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1  | THE PROBLEM OF OBESIT Y AND 
DIABETES

The prevalence of overweight and obesity has dramatically increased 
over the last decades posing a significant health problem with asso‐
ciated complications and major socioeconomic impact. According to 
the WHO, worldwide obesity has nearly tripled since 1975. In 2016, 
more than 1.9 billion adults were overweight of which 650 million 
were obese. These numbers correspond respectively to 39% and 
13% of the adult population.1 Obesity drives the pathogenesis of 
other diseases such as type 2 diabetes, cardiovascular disease, re‐
lated musculoskeletal disorders such as osteoarthritis and some can‐
cers (endometrial, breast, ovarian, prostate, liver, gallbladder, kidney 
and colon).2 Obesity is therefore responsible for a great deal of 
mortality throughout the world.3 The aetiology of obesity lies fun‐
damentally in an imbalance of energy homeostasis from the interac‐
tion of three factors: (a) increased energy intake through the supply 
of unlimited quantities of energy dense food and drink which are 
tuned to appeal to our appetites; (b) decreased energy expenditure 

as result of modern lifestyles (a more sedentary environment, con‐
temporary modes of transportation, urbanization, reduction in sleep 
quality); (c) genetic and ethnic predispositions to obesity.

Although bariatric surgery is clearly an effective treatment for 
obesity with long‐term follow‐up data proving its efficacy and suc‐
cess in improving lifespan, enforcing a remission of diabetes in some 
patients and ameliorating other obesity‐associated co‐morbidi‐
ties,4 it can never be the sole solution. Firstly, given the numbers 
of people with obesity, bariatric surgery can never be implemented 
at the scale necessary without immense expense for healthcare 
systems. Secondly, bariatric surgery can be unpredictable in its ef‐
fects, leading to varying levels of weight loss and diabetes remission 
from standardized “one size” procedures which do not necessarily 
fit all. Thirdly, complications such as post‐prandial hypoglycaemia 
and nutritional deficiencies cause long‐term morbidity and require 
long‐term follow‐up. Furthermore, a large part of the morbidity asso‐
ciated with overweight and obesity is found in overweight people,3 
and the magnitudes of weight loss from bariatric surgery may be in‐
appropriate for this population. Therefore, there is an imperative to 
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agonism, for example with GLPR1/GCGR/GIPR unimolecular agonists or using 
GLP‐1/oxyntomodulin/PYY, is also being explored. Multi‐agonist drugs seem set to 
deliver the next generation of therapies for diabetes and obesity soon.

www.wileyonlinelibrary.com/journal/jne
mailto:￼
https://orcid.org/0000-0001-5873-3432
http://creativecommons.org/licenses/by/4.0/
mailto:t.tan@imperial.ac.uk


2 of 8  |     ALEXIADOU Et AL.

develop new therapies which deliver key benefits such as titratable 
and effective weight loss, amelioration of diabetes, prevention of 
diabetic complications and improvements in cardiovascular health. 
This review will look at the latest developments in the sphere of gut 
hormone treatments for obesity and diabetes and consider whether 
combination gut hormone therapies may prove to be the next big 
thing in obesity treatment.

2  | GLP‐1 AC TION, CLINIC AL 
APPLIC ATIONS AND LIMITATIONS

Glucagon‐like peptide‐1 (GLP‐1) has been the forerunner of the 
gut hormone‐based therapies. GLP‐17‐37 and GLP‐17‐36amide are se‐
creted from the neuroendocrine L‐cells of the small intestine. GLP‐1 
together with glucose‐dependent insulinotropic peptide (GIP) are 
responsible for the incretin effect, ie, augmented insulinotropy in re‐
sponse to an ingested glucose load as opposed to an isoglycaemic in‐
travenous glucose challenge.5 The incretin effect is reduced in type 
2 diabetes.6 GLP‐1 is derived from the post‐translational processing 
of proglucagon in L‐cells and some brainstem neurones by prohor‐
mone convertase 1 (PC1). Classically, proglucagon processing by 
PC2 in pancreatic α cells releases glucagon itself,7,8 but a subset of α 
cells has been shown to process proglucagon to GLP‐1.9 Proglucagon 
is additionally processed in L‐cells to the products glicentin, oxyn‐
tomodulin (identical to glucagon with a C‐terminal octapeptide ex‐
tension) and GLP‐2. After secretion, GLP‐1 has a short half‐life of 
1‐2 minutes as it is rapidly degraded and inactivated by the endo‐
peptidase dipeptidyl peptidase‐4 (DPP‐IV), resulting in the forma‐
tion of the inactive metabolite GLP‐19‐37 and GLP‐19‐36amide. GLP‐1 
exerts its effects via the GLP‐1 receptor (GLP1R) which belongs to 
the family of G protein‐coupled receptors. GLP1R is abundantly ex‐
pressed in the pancreas, gut and central nervous system but also in 
the heart, lungs, vasculature and peripheral nervous system.10 As 
noted above, GLP1R activation on β cells causes enhanced glucose 
dependent insulin secretion11; at the same time it suppresses gluca‐
gon secretion from α cells. The effects of GLP‐1 on β cells extend 
beyond the insulinotropic effect on glucose homeostasis including 
inhibition of β cell apoptosis, induction of their proliferation and 
expansion of their mass in rodents.9 GLP1R agonism reduces food 
intake in animals12,13 and humans14‐16 acting on regions of the hy‐
pothalamus and hindbrain as evidenced in animal studies.17,18 GLP‐1 
also acts in the gastrointestinal tract through inhibition of gastric 
secretion and deceleration of gastric emptying19 attenuating the 
postprandial rise in glucose levels. It also reduces hepatic steatosis, 
liver inflammation and hepatocyte injury; these effects could be ei‐
ther direct20 or indirect through weight loss.9,21 Amongst the multi‐
faceted mechanisms of action of GLP‐1 is also its ability to activate 
invariant	natural	killer	cells	(i‐NKT)	which	triggers	the	production	of	
fibroblast growth factor 21 leading to weight loss in mice.22 GLP‐1 
may also possess neurotropic effects improving learning in rats and 
exerting neuroprotective effects.23,24 The presence of GLP‐1 recep‐
tors in the heart suggests a physiological role of GLP‐1 in cardiac 

function.25 Mice lacking the GLP1R have reduced resting heart rate, 
increased left ventricular end‐diastolic pressure and increased left 
ventricular wall thickness.26 GLP1R agonists have a characteristic 
positive chronotropic effect which is reduced but not completely ab‐
rogated in mice with cardiomyocyte‐selective knockouts for GLP1R, 
suggesting that the effect is partially mediated by a direct effect on 
cardiomyocytes and partially via the autonomic nervous system.27

Such diversity of actions of GLP‐1 has led to the development of 
GLP‐1 based therapies for improving glycaemia in type 2 diabetes, 
for weight loss, and more recently for improving cardiovascular out‐
comes in patients with diabetes and established cardiovascular dis‐
ease. The first GLP1R agonist approved for clinical use was exenatide 
(synthetic exendin‐4), a peptide originally isolated from Heloderma 
suspectum lizard venom by John Eng in 1992.28 Pivotal studies in 
patients with type 2 diabetes led to the approval of twice daily ex‐
enatide which was the first GLP1R agonist in the market in 2005. 
Since then, other GLP1R agonists have been marketed including 
Lixisenatide, Liraglutide, Dulaglutide, Albiglutide and Semaglutide. 
Exenatide LAR, Dulaglutide and Semaglutide are notable in that they 
are long‐lasting preparations, enabling effective treatment of type 
2 diabetes with one injection a week, an attractive proposition for 
patients.29 One of the key properties of GLP1R agonists that sets 
them apart from other diabetes treatments is the weight loss associ‐
ated with treatment, which varies in trials from 1.01 to 1.62 kg mean 
weight loss at the doses utilised for diabetes.30 As a result, the wider 
use of GLP1R agonists in overweight/obesity has been explored, 
and Liraglutide was the first GLP1R agonist to be approved for the 
treatment of obesity as a once daily injection in 2014, based on 
studies utilising higher doses of 3 mg daily in overweight and obese 
patients with and without diabetes. At 3 mg daily, Liraglutide can re‐
duce weight by a mean of 8%.31 The GLP‐1 analogues Liraglutide,32 
Semaglutide,33 Exenatide LAR,34 Albiglutide,35 and Dulaglutide36 
have recently been shown to reduce cardiovascular events (notably 
non‐fatal myocardial infarctions) in diabetic patients at high risk for 
cardiovascular disease, an effect that has been attributed to reduc‐
tion in cardiovascular inflammation, although the exact mechanisms 
remain obscure.29

The efficacy of GLP1R agonists is partially limited by the ad‐
verse effects which are mainly gastrointestinal in nature (nausea, 
vomiting, loose stools or constipation), although these adverse 
effects are subject to tachyphylaxis and can be mostly avoided 
with a slow up‐titration in dose. Another limitation is that GLP1R 
agonist treatment does not significantly increase energy expen‐
diture.37 Patients can vary widely in their weight loss responses 
to Liraglutide 3 mg: despite the abovementioned mean weight 
loss, the SCALE trial also demonstrated that 37% of patients given 
liraglutide lost less than the minimally acceptable weight loss of 
5% (some even gained weight).31 Even for those that respond to 
treatment, a mean weight loss of 8% is not enough to address 
higher grades of obesity, and is not competitive with the typical 
weight loss from bariatric surgery of 20% or so.38	Newer	GLP1R	
agonists such as Semaglutide possess better efficacy in terms of 
glycaemic improvement39 and weight loss (with mean reductions 
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in weight of 6%‐14%).40	 Nevertheless,	 to	 achieve	 better	 and	 ti‐
tratable outcomes, for example 15%‐20% weight loss, it will be 
necessary to exploit the power of combination therapy with other 
gut hormones.

3  | WHAT OTHER HORMONE AC TIONS 
C AN BE COMBINED WITH GLP‐1' S 
AC TIONS?

3.1 | Glucagon

Glucagon is a 29‐amino acid peptide hormone that is produced by 
the α cells of the pancreatic islets41 as an alternative product of post‐
translational proglucagon processing by PC2. Glucagon activates 
the G‐protein coupled glucagon receptor (GCGR) which is expressed 
most abundantly in the liver and kidney but to a lesser extent in 
cardiac, adrenal, gut and adipose tissues.42 Historically, glucagon 
was characterised as a hyperglycaemic hormone, increasing he‐
patic glucose production via glycogenolysis and gluconeogenesis.43 
Its secretion is stimulated by low blood glucose levels or fasting, 
and glucagon classically acts as a counter‐regulatory hormone to 
insulin. In addition, glucagon stimulates lipolysis from adipose tis‐
sue44,45; decreases muscle protein synthesis46; increases hepatic 
amino acid uptake, amino acid catabolism, and ureagenesis47; and 
acts as an insulinotropic hormone.48 Further studies of glucagon 
have demonstrated a range of other metabolic effects. It has been 
consistently demonstrated to increase energy expenditure through 
a mechanism that appears to be independent of brown adipose tis‐
sue.49‐51 Furthermore, glucagon directly affects satiety and its infu‐
sion has been shown to reduce food intake,52 seemingly via both 
central and peripheral pathways.53,54 Two clinical studies conducted 
by our group have demonstrated the potential beneficial effects 
of GLP‐1/glucagon combination in humans. Ten non‐diabetic over‐
weight/obese individuals were co‐infused with glucagon and GLP‐1 
for 45 minutes at doses of 50 ng/kg/min and 0.8 pmol/kg/min re‐
spectively.55 On different occasions, single hormone infusions were 
also administered (at the same doses), as well as a placebo infusion. 
Resting energy expenditure—as determined by indirect calorime‐
try—increased significantly in both the glucagon and combined infu‐
sion groups, but not in the GLP‐1 infusion group. Whilst the glucagon 
infusion caused a rise in plasma glucose as expected, this rise was 
blunted in the combined infusion, owing to a significant synergistic 
effect between GLP‐1 and glucagon on insulin secretion.55 A subse‐
quent study by Cegla et al56 confirmed that the addition of GLP‐1 
to glucagon infusion protected from glucagon induced hyperglycae‐
mia, and that co‐infusion of GLP‐1 and glucagon at sub‐anorectic 
doses led to a significant and synergistic reduction in food intake 
of 13%. Hence, the GLP‐1/glucagon combination possesses three 
highly favourable features over and above the individual hormones, 
ie, (a) synergistic reduction in food intake; (b) an increase in energy 
expenditure that would counteract any tendency to reduce resting 
energy expenditure with weight loss; (c) gluconeutrality, with the 
possibility of improved glycaemia in the long term with weight loss.

3.2 | Oxyntomodulin

Oxyntomodulin is co‐secreted by the L cells of the small intestine 
with GLP‐1. As noted above, it is an additional posttranslational 
product of proglucagon in the gut. In addition to the glucagon se‐
quence, oxyntomodulin has a C‐terminal eight amino acid octa‐
peptide.57 Oxyntomodulin is an agonist for both GLP1R and GCGR 
(albeit with less affinity than the cognate peptide for each receptor), 
making it the prototypical unimolecular GLP‐1/glucagon dual ago‐
nist.58 Indeed, studies have shown that the effect of oxyntomodulin 
via the GLP1R is anorectic whereas the observed increase in energy 
expenditure is mediated via the glucagon receptor.59‐61 Pocai et al 
characterised the preclinical effects of a GLP1R/GCGR dual agonist 
based on oxyntomodulin. They demonstrated a significant reduction 
in body weight, food intake and fat mass of a greater magnitude com‐
pared to a pure GLP1R agonist. In addition, they again demonstrated 
improvements in fasting glucose and glycaemic profiles post‐glucose 
tolerance test which were comparable to the GLP1R agonist.58 The 
effects of a short IV infusion of the combination of GLP‐1 and OXM 
on food intake were examined a study performed by Field et al62 
in overweight subjects, where a synergistic effect from combining 
GLP‐1 and OXM resulted in a 42% reduction in energy intake.

3.3 | Glucose‐dependent insulinotropic peptide

Glucose‐dependent insulinotropic peptide is a peptide secreted by 
the neuroendocrine K cells of the small intestine; its principal physi‐
ological roles, mediated by the GIP receptor GIPR, are as an incretin 
(with GLP‐1), potentiation of glucagon secretion, and regulation of 
adipogenesis, notably increasing fat deposition in adipose tissue. 
The insulinotropic properties of GIP make it an attractive prospect 
for treating type 2 diabetes. Although the beneficial effects of GIPR 
agonism appear to be attenuated in the hyperglycaemic conditions 
seen in patients with type 2 diabetes,63 even when administered at 
supraphysiological levels,64,65 the impaired insulinotropic effect of 
GIP seems to be fully recoverable following a period of normalised 
plasma glucose levels.66 This suggests a role for co‐agonism with 
GLP‐1, utilising its glucose lowering effects to induce improvement 
in glycaemia that is enough to enable GIP to exert its insulinotropic 
effects and synergistically improve glucose levels further. The initial 
preclinical study by Irwin et al67 demonstrated improvement in glu‐
cose tolerance, as well as in food intake and weight reduction with a 
combination of the GLP1R agonist exendin‐4 and the GIPR agonist 
N‐AcGIP.	 These	 findings	 were	 corroborated	 in	 a	 subsequent	 pre‐
clinical study which demonstrated a synergistic effect of the combi‐
nation on improved glucose levels, reduced food intake and weight 
loss.68 The data from clinical studies into the acute effects of com‐
bined GLP‐1/GIP in patients with type 2 diabetes have not been as 
promising however. In a study by Daousi et al,69 GLP‐1 and GIP were 
infused individually and in combination into six healthy lean partici‐
pants and six overweight diabetic participants. Whilst the combined 
infusion led to a greater potentiation of insulin secretion in the lean 
group, this effect was not observed in the overweight diabetic group 
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where insulin levels matched those from the GLP‐1 only infusion. 
The excursion of glucose in response to intravenous insulin, as meas‐
ured by the AUC for glucose, was similar between GLP‐1 and GLP‐1/
GIP, as was the food intake during an ad libitum meal test. There 
was a reduction in resting energy expenditure with GIP which was 
not replicated during combined infusion in both groups. The lack of 
synergistic effect in type 2 diabetic patients is consistent with the 
established evidence that GIP‐mediated insulin secretion is less ef‐
fective	in	the	hyperglycaemic	state.	Nevertheless,	GLP‐1/GIP	based	
dual agonists have continued into clinical development (see below). 
Other groups have explored GIPR antagonism, which might be 
therapeutically attractive as a means of suppressing the hyperglu‐
cagonaemia and hence hyperglycaemia of type 2 diabetes, as well 
as reducing fat deposition.70 GIPR antagonism with (Pro3)GIP was 
shown to ameliorate weight gain, insulin resistance and normalise 
glucose tolerance in high‐fat diet fed mice.71 Some exploratory work 
looking at the physiological effects of GIPR antagonism in human 
volunteers has recently been published which demonstrates that the 
antagonist GIP3‐30amide is capable of suppressing the incretin effect 
of GIP,72 but it is too early to tell yet whether GIPR antagonism may 
be a valid therapeutic strategy.

3.4 | Peptide YY

Peptide YY (PYY) is another peptide hormone secreted by the L‐cells 
of the intestine in response to eating.73 The PYY3‐36 peptide, which 
is derived from the full‐length PYY1‐36 peptide by DPP‐IV process‐
ing, binds to the neuropeptide Y2 (Y2R) and Y5 (Y5R) receptors, and 
has a well‐characterised appetite‐suppressive effect which is im‐
portantly preserved in obesity.74	Neary	et	al	studied	the	coadmin‐
istration of PYY3‐36 with GLP‐17‐36amide in 10 healthy volunteers and 
found that it was associated with a 27% reduction in energy intake 
from a buffet meal. The combination was more effective in inhibit‐
ing appetite than either peptide alone.75 This result was replicated 
in a later study by De Silva et al76 where the combination of PYY3‐36 
and GLP‐17‐36amide resulted in a reduction in food intake which was 
similar to the summed effects of the single hormones (PYY3‐36 or 
GLP‐17‐36amide), and this was reflected by a reduced activation, as 
assessed by BOLD fMRI, of areas of the brain implicated in appe‐
tite and interest in food. Similarly, Schmidt et al77 in 2014 showed 
that the co‐infusion of GLP‐1 and PYY3‐36 reduced energy intake 
compared with placebo and more than the sum of the individual in‐
fusions, demonstrating a synergistic effect. Therefore, the combina‐
tion of GLP‐1 and PYY3‐36 bears some promise of augmented weight 
loss compared to GLP‐1 alone.

4  | DE VELOPMENT OF DUAL AGONISTS

4.1 | GLP1R/GCGR dual agonists

As noted above, there are positive therapeutic effects of GLP‐1/
glucagon combinations in terms of increasing energy expendi‐
ture and reducing food intake; GLP‐1 can counterbalance the 

hyperglycaemia induced by glucagon. As a result, there has been 
considerable interest in developing GLP‐1/glucagon dual agonists. In 
early work from 2009, Day et al78 developed a range of unimolecular 
co‐agonists and tested their binding affinities to both glucagon and 
GLP‐1 receptors. Following this, they tested two of the novel pep‐
tides in mice and showed reductions in body weight, fat mass and 
most pertinently, reduction in blood glucose. In addition, despite the 
lack of hyperglycaemia induced by the co‐agonist, the glucagon‐as‐
sociated effects of increased energy expenditure and improved lipid 
profile were preserved.

A recently published Phase 2A, randomized, double‐blind, pla‐
cebo controlled trial assessed the efficacy, safety and tolerability of 
MEDI0382 (AstraZeneca/Medimmune), a GLP1R/GCGR dual agonist 
in overweight and obese patients with type 2 diabetes.79 The volun‐
teers given MEDI0382 once a day for 41 days were shown to have a 
better glucose tolerance in response to a mixed meal test compared 
to placebo, as well as a reduction in body weight: the mean fall in 
body weight between baseline and day 41 was 3.84 kg compared to 
1.70 kg for placebo. HbA1c fell by 0.9% with MEDI0382 compared 
to 0.6% for placebo. Twenty patients experienced treatment‐emer‐
gent adverse events (reduced appetite, vomiting, headache) with 
MEDI0382, compared to 15 for placebo.79 Exploratory analyses 
presented in the American Diabetes Association 2018 meeting also 
suggest that there was a significant higher relative reduction in liver 
fat content when patients with fatty liver disease given MEDI0382 
vs placebo, a potentially important effect.80

Another GLP1R/GCGR dual agonist, SAR425899 (Sanofi, 
Frankfurt, Germany) has recently been evaluated in single‐ascend‐
ing dose and multiple‐ascending dose Phase 1 trials when given 
once a day over 28 days.81 At the highest maintenance doses tested, 
there was a reduction of HbA1c by 0.54%‐0.59% when given to 
overweight/obese diabetic patients, and mean weight losses of 
2.37‐5.46 kg over the 28 days. SAR425899 was generally well toler‐
ated, with treatment‐emergent adverse effects of reduced appetite 
and nausea. It should be noted that two patients in the study were 
withdrawn due to increases in serum lipase activity. These promis‐
ing trial results therefore suggest that GLP1R/GCGR dual agonism is 
generally safe and efficacious, although head‐to‐head comparisons 
with GLP1R agonists will be required to evaluate the comparative 
advantages of the GLP1R/GCGR dual agonists.

4.2 | GLP1R/GIPR dual agonists

Notwithstanding	 the	equivocal	evidence	 for	benefit	 from	GLP‐1/
GIP co‐infusion studies, unimolecular GLP1R/GIPR dual agonists 
have been developed with promising pre‐clinical results (enhanced 
weight loss, improved glycaemia, reduced hepatosteatosis) in ani‐
mal models.82 One recent study has reported the Phase 2A clinical 
trial	results	of	one	such	dual	agonist,	NNC0090‐2746,	which	pos‐
sesses balanced affinities for the GIPR and the GLP1R.83 A 1.8 mg 
once‐daily dose was administered to 96 overweight/obese patients 
with type 2 diabetes. There was a significant reduction in HbA1c of 
0.63% and 0.96% at 8 and 12 weeks respectively when compared to 
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placebo. In addition, body weight was significantly reduced by 1.8% 
after 8 weeks (when compared to placebo), although the reduction 
in body weight was not significant at 12 weeks. Post‐hoc analysis 
found that the best weight reduction and improvement in HbA1c 
was demonstrated in the group of patients with HbA1c <8.5%. This 
finding was again in keeping with the previous observations that 
GIP is less effective in more hyperglycaemic conditions.

More impressive, however, are the data from Frias et al84 who 
studied the effects of LY3298176, a once‐weekly GLP1R/GIPR dual 
agonist, in a Phase 2 trial in type 2 diabetic patients. LY3298176 
differs	 from	NNC0090‐2746	 in	 that	 it	 possesses	 greater	 affinity	
for GIPR vs GLP1R. LY3298176, when given for 26 weeks, deliv‐
ered mean reductions in HbA1c ranging from 1.06% to 1.94% in 
comparison to a group taking Dulaglutide, who had a mean reduc‐
tion of HbA1c of 1.21%. Even more impressively, the LY3298176‐
treated patients had mean weight reductions ranging between 0.9 
and 11.3 kg, compared to 2.7 kg for Dulaglutide. Surprisingly, how‐
ever, there was a 30% non‐response rate (ie, weight loss <5% of 
baseline) even when given the higher doses of the drug. LY3298176 
was associated with nausea, diarrhoea and vomiting in up to 60% 
of the patients given the highest dose (35% for Dulaglutide). 
Nevertheless,	these	early	results	do	suggest	that	LY3298176	pos‐
sesses enhanced efficacy compared to a benchmark GLP‐1 ana‐
logue in terms of weight loss and improvements in glycaemia, and 
augurs well for this class of dual agonists.

4.3 | GLP1R/Y2R dual agonism

Peptide YY analogues are currently under development for the 
treatment	 of	 obesity	 (ClinicalTrials.Org	 NCT01515319	 and	 85). 
Novo	Nordisk	has	a	peptide	YY	analogue	(PYY‐1562	or	NN‐9748)	
in Phase I trials; this is likely to be combined with GLP1R agonists 
such as Semaglutide to achieve enhanced effects on food intake 
suppression,86 following on from the proof‐of‐concept studies 
noted above.

5  | TRIPLE AGONISM—MORE IS BET TER?

5.1 | GLP1R/GIPR/GCGR triple agonism

Complex unimolecular triple agonists combining GLP‐1/GIP/gluca‐
gon activity such as MAR423, which are based on modification of 
a pre‐existing GLP1R/GIPR dual agonist to incorporate GCGR ago‐
nist activity have been designed by Richard DiMarchi and Matthias 
Tschöp,87 and pre‐clinical studies again suggest promising meta‐
bolic benefits in animal models of obesity.88,89 At the same time, 
Hanmi Pharmaceutical has developed an independent triple ago‐
nist, HM15211, which also shows promising pre‐clinical benefits 
in a model of non‐alcoholic steatohepatitis.90 At present, no clini‐
cal trial or clinical study results are available for this class of triple 
agonists.

F I G U R E  1   Complementary actions of gut hormone receptors combine to achieve desirable therapeutic outcomes
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5.2 | GLP‐1, Oxyntomodulin & PYY triple agonism—
replicating bariatric surgery

As noted, Roux‐en‐Y Gastric Bypass (RYGB) surgery has been 
proven in multiple studies to be an effective treatment for obesity 
and diabetes.4 Dramatic changes in gut hormones, namely the rise 
in postprandial levels of GLP‐1, OXM and PYY even days after the 
operation, account for the improvement in glycaemic control which 
can reach diabetes remission as well as for the weight loss and other 
beneficial metabolic effects such as enhancement of insulin sensi‐
tivity and improved lipid profile.91,92 We asked whether it might be 
possible to replicate the benefits of RYGB using a triple hormone 
infusion of GLP‐1, oxyntomodulin & PYY (GOP for short). In a proof 
of concept study, we demonstrated that a subcutaneous infusion 
of GOP hormones in ten obese healthy subjects for 10.5 hours can 
replicate the post‐prandial gut hormone levels seen after RYGB.93 
Importantly, the GOP infusion can induce a mean reduction of food 
intake by 32%. Additionally, glucose and insulin levels after lunch 
and dinner were significantly lower on the GOP infusion compared 
to placebo. Resting energy expenditure showed a non‐significant el‐
evation from baseline on the GOP infusion. Finally, the GOP infusion 
induced nausea in a minority of participants, which settled within 
the first 4 hours without any vomiting. Continuing studies are un‐
derway to determine the effects of the GOP infusion when given for 
extended periods of time.

6  | CONCLUSIONS

Decades of animal and human research in the field of gut hormones 
have produced effective and safe therapies for the treatment of dia‐
betes and obesity with the GLP1R agonists now accepted as rou‐
tine treatments for diabetes and obesity. Furthermore, we now have 
clinical evidence for the cardiovascular benefits of GLP1R agonists. 
To go beyond the modest effects of GLP1R agonism, we now need 
to understand how to combine the benefits of GLP‐1 with the com‐
plementary properties of its cousin gut hormones to achieve desired 
therapeutic goals (Figure 1). Dual and triple gut hormone receptor 
agonists are now placed to deliver the next generation of therapies 
for diabetes and obesity.
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