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Abstract: The field of controlled polymerization is growing and evolving at unprecedented rates,
facilitating polymer scientists to engineer the structure and property of polymer materials for a
variety of applications. However, the lack of degradability, particularly in vinyl polymers, is a general
concern not only for environmental sustainability, but also for biomedical applications. In recent
years, there has been a significant effort to develop reversible polymerization approaches in those
well-established controlled polymerization systems. Reversible polymerization typically involves
two steps, including (i) forward polymerization, which converts small monomers into macromolecule;
and (ii) depolymerization, which is capable of regenerating original monomers. Furthermore,
recycled monomers can be repolymerized into new polymers. In this perspective, we highlight
recent developments of reversible polymerization in those controlled polymerization systems and
offer insight into the promise and utility of reversible polymerization systems. More importantly,
the current challenges and future directions to solve those problems are discussed. We hope this
perspective can serve as an “initiator” to promote continuing innovations in this fairly new area.
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1. Introduction

The fundamental concept of reversibility has been widely utilized to drive the development of
new polymeric materials, which can display distinct but reversible change in properties upon receiving
a stimulus [1,2]. In light of this, a library of reversible materials based on polymers have recently
been achieved, including self-healing materials bearing reversible-covalent linkages [3–8], recyclable
materials such as vitrimers [9–11], polymer networks enabling reversible sol-gel transitions [12–14],
architecture-transformable polymers [15], and covalent or metal organic frameworks harnessing
reversible bonds [16–21]. Despite the tremendous success in the aforementioned polymer systems,
little attention has been paid to achieving reversible polymerizations. Compared with self-immolative
polymers, which can only undergo one-way depolymerization, a reversible polymerization
typically features reversible transformations between polymers and original monomers [22]. Indeed,
step-growth polymerizations relying on reversible-covalent chemistry, particularly Diels–Alder
chemistry, have provided an approach to reversible polymers that favors forward polymerization
at room temperature and tends to depolymerize at high temperatures (i.e., 120 ◦C) [23]. However,
those polymers prepared by step-growth polymerizations typically have very broad molecular weight
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distributions and small molecular weights, limiting their potentials in certain applications that require
precise polymer chain length, complicated architectures, and high molecular weights [24–29].

In the last two decades, the rapid advent of controlled and living polymerizations has
offered polymer scientists a powerful synthetic toolbox for accessing polymers with predetermined
molecular weights, well-defined architectures, and narrow distributions in molecular weights [30–35].
In addition, the excellent tolerance of functional groups in controlled polymerization systems has
enabled us to achieve advanced polymer materials with desired functions and properties [36–41].
In general, controlled polymerization techniques can be categorized into three common classes.
The first one involves ring-opening polymerization (ROP) of cyclized monomers (e.g., caprolactones,
lactides, and N-carboxyanhydrides) in the presence of a nucleophilic initiator and a catalyst
(metal or organic) [42–47]. The second category highlights the well-developed applications of
controlled anionic/cationic polymerizations, which have led to industrial production of thermoplastic
elastomers [30]. The last class focuses on reversible-deactivation radical polymerization (RDRP)
methodologies, which are capable of polymerizing vinyl monomers, such as acrylates, methacrylates,
and styrene in a controlled manner [48–51]. To date, three mainstream RDRP techniques, including
atom-transfer radical polymerization (ATRP) [52,53], reversible addition–fragmentation transfer
(RAFT) polymerization [54–57], and nitroxide-mediated polymerization have been developed [58].
Among them, ATRP and RAFT are receiving the most attention, due to their unique advantages, such as
mild polymerization conditions, broad monomer scope, and ease of end-group functionalization [59].
These controlled polymerization systems are enjoying tremendous success in producing polymers
that accommodate both industrial use (supported by ROP and anionic/cationic polymerizations)
and academic research. However, the studies related to depolymerization are scarce, because
depolymerization was typically considered as a side reaction that would lessen the performance—
e.g., the mechanical properties of polymer materials [60]. While this is true in the pursuit of
maximizing lifetime or long-term stability of polymer materials, serious pollution problems have
arisen from the lack of degradability in commercial polymer plastics under common conditions [61].
Sustainable polymers, such as degradable polyesters deriving from biomass resources, represent
a promising platform for environmental remedy. However, those polymers currently suffer from
high manufacturing cost and low mechanical properties compared to vinyl polymer-based materials
from petroleum resources. Moreover, the degradation of these sustainable polyesters is typically
one-way, resulting in non-polymerizable fragments that are not useful for the regeneration of new
materials. To fully achieve sustainability in polymer materials, recent attentions have been shifted
to the development of new methods for depolymerizing polymers back into original monomers
under accessible conditions [60,62–71]. These regenerated monomers can be recycled and further
repolymerized to obtain new polymer materials. From this perspective, we aim to first critically
assess the state-of-the-art toolbox for achieving reversible polymerization in controlled polymerization
systems (Scheme 1). Recent examples on reversible polymerizations will be classified according to
their controlled polymerization mechanisms, i.e., ROP and RDRP (Scheme 1 and Table 1). In addition,
we believe it is important to assess the current challenges of reversible polymerizations that can trigger
polymer chemists to solve this issue. Finally, potential applications deriving from this fairly new
concept will be predicted and discussed.
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2. Reversible Polymerization in Ring-Opening Polymerization Systems 

We begin our exploration of reversible polymerization approaches in ROP systems [63,64,66–
71]. As one of the most popular controlled polymerization strategies, ROP of cyclic monomers has 
emerged as a useful synthetic route to prepare technologically interesting polymers with desirable 
architectures and specific properties. In particular, nucleophile-initiated ROP in the presence of 
metallic or organocatalysts allows the polymerization to proceed in a controlled manner, affording 
polymers with pre-determinable molecular weights and narrow molecular weight distributions. 
Applicable monomers include lactones, lactides, cyclic carbonates, N- or O-carboxyanhydrides, and 
cyclooligosiloxanes, among others [43]. To date, well-defined polymers produced from those 
monomers have attracted significant interest in both academic research and industry [43,72,73]  

Scheme 1. Various mechanisms of reversible polymerization approaches in controlled polymerization
systems; (a) ring-opening polymerization (ROP) and ring-closing depolymerization (RCDP);
(b) atom transfer radical polymerization (ATRP) and β-alkyl elimination-induced depolymerization;
(c) reversible addition–fragmentation transfer (RAFT) mediated polymerization and depolymerization.

Table 1. Summary of reversible polymerization approaches in this perspective.

Type of Polymers Polymerzation
Mechanism

Depolymerization
Mechanism

Depolymerization
Conversion References

Polyester ROP RCDP ≥99% Albertsson [64]
Polyester ROP RCDP ≥99% Chen [68]
Polyester ROP RCDP ≥99% Chen [71]
Polyester ROP RCDP ≥99% Chen [69]
Polyester ROP RCDP ≥99% Chen [70]
Polyester ROP RCDP ≥99% Chen [67]
Polyester ROP RCDP ≥99% Hoye [66]

Vinyl polymer ATRP β-alkyl elimination 24–34% Zhu [62]
Vinyl polymer ATRP Not identified 43–71% Haddleton [65]
Vinyl polymer RAFT RAFT 28% Gramlich [60]

2. Reversible Polymerization in Ring-Opening Polymerization Systems

We begin our exploration of reversible polymerization approaches in ROP systems [63,64,66–71].
As one of the most popular controlled polymerization strategies, ROP of cyclic monomers has
emerged as a useful synthetic route to prepare technologically interesting polymers with desirable
architectures and specific properties. In particular, nucleophile-initiated ROP in the presence of
metallic or organocatalysts allows the polymerization to proceed in a controlled manner, affording
polymers with pre-determinable molecular weights and narrow molecular weight distributions.
Applicable monomers include lactones, lactides, cyclic carbonates, N- or O-carboxyanhydrides,
and cyclooligosiloxanes, among others [43]. To date, well-defined polymers produced from those
monomers have attracted significant interest in both academic research and industry [43,72,73]

Although many of the ROP polymers are comprised of hydrolysable ester linkages in their
backbones, which can cause the polymers to degrade into oligomers or possibly small molecules, it is
still challenging to completely convert the polymers back to the original cyclized monomers. In 2014,
Albertsson and coworkers demonstrated their pioneering work on ring-closing depolymerization to
obtain a functional six-membered cyclic carbonate monomer, 2-allyloxylmethyl-2-ethyltrimethlene
carbonate (AOMEC), from its oligomeric form [63]. The synthesis of AOMEC was performed in a
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one-pot reaction, involving the oligomerization of trimethylolpropane allyl ether, diethyl carbonate,
and NaH, followed by an in-situ anionic depolymerization. It was observed that the depolymerization
can occur beyond the ceiling temperature of the polyester at a certain polymer/monomer concentration,
suggesting the reversible nature of the polymerization of AOMEC. However, there was still room
to improve, since the oligomers were synthesized simply by condensation reaction rather than ROP,
and the degree of polymerization was only from 1 to 7.

Inspired by this pioneering work, Albertsson’s team continued the study on AOMEC and first
demonstrated the reversible ROP of this six-membered cyclic carbonate monomer in 2016 [64]. It was
concluded that the equilibrium between controlled ROP of AOMEC and controlled ring-closing
depolymerization (RCDP) of poly(AOMEC) were dictated by various reaction parameters, such as
monomer concentration, reaction temperature, and even solvents. In their approach, AOMEC was
polymerized by ROP in the presence of an organocatalyst—that is, 1,8-diazabicyclo(5.4.0)undec-7-ene
(DBU) either in bulk or in different solvents (Figure 1a). Various temperatures were used to evaluate
the equilibrium conversion for calculating the ceiling temperature at certain polymerization conditions.
According to the thermodynamic principle, ROP of AOMEC was favored at a temperature lower than
the ceiling temperature. As the reaction temperature was higher than the ceiling temperature, RCDP of
poly(AOMEC) dominated. It is worth noting that the molecular weights increased/decreased linearly
as a function of monomer conversion in the cases of both ROP and RCDP (Figure 1b). Moreover,
the molecular weight distribution of all the evolving polymers remained as low as 1.1, which further
verified the exceptional control over the course of both polymerization and depolymerization.
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Figure 1. Reversible polymerization in ring-opening polymerization systems. (a) Reversible
ROP of 2-allyloxylmethyl-2-ethyltrimethlene carbonate (AOMEC) at various reaction conditions;
(b) Correlations of molecular weights, polydispersity index, and monomer conversions under two
different polymerization conditions. Reproduced with permission from [64].

As one of the best suitable biomass-derived compounds to replace petroleum-derived chemicals,
γ-butyrolactone (γ-BL) and its polymer PγBL have great potential as sustainable materials [68,70].
However, γ-BL has been commonly considered to be “non-polymerizable” due to its low strain
energy, which has thereby rendered the ROP of γ-BL extremely challenging. Starting from 2016,
Chen et al. has conducted extensive research on ROP of γ-BL, and have now developed several
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exciting synthetic methodologies to achieving PγBL by ROP. In agreement with Albertsson’s viewpoint
on the thermodynamic basis, Chen anticipated that reaction conditions should be modulated to achieve
successful ROP, including a much lower reaction temperature than the ceiling temperature, a high
initial monomer concentration, and most importantly, a robust catalyst. In their first work associated
with γ-BL, the ROP of γ-BL was carried out at −40 ◦C in the presence of a lanthanide (Ln)-based
coordination polymerization catalyst [68]. The polymerization was capable of affording PγBL with
Mn as high as 30,000 g mol−1 and up to 90% monomer conversion. In addition, the polymer topology
(e.g., linear or cyclic) can also be controlled by varying the initiator structure and the feeding ratio of
raw materials (Figure 2). From the sustainable perspective, a quantitative depolymerization of PγBL
was realized by heating the purified polymers for 1 h at higher temperatures (i.e., 220 or 300 ◦C) than the
ceiling temperature. Interestingly, the PγBL that was dissolved in appropriate solvents depolymerized
much more rapidly in the presence of an organocatalyst (e.g., 1,5,7-triazabicyclo[4.4.0]dec-5-ene) or
metal catalyst (e.g., La[N(SiMe3)2]3), even at room temperature.
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Figure 2. Reversible polymerization in ring-opening polymerization systems. (a) Proposed mechanism
for lanthanide-catalyzed ROP of γ-BL in the preparation of both linear and cyclic PγBL; (b) Chemical
structure of lanthanide catalyst. Reproduced with permission from [68].

In parallel, Chen and coworkers also discovered a metal-free ROP strategy to produce PγBL,
using a super-basic organocatalyst with abbreviation tert-Bu-P4 (Figure 3a) [71]. It should be noted that
the catalyst itself was able to initiate the ROP of γ-BL at −40 ◦C, by abstracting protons from γ-BL to
form highly reactive enolate species (Figure 3b). However, the monomer conversion was limited up to
30.4%, due to the possible interference of [tert-Bu-P4H]+ and an anionic dimer. Furthermore, the ROP
performance was greatly enhanced when tert-Bu-P4 was added, along with a suitable alcohol serving
as the initiator (e.g., BnOH). With the help of the alcoholic initiator, the monomer conversion reached as
high as ca. 90%, and the corresponding PγBL possessed a molecular weight of 26,700 g mol−1. Notably,
the PγBL prepared by this organocatalyzed ROP was completely recyclable, and can depolymerize
back to γ-BL upon heating at 260 ◦C for 1 h.
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of tert-Bu-P4; (b) proposed mechanism for the tert-Bu-P4-catalyzed ROP of γ-BL (i) with and (ii)
without alcohol as an initiator. Reproduced with permission from [71].

Encouraged by the success of preparing fully-recyclable PγBL via ROP with either metal (La,
Y) or organocatalysts, Chen’s group proceeded to apply this unique polymerization process to an
enriched variety of monomers. ROP of α-Methylene-γ-butyrolactone (MBL), a small molecule derived
from biomass and regarded as a potential alternative to the petroleum-based MMA, was subsequently
investigated (Figure 4) [69]. Since the monomer comprises a non-strained five-membered lactone and
a highly reactive exocyclic C=C double bond, many knee-jerk studies were exclusively focused on
traditional vinyl addition polymerization (VAP) [74,75]. In Chen’s work, the lanthanide (Ln)-based
coordination polymerization catalyst was utilized, leading to an unsaturated polyester P(MBL)
with Mn up to 21,000 g mol−1 through the ROP process. Remarkably, by adjusting the reaction
conditions, such as the catalyst (La)/initiator (ROH) ratio and temperature, three pathways of the MBL
polymerization can be realized independently, including conventional VAP, ROP, and crosslinking
polymerization. As was foreseeable, only the polymers resulted from the ROP pathway were
fully recyclable.Molecules 2018, 23, x FOR PEER REVIEW  7 of 17 
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Despite the notable achievement in lanthanide (La, Y) or superbase (tert-Bu-P4) catalyzed ROP of
γ-BL and its derivatives, the undesirable low temperature (i.e., −40 ◦C) to implement the process still
remained as one of biggest hurdles for industry use. Moreover, the as-synthesized polymers suffered
from limited thermostability and crystallinity. Hence, the exploration of new materials with both
superior properties and energy economy are still in demand. Recently, Chen’s group proposed a γ-BL
derivative (abbreviated as 3,4-T6GBL), with a cyclohexyl ring transfused to the five-membered lactone
at the α and β positions [70]. This monomer can be polymerized by using the coordinative insertion
ROP catalysts, producing linear or cyclic polymers with high molecular weights at room temperature
(Figure 5a). Following this finding, Chen et al. extended the scope of ROP of another γ-BL derivative
(4,5-T6GBL), where the cyclohexyl ring was fused at the β and γ (or 4,5) positions of the BL ring,
giving rise to linear/cyclic polymers at room temperature (Figure 5b) [67]. A controlled polymerization
behavior was observed as the molecular weights of evolving polymers, which increased linearly with
the monomer conversions. As expected, in both studies the resulting polymers possess enhanced
thermostability and could be quantitatively recycled back to their original building monomers by
either thermolysis or chemolysis.Molecules 2018, 23, x FOR PEER REVIEW  8 of 17 
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Figure 5. Reversible polymerization in ring-opening polymerization systems. (a) Metal catalyzed ROP
of 3,4-T6GBL (M1) to linear and cyclic polymers; (b) Proposed pathways for metal catalyzed ROP of
4,5-T6GBL (M2) to linear and cyclic polymers. Reproduced with permission from [67,70].

Very recently, Hoye et al. described the synthesis of a novel substituted polyvalerolactone
from a malic acid derived monomer, 4-carbomethoxyvalerolactone (CMVL) [66]. In their work,
this six-membered ring monomer was blended with a diol (1,4-benzenedimethanol) and an organic
acid (diphenyl phosphate) at an ambient temperature, finally forming a semicrystalline material with
a molar mass up to 71,000 g mol−1. Notably, the resulting polymer can be either depolymerized back
into its original precursor monomer or degraded into acrylate-type analogues (Figure 6a). The former
process was catalyzed by tin octanoate (Sn(Oct)2), providing 87% monomer recovery; while the latter
was promoted by DBU with a comparable yield. In particular, a substantial kinetics study showed
that CMVL was polymerized smoothly and reached ca. 90% conversion after 15 h (Figure 6b). It also
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revealed that nearly all of the initiator was consumed within 20 min. This “fast initiation” can be
regarded as one of the characteristic behaviors of controlled polymerization systems.Molecules 2018, 23, x FOR PEER REVIEW  9 of 17 
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3. Reversible Polymerization in Reversible-Deactivation Radical Polymerization Systems

Although reversible polymerizations in ROP systems have shown great promise in
next-generation sustainable polymer materials, the major market for commodity polymers is still
occupied by vinyl polymers, due to their low cost in manufacturing. Vinyl polymers are derived
from petroleum, a non-renewable resource. Therefore, the recycling of used vinyl polymer materials
such as plastics has immense merits, not only in global waste reduction, but also for petroleum
sustainability [76]. In this section, recent examples in depolymerization of vinyl polymers derived from
RDRP systems will be discussed. We hope those timely developments will prompt more innovative
thinking with regard to plastic recycling via a reversible polymerization approach.

In 2012, Zhu et al. reported the first example of reversible polymerizations in an RDRP
system [62]. In their pioneering work, vinyl polymerizations of several acrylamide monomers,
including N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMA), were successfully
achieved in the presence of CuCl and tris(2-dimethylaminoethyl)amine (Me6TREN) (Figure 7a).
Very intriguingly, they unexpectedly observed a phenomenon of depolymerization when radical
inhibitors like 2,2,6,6-tetramethylpiperidinooxy (TEMPO) or 1,4-benzoquinone (BQ) were added to
the ongoing polymerization system, with the initial purpose of terminating radical polymerizations.
To further elucidate the role of the copper catalyst in the depolymerization process, a control experiment
with regard to a conventional radical polymerization, using 2,2′-azobisisobutyronitrile (AIBN) as
radical initiator, was carried out in the absence of a copper catalyst and ligands. TEMPO was added
during the conventional radical polymerization, resulting in only the termination of polymerization,
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without any noticeable depolymerization. Those results unequivocally verified that a copper catalyst is
essential in depolymerization. Therefore, a depolymerization mechanism based on β-alkyl elimination
from the copper (II) coordination center was proposed (Figure 7b).Molecules 2018, 23, x FOR PEER REVIEW  10 of 17 
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In a similar demonstration of reversible polymerization mediated by a copper catalyst, Haddleton
and coworkers were able to prepare well-defined polyacrylamides and polyacrylates through aqueous
copper-mediated radical polymerization in the presence of dissolved CO2 (Figure 8a) [65]. In the case
of a NIPAM monomer, the forward polymerization adopted rapid reaction kinetics, achieving full
monomer conversion within 10 min. Thereafter, a significant in-situ depolymerization occurred to an
extent of 52%, and thereby led to the regeneration of the NIPAM monomer, which was systemically
confirmed by proton nuclear magnetic resonance (NMR), gel permeation chromatography (GPC),
and electron ionization-mass spectroscopy. Importantly, this recycled NIPAM can be repolymerized
upon deoxygenation of the resulting solutions, illustrating the reversibility of the polymerization
(Figure 8b). Furthermore, the scope of reversible copper-mediated polymerization was extended to
N-hydroxyethyl acrylamide (HEAm) and 2-hydroxyethyl acrylate (HEA), demonstrating the versatility
of this system. However, it should be noted that the mechanism of depolymerization, as well as the
role of CO2 in the depolymerization process, was not identified in their study.
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(a) A schematic illustration of aqueous reversible polymerizations mediated by a copper catalyst
and CO2; (b) Gel permeation chromatography GPC traces of original poly (N-isopropylacrylamide)
(PNIPAM) (blue), depolymerized PNIPAM (red), and repolymerized PNIPAM (green). Reproduced
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In the aforementioned RDRP systems (Vide supra), the depolymerization phenomenon was
only observed during the course of the polymerization. However, it is arguably more interesting
from the materials point of view if one can depolymerize a polymer post-synthesis or after the
manufacturing process. In very recent work described by Gramlich, a set of brush polymers consisting
of oligo-ethylene glycol or oligo-dimethylsiloxane side chains were prepared by traditional RAFT
polymerization in the presence of AIBN at 70 ◦C (Figure 9a) [60]. After polymerization, those polymers
were thoroughly purified by repeated precipitations, to ensure the removal of residual monomers and
initiators. Upon purification, thermally-induced depolymerization of the as-synthesized polymer was
conducted in dilute dioxane solutions, leading to the regeneration of vinyl monomers until reaching
the monomer’s inherent equilibrium monomer concentration. Importantly, the residual polymers
exhibited high chain-end fidelity by retaining the trithiocarbonate moiety after depolymerization,
allowing for further reinitiation and repolymerization via a RAFT mechanism (Figure 9b,c).
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4. Closing Remarks

The current success in reversible polymerizations has enabled us to think about many new
possibilities in future polymer science. However, many challenges still remained to be addressed,
hampering the further translation of this new concept into real-world applications. One apparent
hurdle is how to achieve good control over the depolymerization process. While all the examples
covered in this perspective are related to controlled polymerizations, allowing for a predictable
degree of forward polymerizations, little information was provided to reveal the kinetics of the
depolymerization process, especially those involved in controlled radical polymerization. Indeed,
previous literature has placed much focus on the start and endpoint of depolymerization (in other
word, the highest degree of depolymerization). Notwithstanding, kinetic study will shed more
light on the fundamental mechanisms of reversible polymerizations, and if one can predetermine
and control the degree of depolymerization by changing several reaction parameters, such as time,
temperature, catalyst/initiator loading, polymer/monomer concentrations, among others. Moreover,
the ability to tune the depolymerization rate under normal conditions is expected to open the door
to many interesting applications (in addition to sustainable materials)—for example, self-healable
materials, and sustained release systems, which require slow and controllable depolymerization.
It is worth noting that the concurrent depolymerization approaches are typically associated with
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harsh conditions (e.g., high temperatures, metal catalysts), significantly impeding the translation of
this concept into biomedical uses. In light of this, the continuing pursuit of new depolymerization
methodologies that can be implemented under mild and physiological conditions will be important
towards bio-related applications.

Another challenge stems from the relatively low efficiency in depolymerizations, particularly those
in RDRP systems. In comparison with ROP-based depolymerization systems, which mainly rely on
breaking weak polyester backbones, the energy input necessary for reversing vinyl polymer backbones
(i.e., carbon–carbon single bonds) back to vinyl monomers is considerably higher. To our best
knowledge, the highest reported depolymerization conversion in RDRP systems was only 71% when
N-hydroxyethyl acrylamide was involved in copper(0)-mediated reversible polymerizations [65]. In the
RAFT mediated depolymerization approach, only 30% of monomers can be regenerated after heating
the diluted RAFT polymer solutions at 70 ◦C under a vacuum for several days [60]. From the viewpoint
of potential industrial applications, insufficient depolymerization could dramatically increase the cost
deriving from separating regenerated monomers from residual polymers. Therefore, we envision that
more attention will be paid to detailed mechanism study and the rational design of depolymerization
systems, with the goal of achieving high depolymerization efficiency (such as the effort for lowering
equilibrium monomer concentration). Moreover, we believe that mathematical tools, such as modeling
and simulations of reversible polymerizations, should play a key role in prediction of the dynamics,
final products, and optimal conditions in reversible polymerizations [77]. While the concept of
reversible polymerizations is still in its infant stage, it is anticipated that the future development in this
area will not only deepen our understanding of fundamental depolymerization mechanisms, but also
promote many new opportunities and applications in polymer science and engineering.
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