2

 ! !

þp10N
bb1;mbb2;m

 !
;

0

0

� �
;

r2
1

M p11þp10ð Þþr2
e1

0

0 r2
e2

0B@
1CA

0B@
1CA

þp01N
bb1;mbb2;m

 !
;

0

0

� �
;

r2
e1

0

0
r2

2

M p11þp01ð Þþr2
e2

0B@
1CA

0B@
1CA

þp11N
bb1;mbb2;m

 !
;

0

0

� �
;

r2
1

M p11þp10ð Þþr2
e1

r1r2

M p11ð Þq

r1r2

M p11ð Þq
r2

2

M p11þp01ð Þþr2
e2

0BBB@
1CCCA

0BBB@
1CCCA
#

2.2 Parameter inference in our model
Given the generative model described in the previous section, the in-

ference problem lies in computing the posterior distribution of p

given the estimated summary statistics

P pjbb1;bb2; r
2
1;r

2
2; q; k

� �

¼
P p;bb1; bb2jr2

1; r
2
2;q; k

� �
P bb1; bb2jr2

1;r
2
2; q; k

� �
The true joint posterior distribution is intractable. Thus, we use

MCMC (Brooks et al., 2011) to approximate the posterior distribu-

tion. MCMC approximates the target posterior distribution

Pðp jbb1; bb2; r
2
1;r

2
2; qÞ by a sequence of random samples p tð Þ� �T

t¼1

drawn from a Markov chain constructed so that the stationary dis-

tribution of the chain is the target posterior.

P p jbb1; bb2; r
2
1;r

2
2; q; k

� �
� 1

T

XT

t¼1

dp tð Þ pð Þ

In our setting, we use a random-walk Metropolis–Hastings algo-

rithm (Metropolis et al., 1953) that generates a sample p tþ1ð Þ at iter-

ation tþ1 given the sample p tð Þ at the previous iteration using the

following proposal distribution that generates a proposed sample p�

which is then accepted or rejected depending on the Metropolis–

Hastings ratio (which depends on the ratio of the posterior probabil-

ity density at the proposed parameter to the previous parameter):

p� � Dir dð Þ

d ¼ kþ Bp tð Þ

Here, B is a constant that controls the variance of the proposal dis-

tribution. In practice, we found that B¼10 yields effective mixing.

The final step in specifying the MCMC algorithm lies in comput-

ing the ratio of the posterior probability density at the proposed par-

ameter to the original parameter. Computation of the ratio requires

the evaluation of the posterior probability only up to a normaliza-

tion constant:

P pjbb1;bb2;r
2
1;r

2
2;q;k

� �
/P bb1;bb2;pjr2

1;r
2
2;q;k

� �
¼Dir p;kð Þ

�
"YM

m¼1

N
bb1;mbb2;m

0@ 1A;
0

0

 !
;

r2
e1

0

0 r2
e2

 !0@ 1A � p00ð Þ

þN
bb1;mbb2;m

0@ 1A;
0

0

 !
;

r2
1

M p11þp10ð Þþr2
e1

0

0 r2
e2

0B@
1CA

0B@
1CA � p10ð Þ

þN
bb1;mbb2;m

 !
;

0
0

� �
;

r2
e1

0

0
r2

2

M p11þp01ð Þþr2
e2

0@ 1A0@ 1A � p01ð Þ

þN
bb1;mbb2;m

 !
;

0
0

� �
;

r2
1

M p11þp10ð Þþr2
e1

r1r2

M p11ð Þq

r1r2

M p11ð Þq
r2

2

M p11þp01ð Þþr2
e2

0BB@
1CCA

0BB@
1CCA

� p11ð Þ
#

2.3 Efficient mixing of MCMC chains
In any practical application of MCMC, the number of iterations,

burn-in period, and initialization point are critical to ensuring con-

vergence and accurate estimates. Slow mixing of the MCMC chains

can occur if the starting point is at a region of low posterior density.

As opposed to selecting a random starting point, we carefully select

the initialization of each chain by choosing the set of parameters

that yields the highest posterior density. We use the limited-memory

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Byrd et al.,

1994) to determine the maximum a posteriori estimates for

p00; p10;p01; p11. We repeat this 10 times, initializing the optimiza-

tion algorithm with random starting values drawn from the prior.

We compute the posterior density of all 10 candidate starting values

and select the set that yields the highest density. This set of

A unifying framework for joint trait analysis i197



parameters is then used as the starting point for our MCMC chain.

In addition, to diagnose convergence, we use 100 Markov chains all

initialized using the scheme described above. Our final estimate is

the mean of all samples drawn from the 100 chains.

2.4 Note on runtime
We assessed the performance based on the number of seconds per it-

eration of the MCMC sampler. The main computation is calculating

the likelihood at each iteration, which is directly dependent on the

number of SNPs per trait. The complexity of the algorithm is O mð Þ,
where m is the number of SNPs. We empirically demonstrate that

our method is linear in the number of SNPs through simulation

(Supplementary Fig. S1). In addition, the runtime is invariably con-

nected to the number of iterations required for the MCMC to con-

verge. We find that using the maximum a posteriori probability

(MAP) estimate as an initialization value leads to fast convergence,

requiring only 500 iterations in practice.

3 Results

UNITY provides a novel generalized framework to jointly model

GWAS summary statistics data of two complex traits, incorporating

fundamental genetic parameters, such as heritability and genetic cor-

relation, and makes minimal assumptions in inference procedures.

Since UNITY assumes a non-infinitesimal model, it allows for very

sparse genetic architectures, i.e. by setting p00 � 1. However, this

non-infinitesimal model can also be generalized to the infinitesimal

model by setting p00 � 0;p10 � 0; p01 � 0; p11 � 1.

3.1 UNITY generalizes colocalization and genetic

correlation
We discuss a comparison of the parameters of UNITY with those

obtained by other methods that perform cross-trait analysis and the

underlying assumptions of each method. We first analyze the cross-

trait LD score regression model (Bulik-Sullivan et al., 2015), which

estimates genome-wide genetic correlation based on the random-

effect model, making the implicit assumption that every SNP has a

non-zero effect. In contrast to cross-trait LD score regression,

UNITY assumes a generalized non-infinitesimal model, explicitly

modeling a sparse genetic architecture. We also compare UNITY

with methods that do not make the infinitesimal model assumption.

While models such as PleioPred explicitly model the proportion of

trait-specific and shared causal variants p00; p10; p10; p11, the main

goal of this method is to perform genetic risk prediction (Hu et al.,

2017a) rather than estimating these proportions.

We compare UNITY with COLOC (Giambartolomei et al.,

2014) and eCAVIAR (Hormozdiari et al., 2016), Bayesian methods

to assess the evidence of colocalization, i.e. whether GWAS signals

of two traits are driven the same underlying causal variants. Both

methods explicitly model p ¼ p00; p10; p10;p11ð Þ (Giambartolomei

et al., 2014; Hormozdiari et al., 2016). However, COLOC makes

the simplifying assumption that there is at most one-causal variant

at a region (Giambartolomei et al., 2014), allowing it to not explicit-

ly model LD. And although eCAVIAR allows for multiple causal

variants and explicitly models LD, it restricts the maximum number

of causal variants at six per region for computational efficiency

(Hormozdiari et al., 2016). In comparison with these methods,

UNITY allows for any number of causal variants while making the

assumption that there is no LD between the SNPs. We outline a

summary of the relationship between UNITY and all methods

described in Table 1.

To empirically demonstrate the benefit of the relaxed assump-

tions of UNITY as compared to current methods, we conduct a

modest comparison against COLOC (Giambartolomei et al., 2014).

We simulated 100 regions of 500 SNPs with multiple causal var-

iants. We perform colocalization analysis over all of the regions

using COLOC. When there are causal variants independently associ-

ated with each trait and shared variants, COLOC estimates that the

association within the region is driven only by two independent var-

iants, where one is specific to trait 1 and the other is specific to trait

2. Because COLOC assumes at most one-causal variant per region,

the method is unable to distinguish between a variant that independ-

ently drives only one trait versus a variant that is colocalized when

both cases are present. For completeness, we also included a simula-

tion that follows the assumption underlying COLOC of the one-

causal setting. The full table listing these results in outlined in

Supplementary Table S2. However, we are unable to directly com-

pare estimates with COLOC because there is not a clear mapping

between the estimates of COLOC and the estimated parameters of

UNITY, thus any direct comparison would be an unfair comparison

due to the mismatch in the models.

3.2 Simulations
We generated summary statistics for 500 SNPs from two synthetic

GWAS. The causal effect sizes for each SNP, cp;m, were drawn joint-

ly from a multivariate normal distribution where h2
1;h

2
2; q denote the

heritability of each trait and the genetic correlation. We denote the

number of SNPs as M and the proportion of causal variants for each

trait as p10, p01 and the proportion of shared casuals as p11:

c1;m

c2;m

 !
�

h2
1

M p11 þ p10ð Þ
h1h2q
M p11ð Þ

h1h2q
M p11ð Þ

h2
2

M p11 þ p01ð Þ

0BBB@
1CCCA

To simulate causal SNPs, we drew an M� 4 matrix from a

multinomial distribution parametrized by p where the mth row of

values denotes whether a SNP is causal for neither trait, only trait 1,

only trait 2, or neither trait. Using this, we constructed two M� 1

causal indicator vectors, C1, C2, where C1;m;C2;m ¼ 1 if the mth

SNP was causal for both traits, C1;m ¼ 1;C2;m ¼ 0 if the SNP was

Table 1. Displayed is a summary of current methods that perform joint trait analysis and the relationship to the parameters in UNITY

Method h2 q p Misc.

UNITY * * *

Cross-trait LD Score regression (Bulik-Sullivan et al., 2015) * * p11 � 1

PleioPred (Hu et al., 2017a) * * * infers p to estimate effect sizes

COLOC (Giambartolomei et al., 2014) – – * max 1 causal

eCAVIAR (Hormozdiari et al., 2016) – – * max 6 causals

Boxes with an (*) denote the values that a method models. Note that this summary is not exhaustive.
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only causal for trait 1, C1;m ¼ 0;C2;m ¼ 1 if it was only causal for

trait 2, and C1;m;C2;m ¼ 0 if the SNP was non-causal. To get the

true effect sizes, we multiplied element-wise b1 ¼ C1 �c1 and

b2 ¼ C2 �c2 where we are essentially zeroing out any entry from the

causal effect vector where a SNP is non-causal.

To compute the estimated GWAS effect sizes, bbp, we assumed

cov �1; �2ð Þ ¼ 0, so random noise terms �1; �2 were drawn from two

normal distributions N 0;
1�h2

1

N1

� �
and N 0;

1�h2
2

N2

� �
respectively. We as-

sume that the SNPs being used at the genome-wide level will be LD-

pruned such that there is very little or no correlation structure. Thus,

we set the LD matrix V¼ IM, where IM is an M � M identify matrix.

We then draw the estimated effect sizes from a conditional distribu-

tion of the GWAS summary statistics, as described in Section 2.

First, we confirm that our method accurately predicts the pro-

portion of causal variants under varying sample sizes and heritabil-

ity estimates. We tested a variety of simulation frameworks where

we fixed the genetic correlation and heritabilities of the two traits.

We ran each simulation for 500 iterations and used the first quarter

of the iterations as burn-in. We vary the proportion of causal var-

iants contributing to only trait 1 (p10), proportion of causal variants

for only trait 2 (p01), and the proportion of casual variants contribu-

ting to both traits (p11). As shown in Figure 1, we can see that

UNITY performs robustly across each scenario.

Next, to assess how UNITY performs with varying levels of her-

itability, we continued to fix q¼0, but varied the values of the

heritability. Note that we used low heritability values due to the low

number of simulated SNPs (M¼500). From Figure 2, we can see

that the estimates reflect the prior distribution of p00; p10; p01; p11ð Þ
when the heritability is very low. We also show in Figure 3 that our

estimates are invariant to the correlation between phenotypes.

To assess the role of sample size in our inference, we performed

simulations where we varied the number of individuals from 1000

to 250 000. We find that the recommended sample size should be

at least 50 000 individuals to yield precise results (Supplementary

Fig. S2). Additionally, to further assess the performance of the

method, we also performed simulations where h2
1 6¼ h2

2 and when

p10 6¼ p01. Through simulation, we demonstrate that our method

is robust to these scenarios, with detailed results provided in

Supplementary Figures S3 and S4.

Finally, through simulations, we empirically demonstrate

that our method is well calibrated under the null hypothesis, defined

as: (i) p10 ¼ 0, (ii) p01 ¼ 0 and (iii) p11 ¼ 0. To demonstrate this,

we simulated 100 000 SNPs with 100 000 individuals where

h2
1 ¼ 0:25; h2

2 ¼ 0:25;q ¼ 0. For each hypothesis, we set the param-

eter of interest exactly to 0 and then then simulated 2% causal var-

iants between the remaining parameters. For example, for null

hypothesis (1), the corresponding set of simulation parameters

would be: p10 ¼ 0; p01 ¼ 0:01; p11 ¼ 0:01. Using UNITY, we esti-

mated the null parameter and report the posterior mean and stand-

ard deviation in Table 2. Note that UNITY estimates the null

●

●●
●

●
●

●

0.00

0.25

0.50

0.75

1.00

p00 p10 p01 p11

E
st

im
at

ed
 p

ro
po

rt
io

n 
of

 S
N

P
s

N1=1K, N2=1K, M=500, h1=.05, h2=.05, rho=0

(a)

●

●
●

0.00

0.25

0.50

0.75

1.00

p00 p10 p01 p11
E

st
im

at
ed

 p
ro

po
rt

io
n 

of
 S

N
P

s

N1=100K, N2=100K, M=500, h1=.001, h2=.001, rho=0

(b)

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

p00 p10 p01 p11

E
st

im
at

ed
 p

ro
po

rt
io

n 
of

 S
N

P
s

N1=1K, N2=1K, M=500, h1=.05, h2=.05, rho=0

(c)

●

●

●

●

●

●

●
●

●

●

0.0

0.2

0.4

0.6

0.8

p00 p10 p01 p11

E
st

im
at

ed
 p

ro
po

rt
io

n 
of

 S
N

P
s

N1=100K, N2=100K, M=500, h1=.001, h2=.001, rho=0

(d)

Fig. 1. We estimate the proportion of causal variants under four simulation frameworks where we vary the sample size (N1, N2), heritability (h2
1 ¼ h2

2), and propor-

tion of causal variants. First, we first simulated values where the total proportion of causal variants is low: p00 ¼ 0:89; p10 ¼ 0:05;p01 ¼ 0:05;p11 ¼ 0:01, along

with a low sample size and high heritability: h2
1 ¼ 0:05;h2

2 ¼ 0:05; q ¼ 0;N1 ¼ 1000;N2 ¼ 1000, as shown in (a). Second, we tested the model with the same propor-

tion of causal variants, but with a larger sample size and smaller heritability: h2
1 ¼ 0:001;h2

2 ¼ 0:001; q ¼ 0;N1 ¼ 100 000;N2 ¼ 100 000, shown in (b). Third, we

simulated data with a higher proportion of causal variants, p00 ¼ 0:50; p10 ¼ 0:20; p01 ¼ 0:20; p11 ¼ 0:10. Using the same sets of heritabilities and sample sizes

from the first two simulations, we tested the prediction accuracy of our model. (c) denotes the simulation with low sample size and high heritability, and (d)

denotes the simulation with high sample size and low heritability. The dotted red lines denote the true proportion of causal SNPs in each simulation
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Fig. 2. We simulate the following proportion of causal variants p00 ¼ 0:97; p10 ¼ 0:01; p01 ¼ 0:01; p11 ¼ 0:01 and vary the heritability (h2
1 ¼ h2

2) while fixing

q;N1;N2;M. We vary the heritability from.01 to 5e�7 and plot the estimated proportion of non-causal variants (a), proportion of causal variants for trait 1 (b), pro-

portion of causal variants for trait 2 (c) and proportion of shared causal variants (d). We note that as the heritability goes down, the data become less informative

and the estimates reflect the prior
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parameter very close to zero, but not exactly zero. This is because

there is a non-zero prior on the set of parameters, making it not pos-

sible to be exactly zero, but can instead be asymptotically close.

3.2.1 LD-pruning to identify approximately independent

SNPs
To rigorously assess the role of LD in our model, we demonstrate a

sufficient LD-pruning scheme through simulations. To model a real-

istic LD structure, we used SNPs from 1000 Genomes (Consortium

et al., 2012a) to compute the LD for each of the approximately

independent LD blocks identified in Berisa and Pickrell (2016). We

filtered rare SNPs by minor allele frequency, MAF 	 0.05, and

used 1 million SNPs sampled across the LD blocks. We chose only

a subset of 1 million SNPs because this closely reflects the number

of SNPs genotyped on SNP arrays. We simulated the GWAS effect

sizes as outlined in Section 3.1, where the heritabilities for each

of the each traits was set to h2
1 ¼ 0:50 and h2

2 ¼ 0:50 (which is

similar to the estimated SNP heritability for height), and genetic

correlation q¼0.

To assess the role of LD-pruning, we divided the genome into K

kilobase non-overlapping windows and selected a SNP from each

window. We varied K to assess the minimal window size necessary

to create a subset of approximately independent SNPs. In addition,

we used cross-trait LD Score regression to estimate the heritabilities

for both traits and the genetic correlation after pruning, which

were subsequently used in the inference. Through simulations, we

determined that a 5 KB window provides precise estimates

(Supplementary Table S1).

3.3 Empirical analysis of BMI and height
We downloaded GWAS summary data for both height and BMI

from the GIANT consortium (Allen et al., 2010; Speliotes et al.,

2010) where each study has >170 000 individuals. First, we over-

lapped each GWAS by rsid to get SNPs present in both studies. Then

for each trait, we filtered out SNPs with a minor allele frequency

	 0:05. Additionally, we performed LD-pruning by taking a SNP

from every 5 KB window.

We used cross-trait LD Score to estimate the heritability and genetic

correlation parameters: h2
H ¼ 0:2390; h2

B ¼ 0:1566; q ¼ �0:0845.

Denoting height as the first trait and BMI as the second, we estimated

the proportion of causal variants for each trait as, p00 ¼ 0:9519;

p10 ¼ 0:0062; p01 ¼ 0:01579; p11 ¼ 0:0262. We summarize the dis-

tribution of estimated causal SNPs in Figure 4.

Our results are consistent with the known genetic makeup of

BMI and height. Since BMI is a function of an individual’s height and

weight, we expect all of the contributing variants for height to also

contribute to BMI. UNITY predicts more BMI-only specific variants

than height-only variants. We hypothesize that the BMI specific var-

iants are those that contribute to weight, whereas the variants that

contribute to height in the BMI dataset were already captured in the

p11 estimate. In principal, we would expect p10 to be zero since SNPs

contributing to height also contribute to BMI. We expect this could

be due to the non-zero prior on p10. Because of this, the estimate can

never truly be zero but can be asymptotically close.

4 Discussion

In this work, we introduce a statistical framework for quantifying

the relationship between two complex traits. The key advantage of

our method is that it makes very few assumptions about the data

and few restrictions during inference. Rather than relying on

assumptions about a trait’s genetic architecture, we let the data de-

scribe the underlying genetics. By using a Metropolis–Hastings sam-

pling framework, we can calculate a variety of likelihoods without

relying on any conjugate prior pairings. For example, although we
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Fig. 3. We simulate the following proportion of causal variants

p00 ¼ 0:97; p10 ¼ 0:01; p01 ¼ 0:01; p11 ¼ 0:01 and vary the genetic correlation

from 0 to 0.50 while fixing h2
1;h

2
2;N1;N2;M. We only show the estimate of

p11, since this would be the only estimate directly affected by the presence of

genetic correlation

Table 2. We present the posterior means and standard deviations

estimated when the proportion of causal variants is set exactly to

zero for trait 1 and trait 2, and when the shared proportion is exact-

ly zero

Hypothesis Null parameter Mean SD

1 p10 0.0006 0.0023

2 p01 0.0004 0.0005

3 p11 0.0002 0.0003

Fig. 4. We show the distribution of estimated non-causal and causal SNPs

from the height and BMI analysis
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choose to model the causal effect sizes through a multivariate nor-

mal, one could choose another distribution, and the sampling pro-

cedure would still hold even if the new distribution did not have a

conjugate prior. Finally, by operating exclusively on GWAS sum-

mary statistic data, we aim to encourage future large-scale meta

analyses, since obtaining individual level data are not always readily

available.

We conclude with several limitations and potential future direc-

tions of our framework. First, as the size of genetic datasets grow,

subsampling methods such as MCMC may prove computationally

intractable. Alternatives include using adaptive MCMC to acceler-

ate mixing and convergence or variational methods that do not re-

quire subsampling. Additionally, we have yet to rigorously quantify

the effects of LD in our model in practice for local inference. We

leave rigorous comparison between UNITY and other relevant

methods as future work.

Additionally, recent integrative methods have shown that the

incorporation of a variants functional genomic context can improve

both power and accuracy in identifying potential causal variants

(Hu et al., 2017b; Kichaev et al., 2014; Li and Kellis, 2016; Pickrell,

2014). Large-scale initiatives such as the ENCODE (Consortium

et al., 2012b) and ROADMAP (Kundaje et al., 2015) projects have

provided comprehensive databases of tissue-specific functional gen-

omic annotations. Combining this rich atlas of functional data and

the genetic information from GWAS will likely uncover novel

insights into disease biology. We leave the incorporation of func-

tional elements as a potential direction for future work.
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