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Electroacupuncture (EA) has been extensively considered as a tool for treating diseases and relieving
various pains. However, understanding the molecular mechanisms underlying its effect is of high
importance. In this study, we performed a weighted gene co-expression network analysis (WGCNA) on
data collected from a microarray experiment to investigate the relationship underlying EA within three
factors, time, frequency and tissue regions (periaqueductal grey (PAG) and spinal dorsal horn (DH)) as
well as the biological implication of gene expression changes. Gene expression on rats in PAG-DH regions
induced by EA with 2 Hz and 100 Hz at l h and 24 h were measured using microarray technology. The
WGCNA was performed to identify distinct network modules related to EA effects. To find the biological
function of genes and pathways, the gene ontology (GO) Consortium was applied and the gene-gene
interaction network of top genes in important modules was visualized. We identified one network
module (466 genes) which is significantly associated with time, another module (402 genes) significantly
related to frequency, and three modules each consisting of 1144, 402 and 3148 genes that are signifi-
cantly associated with tissue regions. Furthermore, meaningful biological pathways were enriched in
association with each of the experimental factors during EA stimulation.

Our analysis showed the robustness of WGCNA and revealed important genes within specific modules
and pathways which might be activated in response to EA analgesia. The findings may help to clarify the
underlying mechanisms of EA and provide references for future verification of this study.
© 2019 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier
Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Electroacupuncture (EA), an electronic developed version of
manual acupuncture, has been widely applied as an alternative
therapy for treating diseases and relieving various pains. The cen-
tral nervous system (CNS) regions, PAG and DH are known to play a
critical role in EA-induced analgesia.1e3 The EA stimulation of
Chinese acupoints, known as Sanyinjiao (SP6) and Zusanli (ST36),
are commonly used formanaging pain, awide range of neurological
diseases, diseases of adrenocortical function, inflammation, the
tistics, Department of Public
s Vej 9B, DK-5000, Odense C,

for Food and Biomolecules,

National Taiwan University. Produc
es/by-nc-nd/4.0/).
gastrointestinal system and the immune system. Gene expression
profiling applying microarray technology could explore the un-
known molecular signature of EA-induced alteration in the body.
Wang and colleagues (2014) have shown the effect of EA in the
modulation of a neural-immune network in the CNS by activating a
wide range of genes in a specific region, time and frequency.3

Although their experiment was performed with multiple factors
(time, frequency, region), data analysis was conducted in a uni-
variate manner. We assume that EA stimulation should cause
expression changes not only for single genes, but also for different
cluster of genes. Hence, we used data from the study of Wang et al.3

and performed a network-based test by applying the weighted
gene co-expression network analysis (WGCNA). WGCNA is a sys-
tems biology approach that clusters and examines groups of genes
whose expression profiles are highly correlated defined asmodules.
The identified gene clusters or modules are each summarized by a
representative eigengene and genes within each module are (1)
tion and hosting by Elsevier Taiwan LLC. This is an open access article under the CC
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tested for their enrichment of known biological pathways for
functional interpretation and (2) analyzed for connectivity among
the genes to define novel gene expression networks characterized
by high connectivity hub genes to serve as important molecular
targets. In recent literature, WGCNA is performed as a promising
systems biology approach for analyzing the correlation pattern of
genes in microarray experiments.4 It is used for identifying a few
genemodules or clusters (module eigengenes) and relating them to
clinical traits or external factors rather than individually relating
thousands of genes to them. This is a profound contribution in
alleviating the multiple testing problem in microarray data analysis
as it focuses on testing the group of genes with similar expression
rather than on single gene expression.

This paper reports the identified meaningful pathways and
potential hub genes by WGCNA which may contribute to further
elucidating the underlying mechanism of EA-induced alteration in
the transcriptome.
2. Material and methods

2.1. Samples

The data used in this paper were collected byWang et al., 2014,3

where EAneedleswere inserted in the hind legs of 39male Sprague-
Dawley (SD) rats, at two locations, one at SP6 and the other at ST36.
TheMicroarray mRNA expression data, comprising 11,444 rat genes
or Expressed Sequence Tags (EST) across two CNS, PAG-DH tissue
regions (the L5 and L6 spinal cord) induced by EA with 2 Hz and
100Hz at l hour and 24 h were taken from the Gene Expression
Omnibus (GEO) database under accession numbers GSE58803 and
GSE21758. Sincemultiple probesweremapped to the samegene,we
summarized the expression for each gene by calculating theirmean.
This resulted in 10,447 genes for subsequent analysis. In the study,
rats were given the frequency of either 2 Hz or 100Hz for 30min,
nociceptive testing, returned to home cages for 1 h thenwere killed
at 1 h and 24 h. The sample from each CNS (PAG or DH) included: 9
rats who received 2 Hz and were killed at 1 h after the end of EA, 10
rats received 2Hz and were killed at 24 h after the end of EA, 10 rats
received 100 Hz and were killed at 1 h after the end of EA, 10 rats
received 100Hz and were killed at 24 h after the end of EA.
2.2. Network construction

WGCNA R software package was applied to identify the co-
expression modules. A general framework for this method is
explained in Fig. S1. WGCNA calculates the Pearson correlation
between every pair of genes and as microarray data can be noisy,
the adjacency matrix is converted to a matrix of connection
strength (similarity matrix) by raising to a power (b).5 Equation (1)
defines the adjacency (aij) between the expression profile of genes i
and j:

aij ¼
��cor

�
xi ; xj

���b (1)

where x is the gene expression profile and the b� 1 is a soft
threshold parameter which is defined in accordance with a scale-
free topology criterion and can be considered for emphasizing on
strong correlation and punishing weak correlations.4,5 Studies have
shown that many networks in different domains are approximately
scale-free networks.6,7 We selected b¼ 6 as the network followed
an approximate scale-free topology criterion by Zhang and Hor-
vath. 5 In addition, b¼ 6 is suggested in WGCNA as a default value
which has shown to satisfy the network to be approximately scale-
free.
2.3. Module detection

To detect the gene modules (clusters) with similar expression
patterns, average linkage hierarchical clustering was performed,
and gene modules were illustrated in distinct colors. WGCNA
assigned the genes that are not found in any modules in a grey
module as they are not co-expressed. Topological overlap (TO) of
two genes represents their similarity based on the other genes that
are connected to them (shared neighbors).8,9 We constructed the
topological overlap matrix (TOM) of dissimilarity using correlation
expression values and used as input for hierarchical clustering of
genes. Then gene modules were found, using a dynamic tree cut-
ting algorithm. In WGCNA, the module eigengene (ME) is consid-
ered as a representative of the entire expression level of a given
module which is estimated as the first principal component of the
module.

2.4. Association of modules with traits

To identify the association of MEs to external factors, we applied
the linear mixed-effect module from lme4 package in R as we need
to account for the correlation in the samples. The following model
was used to test the association of each ME with the experimental
factors:

y¼b0 þ b1Timeþ b2Frequencyþ b3Regionþ b4Time*Frequency

þ b5Time*Regionþ RandomðSIDÞ
(2)

In (2), y is theME, the random factor SID is simply sample ID. The
model estimates marginal effects of acupuncture time, frequency,
region, and their interaction effects (frequency-dependent time
effect, region-dependent time effect) on ME which is a summary
expression of all genes in module or cluster. Note that, (2) estimates
and tests the association of each experimental factor with gene
expression while adjusting for other factors including the random
effect from repeated measurements on same individual (SID).

2.5. Hub genes detection and enrichment analysis

For each gene in a module we calculated module membership
(MM) by correlating ME with expression profile of gene i

MMðiÞ ¼ corð xi; ME Þ (3)

MM in WGCNA is defined to estimate the importance of each gene
in a module. The larger the absolute value of MMðiÞ, the more
similar the gene i is to the eigengene of a module, i.e. the more
important the gene i is in a module.

To quantify the significance of all the modules for each of the
traits we calculated GS as the minus log of the p-value from the
linear mixed-effects module for testing the association of each gene
expressionwith the factors. This paves theway to findmodules that
are highly associated with the factors. In WGCNA, the mean of the
gene significance of all the genes in a module is considered as the
module significance (MS). The higher the mean of GS in a module,
the more important the module is to the factors. Genes with the
highest MM were chosen as input for enrichment analysis as they
are natural candidates for further investigation.10,11 Additionally,
we visualized the gene-gene interaction network of the most
connected genes in the interesting modules (by computing their
TOs) in visANT12 to discover the hub genes in interesting modules.

Furthermore, genes identified in interesting modules were
submitted to GO Consortium13 to determine whether gene
expression changes in time, frequency and tissue regions are
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significantly enriched with regards to known pathways. The GO
Consortium computes the Fisher's exact test and then corrects the
p-values by calculating the false discovery rate (FDR).
3. Results

First, we cleaned the data by removing genes with more than
10% missing values and imputed the rest missing values with the
mean of the whole expression level for those genes. This filtering
yielded 6811 genes to use for network construction. Then we per-
formed hierarchical clustering on samples to detect outliers. As a
result, one sample appeared as an outlier and was removed
(Fig. S2). The dendrogram of the samples with their corresponding
Fig. 1. Box plot showing the gene significance across models for each of the traits and intera
of gene significance for all the genes included in a module. The higher the mean gene sign
heatmap showing their gene expression patterns for time, fre-
quency and tissue region is indicated in Fig. S3.

By applying the WGCNA R package, we chose the soft threshold
power b¼ 6 as it led to the lowest power that reached the highest
value of R2¼ 0.9 threshold for the first time (Fig. S4). As an alter-
native way, we visualized the log-log plot of connectivity versus the
frequency of connectivity which showed that the connectivity
distribution followed a power law, thus, the scale-free network
criterion was approximately fulfilled (Fig. S5). Next, through the
dynamic tree cutting algorithm, 25 distinct co-expression modules
containing 58 to 2442 genes were detected and 37 uncorrelated
genes were discovered in grey module as they were not assigned to
any co-expression modules. In addition, a hierarchical clustering of
ctions. The x-axis shows the modules in different colors and the y-axis shows the mean
ificance in a module, the more significantly associated the module to factors.
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the MEs was made based on the TOM dissimilarity. The MEs clus-
tering with the heatmap plot of MEs based on their adjacencies
suggested us to merge the highly correlated modules (Figure S6. a,
b). After merging the highly correlatedmodules, colored dark red in
heatmap plot Figure S6. b, 22MEs existed, and we made the gene
dendrogram obtained from an average linkage hierarchical clus-
tering with the list of assigned modules in different colors. Fig. S7
illustrates the results from both dynamic trees cut and merged
dynamic. The list of 22MEs with the number of genes in each are
provided in Table S1 .

To identify modules that are significantly associated with time,
frequency, region, time-frequency and time-region interactions, we
performed linear mixed-effects module (equation (2)) where we
obtained yellow, brown, black and blue as the most significant
modules. Fig. S8 illustrates the coefficient and p-value for each,
from the summary test statistic. In addition, we compared the MS
among the modules for each of the trait factors (Fig. 1). The result
showed that the yellow module consisting 466 genes had the
highest relevance to time, the blackmodule (402 genes) as themost
Fig. 2. Correlation plot based on the module membership (MM) in X-axis and gene signific
interaction of time and region in interesting modules. The correlation value and p-value ar
significant module related to frequency, three modules brown
(1144 genes), black (402 genes), and blue (3184 genes) had themost
relevance to region, the black module as the most important
module identified for interaction of time with frequency. As for the
time-region interaction, three significant modules (black, blue and
brow) were detected. Furthermore, scatter plot of MM versus the
GS of the modules for each of the factors was made to find those
with high correlation and significant p-values (Figs. S9e13). Addi-
tionally, we summarized the list of genes for each factor along with
the number of genes with positive and negative coefficient from
regression in Tables S2e6. The scatter plot of MM versus GS in
interesting modules for each of the experimental factors are illus-
trated in Fig. 2. To understand the biological mechanisms associ-
ated with the genes in important modules we conducted the
enrichment analysis (Table 1 and S7-10). The visualized plot of
gene-gene interaction networks for yellow, black, brown and blue
modules are illustrated in Fig. 3. Additionally, the top list of genes
with high intramodular connectivity in each network are displayed
in Tables S11e14.
ance (GS) in Y-axis for time, frequency, interaction of time and frequency, Region and
e shown on top of each plot.



Table 1
Top-ranked GO terms enriched by genes in each module and associated experimental factor.

Experimental factor (module color) GO biological process Fold
Enriched

No. of
Genes

FDR P-
value

Time (yellow module) intracellular protein transport (GO:0006886) 6.94 13 5.54e-04
regulation of binding (GO:0051098) 7.95 8 9.36E-03
golgi to plasma membrane transport (GO:0006893) 31.21 4 9.65E-03
glucan metabolic process (GO:0044042) 31.86 4 1.01E-02
cellular glucan metabolic process (GO:0006073) 31.86 4 1.07E-02
glycogen metabolic process (GO:0005977) 31.86 4 1.15E-02
energy reserve metabolic process (GO:0006112) 26.37 4 1.63E-02
regulation of synaptic plasticity (GO:0048167) 10.57 6 1.773e-02
regulation of neuron differentiation (GO:0045664) 5.08 10 1.843e-02
regulation of protein binding (GO:0043393) 10.02 6 2.52e-02
polysaccharide metabolic process (GO:0005976) 21.85 4 2.52E-02
golgi vesicle transport (GO:0048193) 9.29 6 2.81E-02
vesicle-mediated transport to the plasma membrane (GO:0098876) 19.86 4 3.22E-02

Frequency, Time-frequency interaction and Region
(black module)

purine nucleoside monophosphate metabolic process (GO:0009126) 18.24 8 2.70E-05
drug metabolic process (GO:0017144) 9.67 11 4.72E-05
ATP metabolic process (GO:0046034) 21.54 8 6.19E-05
Oxidative phosphorylation(GO:0006119) 42.92 6 6.55E-05
Cellular respiration (GO:0045333) 23.04 6 3.40E-04
respiratory electron transport chain (GO:0022904) 31.84 5 6.03E-04
aerobic respiration (GO:0009060) 29.84 4 6.50E-03

Region and Time-region interaction (brown module) organic substance metabolic process (GO:0071704) 1.89 48 6.31E-04
regulation of cellular localization (GO:0060341) 4.61 13 7.67E-03
ammonium transport(GO:0015696) 23.23 5 9.15E-03
response to stress(GO:0006950) 2.40 25 1.68E-02
organophosphate metabolic process (GO:0019637) 4.24 12 2.55E-02

Region and Time-region interaction (blue module) metabolic process (GO:0008152) 1.70 180 1.48E-14
organic substance metabolic process (GO:0071704) 1.72 172 6.24E-14
response to antibiotic(GO:0046677) 3.98 26 3.95E-06
regulation of oxidative stress-induced cell death (GO:1903201) 9.92 10 6.80E-05
regulation of oxidative stress-induced intrinsic apoptotic signaling
pathway(GO:1902175)

18.85 7 9.45E-05

glutathione metabolic process(GO:0006749) 10.15 7 1.53E-03
negative regulation of response to oxidative stress(GO:1902883) 9.60 7 2.00E-03
response to nicotine (GO:0035094) 7.73 8 2.09E-03
hydrogen peroxide metabolic process(GO:0042743) 11.03 6 3.56E-03
mRNA transcription (GO:0009299) 14.50 5 4.78E-03
vasodilation(GO:0042311) 10.77 5 1.24E-02
response to hydroperoxide (GO:0033194) 13.71 4 2.21E-02
hydrogen peroxide catabolic process(GO:0042744) 11.17 4 3.66E-02
inner mitochondrial membrane organization (GO:0007007) 11.17 4 3.67E-02
positive regulation of erythrocyte differentiation (GO:0045648) 11.17 4 3.69E-02
antibiotic catabolic process (GO:0017001) 7.39 5 4.17E-02
regulation of neuron apoptotic process(GO:0043523) 3.24 11 4.18E-02
strartle response(GO:0001964) 10.40 4 4.32E-02
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4. Discussion

In the present study, we introduced theWGCNAmethod to gene
expression data on an acupuncture experiment to look for clusters
of genes with similar co-expression patterns. Among the 22 distinct
expression modules, 466 genes clustered in the yellow module
showed significant association with time during EA stimulation
(Figs. 1, 2, S8). In fact, the high correlation between MM and GS in
this module (cor¼ 0.62, p-value¼ 7.8e-51) indicated that genes
with high MM might have the potential to be biologically signifi-
cant in association with time when EA is applied (Fig. 2). The
analysis of 181 genes with high MM resulted in potentially
important enrichment findings such as regulation of synaptic
plasticity, regulation of neuron differentiation, intracellular protein
transport and some general metabolic processes (Table 1, S7). These
findings are in accordance with the Wang's study.3 Moreover, we
visualized the gene-gene interaction network in the yellowmodule
for the top list of genes with high TO (Fig. 3a, Table S11) and found
interesting mRNA hub genes (GenBank ID: NM_019288, Alias: APP),
APBB1, APBB3, ARC, TNF, PRSS2, GNAO, NGFR and NAE1 related to
Alzheimer's disease (AD) and serotonergic synapse which were up-
regulated at two different time points. Two genes APP and APBB1
have already been reported as closely related to b-Amyloid peptide
(Ab) generation, an important component of senile plagues in AD.
The hub gene SNCA is related to AD and Parkinson disease (PD)
where the effect of EA on PD patients has been reported in several
studies.14,15 The other hub genes (NM_080586 (GABRG1)), OPRM1
and GABARAP were up-regulated and associated with neuroactive
ligand-receptor interaction, GABAergic synapse, morphine addic-
tion and nicotine addiction, whichmight play a role in EA analgesia.
NM_178105 (M6A) was up-regulated and involved in differentiation
and migration of neuronal stem cells, positive regulation of filo-
podium assembly, and synapse assembly. Another up-regulated
gene BG672052 (Mapb1) is related to neuron differentiation.

Two genes, BC072495 (RAB5A) and NM_21252 (OM38), with a
trend of up-regulation are associated with Motor Neuron Diseases
(MNDS). Although the role of EA in the analgesic effect of MNDS is
unknown, one study revealed the role of EA for treating quadri-
plegia and showed that applying the regular body acupuncture
could contribute to the movement of hands, fingers, feet, and toes
of patients.16 Hub genes NM_022852 (IDX1) and SLC2A4 are
involved in insulin secretion, type 2 diabetes mellitus (T2DM) and
maturity onset diabetes of the young which are meaningful
considering that some studies have shown that EA might be



Fig. 3. Gene-Gene interaction network of the highly connected genes in a) yellow, b) black, c) brown and d) blue modules. The dark red nodes in the networks represent the hub
genes related to EA.
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considered as a new insulin sensitizer, which may control the ep-
idemics of obesity and T2DM.17 NM_053457 (CLDN11) displaying a
trend of up-regulation is linked to tight junction pathways. It has
been shown that EA treatment improves neurological function
associated with regulation of tight junction proteins in rats.18

Furthermore, other hub genes in the network might be novel as
they have not been reported elsewhere.

The black module consisting of 402 genes was the most inter-
esting module from both association of ME with frequency and
mean of GS across all the modules (Fig 1, Figs. S7 and 9). The MM
and GS of genes in this module were highly correlated (cor¼ 0.68,
p-value¼ 7.2e-56) (Fig. 2). Thus, we examined the list of genes with
highMM (174 genes) in GO andwe obtained ATPmetabolic process,
oxidative phosphorylation, respiratory electron transport chain,
cellular respiration, aerobic respiration namely as meaningful
findings that explain the biological interpretation of important
genes (Table 1, S8). Moreover, biologically meaningful hub genes
from the black networkwere explored (Fig. 3b). These up-regulated
genes include (NM_001025291(MBP)), KCNMA1, CDC42, CALM2,
PRKCA and MAPK1 which were enriched in MAPK signaling
pathway, cAMP signaling, neurotrophin signaling, T cell receptor
signaling, dopaminergic synapse, long-term depression, amphet-
amine addiction and phosphatidylinositol signaling. The hub gene
UBC in the network belongs to the PPAR signaling pathway. One
study showed that this pathway was co-regulated by EA in both
hypothalamus and epididymal white adipose tissue which con-
tributes not only to lipid metabolism but also to gluconeogenesis
and thermogenesisto.19 Another hub gene (NM_198788 (SDHD))
was up-regulated and involved in citrate cycle, oxidative phos-
phorylation, non-alcoholic fatty liver diseases, Alzheimer, Parkin-
son and Huntington diseases. The other hub gene J01435
(Cytochrome C oxidase subunit 3) was also up-regulated and
related to oxidative phosphorylation. The rest of the hub genes
have not yet been reported to be regulated by acupuncture.
Furthermore, we assessed changes in gene expression on time-

frequency interaction during EA. As a result, the black module was
the most significant with the highest mean of gene significance
(Figs. 1, 2 and S8) as well as the highest correlation between MM
and GS (cor¼ 0.54, p-value¼ 8.3e-32). Additionally, a negative
coefficient of time-frequency interaction on gene expression levels
from the regression was identified. This means increases in time
and frequency during EA stimulation from 1 h to 24 h and 2 HZ to
100 HZ result in decreases in the expression of genes associated
with biological pathways in the black module. Notably, this
important phenomenon was not discovered by Wang et al. in their
univariate analysis.

Hub genes in the black module in time-frequency interaction
showed an opposite regulation compared to the association with
frequency. For instance, NM_001025291, NM_198788 and J01435
were down-regulated. This suggests that increases in time and
frequency of EA stimulation result in decrease in the expression of
genes related to MAPK signaling pathways, citrate cycle, oxidative
phosphorylation, non-alcoholic fatty liver diseases, AD, PD and
Huntington disease.

Three significant modules, brown, black and blue were identi-
fied to be related to region (Fig. 1). Among them, the brownmodule
had the highest mean of GS and high correlation (cor¼ 0.78, p-
value< 1e-200) of MM versus GS, followed by, black (cor¼ 0.71, p-
value¼ 6.7e-63) and then blue (cor¼ 0.63, p-value< 1e-200)
(Fig. 2). We assessed genes with high MM in both brown (465
genes) and bluemodules (1124 genes) and identified interesting GO
terms including those with high fold enrichment and corrected p-
value< 0.05: ammonium transport, regulation of cellular localiza-
tion, organophosphate metabolic process, negative regulation of
oxidative stress-induced intrinsic apoptotic signaling pathway,
mRNA transcription, response to hydroperoxide, vasodilation, etc
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(Table 1, S9 and S10). In the network of the brown module (Fig. 3c),
the hub gene M21964 (NEFH) was down-regulated which is
involved in amyotrophic lateral sclerosis (ALS). Multiple studies
have indicated a potential functional relation between EA therapy
and anti-neuroinflammation in ALS as well as the effective role of
acupuncture for ALS, producing symptomatic relief, respiratory
impairment and improving quality of life.20e22 Two hub genes, CLF1
and ACTB, are linked to the NEFH gene, the former is associated
with Fc gamma R-mediated phagocytosis, the latter might be a
housekeeping gene. The other hub genes, SLC2A4 (GLUT4), SORBS1
and CBL, are related to insulin signaling pathways with one study
showing that “the effect of EA on weight loss may be related to
improved insulin resistance caused by changes in the adipocyte size
and by reductions in the expressions of neuroprotein Y/agouti-
related protein and protein tyrosine phosphatase 1B”.23 The hub
genes OCLN and ITGB1 are connected to the down-regulated gene
NM_013081(PTK2) relating to tight junction and cytokine signaling
in immune system respectively.

In the network of the blue module (Fig. 3d), we found that the
hub gene AY011335 (APP) was down-regulated in association to the
region. AY011335 and SNCA are related to AD and serotonergic
synapse. Hub genes TGFB1, DACT2 and PRKCA are connected to the
down-regulated gene NM_031578 (TESK1). The PRKCA gene is
involved in MAPK signaling, GABAergic synapse and dopaminergic
synapse and two other hub genes, TGFB1 and DACT2, are related to
TGF-beta receptor signaling which regulates in the immune sys-
tem.24 The hub gene (NM_017063 (IMPNB)) was up-regulated and
enriched in RNA transport pathway. The other hub gene BC62081
(ALDH2) with a trend of up-regulation has links to the glycolysis
pathway. Moreover, the list of identified hub genes in the black
module showed up-regulation trends in association with region
during EA stimulation. Thus, the DH region is characterized by in-
creases of expression levels of those genes in contrast to the PAG
region.

In addition, we analyzed the gene expression alteration on time-
region interaction in EA stimulation, among all the modules, three
significant modules, black (cor¼ 0.69, p-value¼ 4.1e-58), blue
(cor¼ 0.54, p-value< 1e-200) and brown (cor¼ 0.37, p-value¼ 2e-
37) showed the highest correlation between MM and GS and mean
of gene significance respectively (Fig. 2, S8 and S13). From the
regression of gene expression level on time and region interaction,
we achieved negative coefficients in the black and blue modules
and positive coefficient in the brown module. This indicates that
extended EA stimulation in DH region result in decreased expres-
sion of genes associated with detected pathways in the black
module. Furthermore, all lists of genes identified from the black,
blue and brown networks showed an opposite regulation on
interaction between time and region (opposite sign of coefficient)
compared to the association with region alone.

5. Conclusion

In conclusion, our network-based analysis of EA induced tran-
scriptional changes identified important genes and enriched bio-
logical pathways regulated by EA and three experimental factors
(time, frequency and region) in addition to reported findings.
Furthermore, our multivariable model allowed for exploring the
interactive effects among the experimental factors revealing novel
findings with important biological and clinical implications.
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