
Agreement between visual inspection and objective analysis
methods: A replication and extension

Tessa Taylor
University of Canterbury/Te Whare W�ananga o Waitaha and Paediatric Feeding International

Marc J. Lanovaz
Université de Montréal

Behavior analysts typically rely on visual inspection of single-case experimental designs to make treat-
ment decisions. However, visual inspection is subjective, which has led to the development of sup-
plemental objective methods such as the conservative dual-criteria method. To replicate and extend
a study conducted by Wolfe et al. (2018) on the topic, we examined agreement between the visual
inspection of five raters, the conservative dual-criteria method, and a machine-learning algorithm
(i.e., the support vector classifier) on 198 AB graphs extracted from clinical data. The results indi-
cated that average agreement between the 3 methods was generally consistent. Mean interrater agree-
ment was 84%, whereas raters agreed with the conservative dual-criteria method and the support
vector classifier on 84% and 85% of graphs, respectively. Our results indicate that both objective
methods produce results consistent with visual inspection, which may support their future use.
Key words: artificial intelligence, conservative dual criteria, interrater agreement, machine

learning, visual inspection

Visual inspection is commonly used to
evaluate the results of single-case experimen-
tal designs. Although some researchers have
reported positive findings (Ford et al., 2020;
Kahng et al., 2010; Novotny et al., 2014),
many studies have questioned the reliability
of visual inspection for identifying behavior

change in single-case graphs (Dart &
Radley, 2017; DeProspero & Cohen, 1979;
Ninci et al., 2015; Wilbert et al., 2021;
Wolfe et al., 2016, 2018). Therefore,
researchers have proposed different supple-
mental methods to analyze single-case data
more objectively (Fisher et al., 2003; Krueger
et al., 2013; Lanovaz et al., 2020; Manolov &
Vannest, 2019). Objective methods aim to com-
plement rather than replace visual inspection to
improve reliability, validity, and decision mak-
ing; decrease errors; assist with training effi-
ciency; improve communicability of results; and
provide quantitative data on the treatment
effect. Notably, Fisher et al. (2003) developed
the dual-criteria and conservative dual-criteria
methods, which have been the topic of a grow-
ing number of studies examining their validity
(Falligant et al., 2020; Lanovaz et al., 2020;
Lanovaz et al., 2017; Wolfe et al., 2018).
Although researchers have shown that these
methods can adequately control Type I error
rates (e.g., Falligant et al., 2020; Lanovaz
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et al., 2017), studies have also noted that their
power could be improved (Fisher et al., 2003;
Manolov & Vannest, 2019).
In a recent study on the topic, Wolfe

et al. (2018) evaluated agreement between visual
inspection and the conservative dual-criteria
method with 31 multiple baseline graphs publi-
shed in peer-reviewed journals. The visual inspec-
tion involved 52 expert raters who had authored
at least five studies that relied on single-case meth-
odology. Expert raters had to categorize whether
there was a change in the dependent variable for
each panel and whether the graph showed a func-
tional relation. The researchers found a mean
agreement between expert raters of 83% and an
agreement of 84% between the raters and the
conservative dual-criteria method. However, one
of the limitations of the study was that the ana-
lyses relied on published data. Published data may
differ considerably from clinical data (e.g., less sta-
bility), which is why replication may be important
(Dowdy et al., 2020; Sham & Smith, 2014).
Recently, some researchers have proposed

using machine learning as an objective supple-
ment to visual inspection to analyze single-case
graphs (Lanovaz et al., 2020). Given that most
behavior analysts do not have prior knowledge or
training on machine-learning algorithms, we will
introduce the topic before explaining the purpose
of our study. At its broadest, machine learning
involves the use of computer algorithms1 to
detect and use patterns in data. These problems
can take on many forms, but Lanovaz et al. (2020)
focused on binary classification problems. A
binary classification problem has only two possi-
ble outcomes—true or false. In Lanovaz et al.,
this value represented whether a graph showed a
clear change (true) or not (false). To conduct
classification, the algorithms also need input data
on which to make their decisions. Lanovaz et al.
used the means, standard deviations, intercepts,
and slopes of Phases A and B as input data.

In supervised machine learning, the experi-
menter provides the input and outcome data to
algorithms, which train the models to make pre-
dictions. Specifically, the algorithms transform
the input data to develop a model that can pre-
dict the outcome data. Each algorithm attempts
to optimize correct predictions by transforming
the data in a different way. The ultimate test of
the appropriateness of responding by a model
involves comparing the predictions with the cor-
rect labels on data that have never been used dur-
ing training (i.e., generalization). Many different
types of algorithms exist to train these models.
The paragraph below briefly describes the algo-
rithm that we will test as part of the current
study—the support vector classifier.
The support vector classifier uses a function

to project the data in a higher dimension and
optimizes the split between the two categories.
Figure 1 shows a simple example of how a sup-
port vector classifier may split data. The upper
panel shows a binary outcome (represented by
opened and closed data points) that cannot be
separated using traditional linear regression.
The lower panel shows how projecting the data
in a higher dimension allows the data to be sep-
arated by a plane (referred to as a hyperplane in
higher dimensions). The support vector classi-
fier can make predictions by examining where a
novel data point falls within this higher dimen-
sion. In a comparison to visual inspection,
Lanovaz and Hranchuk (2021) trained models
including the previous algorithm to identify
changes in single-case AB graphs. Their results
showed that the support vector classifier pro-
duced lower Type I error rates (fewer false posi-
tives) and higher power (fewer false negatives)
than the conservative dual-criteria method and
visual raters on simulated data. Moreover, the
support vector classifier generally agreed more
often with visual raters than the conservative
dual-criteria method. However, extensions of
Lanovaz and Hranchuk remain necessary as the
study focused on simulated data, which may
differ from their nonsimulated counterparts.

1A set of instructions designed to solve a general, but
well-specified, problem (Skiena, 2008)
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Examining correspondence with visual raters
on actual, nonsimulated graphs appears
important.
The purpose of our study was to replicate and

extend Wolfe et al. (2018) by examining agree-
ment between visual inspection and the conserva-
tive dual-criteria method. We extended Wolfe
et al. by using a larger number of graphs to
examine within-subject error, blinded normalized
graphs, and modified reversal/withdrawal designs.

A secondary purpose was to replicate and extend
Lanovaz and Hranchuk (2021) by examining
correspondence between visual inspection, the
conservative dual-criteria method, and the
machine-learning algorithms on a novel dataset.
We extended both studies by using clinical data
and adding a 10-point scale with definitional
criteria to visual-inspection ratings.

Method

Data Acquisition
The sample consisted of all clinical cases

from an intensive, in-home pediatric feeding
treatment program in Australia. The data were
not previously published in a prior consecutive
controlled case series (Taylor et al., 2021) and
each case included a treatment evaluation con-
ducted via single-case experimental design
(N = 6). All treatment evaluations used modi-
fied withdrawal/reversal designs: ABCAC
(n = 2), ABCDEAE (n = 3), and ABCDEFAF
(n = 1). The parents consented to their child’s
data being used for research and this research
project was approved by the second author’s
university research ethics board.
The six dependent variables were: clean mouth

percentage (percentage of trials in which the
mouth was clean of food/liquid; permanent prod-
uct measure of swallowing/consumption), latency
to clean mouth, latency to acceptance (bite/drink
enters the mouth), inappropriate mealtime behav-
ior per minute (head turn, mouth cover, pushing
feeder away), expulsion per minute (bite/drink
exits mouth), and negative-vocalizations percent-
age (percentage of session duration with crying or
negative statements about the meal). The
expected direction of the treatment effect was an
increase in clean mouth (i.e., food consumption/
swallowing) and a decrease in the remaining vari-
ables. We used data from the complete phases
and compared each adjacent phase. For example,
one ABCAC treatment evaluation yielded four
phase comparisons (A1B1, B1C1, C1A2, A2C2)
for each of the six variables, producing 24 total

Figure 1
Example of a Dataset Separated by a Support Vector
Classifier

Note. The upper panel shows a two-dimensional graph
representing two features: x1 and x2. Closed points repre-
sent one category and opened points represent a different
category. The lower panel depicts the addition of a
higher dimension (z) and a linear plane that separates the
two categories. Reprinted with permission from “Machine
Learning to Analyze Single-Case Data: A Proof of Con-
cept” by M. J. Lanovaz, A. R. Giannakakos, and
O. Destras, 2020, Perspectives on Behavior Science (https://
doi.org/10.1007/s40614-020-00244-0). CC BY 4.0.
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phase comparisons for this participant. These
phase comparisons were then graphed separately
(i.e., distinct AB graphs for each variable). This
process yielded 198 AB phase comparisons for
the six participants (i.e., 33 adjacent phases with
six distinct variables per comparison). The data
and code are available in online repository at:
https://osf.io/2wgtu/.
To construct the 198 graphs, we used

Python (Version 3.7.7) to standardize the pro-
cess. The graph title provided only the expected
direction of the change (i.e., -1.0 for decrease
and 1.0 for increase), and the vertical axis was
labelled generically as “Behavior” with
unlabeled tick marks. We removed the values
beside the tick marks to standardize the presen-
tation of the graphs and to control for the
effects of differing axis values on the analysis of
visual raters. As such, the raters had to focus on
the relative change from one phase to another
to categorize each graph. A phase line separated
Phases A and B, and the horizontal axis was
labelled, “Session” with the numerical values
depicted on the tick marks. These graphs were
blinded in that they did not provide the vari-
able label on the vertical axis, the scale of the
vertical axis, phase labels or design sequence let-
ters (e.g., ABCAC), or participant information
(see graphsforanalysis.pdf in online repository).

Visual Inspection and Interrater
Agreement
For visual inspection of each phase compari-

son (N = 198), raters responded “yes” or “no”
to the following question: “Would the change
observed from one phase to the next be indica-
tive of functional control of the behaviour in
the planned direction (i.e., increase or decrease)
if it were reversed and replicated?” Raters also
provided a continuous value from 0 (certainty
of no effect in the planned direction) to 10 (cer-
tainty of an effect in the planned direction),
with 0 to 4 corresponding to “No” and 5 to
10 corresponding to “Yes” (Taylor &

Lanovaz, 2021). Five doctoral-level behavior
analysts with PhDs in psychology (one profes-
sor, four practitioners) made ratings based on
the blinded AB graphs (see ExpertA.xlsx,
ExpertB.xlsx, ExpertC.xlsx, ExpertD.xlsx, and
ExpertE.xlsx for complete analyses). The raters
had trained at three different universities and
were over 10 years postgraduation. Four raters
completed pre- and/or postdoctoral training at
the same internship and fellowship program
and were licensed psychologists. All raters had
authored peer-reviewed research publications,
and three raters had authored at least five
single-case experimental design publications.
Four raters were board-certified behavior ana-
lysts, and one was the first author.

Conservative Dual-Criteria Method
To remain consistent with Wolfe et al. (2018),

we used the conservative dual-criteria method
(Fisher et al., 2003). This method involves
projecting trend and mean lines from baseline
onto the next phase, adjusting the lines by 0.25
standard deviations from the baseline data, cou-
nting the number of data points above or below
both lines depending on the expected direction
of change, and comparing the results to a cut-off
value based on the binomial distribution. Our
python code repeatedly applied this analysis to
each AB comparison (see CDC_analysis.py for
code and CDC_Results.csv for results of the
analysis).

Machine Learning
For each phase comparison, our code

applied a model derived from machine learn-
ing to determine whether procedures produced
a clear change in the expected direction (see
ML_analysis.py for code and ML_Results.py
for results of the analysis). Specifically, our
analyses involved applying the support vector
classifier previously described and developed
by Lanovaz and Hranchuk (2021). We
selected the support vector classifier because it
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produced the fewest errors during the analyses.
Furthermore, the support vector classifier agreed
more frequently with expert behavior analysts
than the behavior analysts amongst themselves in
a study with simulated data (Lanovaz &
Hranchuk, 2021). The support vector classifier
used the eight features extracted from the stan-
dardized data (mean, standard deviation, inter-
cept, and slope of each phase) and provided
output decisions based on the probability of a
clear change in the expected direction. Each of
these features represented important characteris-
tics of the data used during visual inspection:
Mean is related to level change, standard devia-
tion to variability, intercept to immediacy of
change, and slope to trend (Lanovaz &
Hranchuk, 2021). Probabilities above, or equal
to, 0.5 were categorized as a clear change.
As an example of applying this method,

assume that we want to categorize a graph with
five points in Phase A and seven points in Phase
B using a support vector classifier. The first step
involves extracting the eight features from our
graph. To do so, we transform each data point to
a z score to normalize the data by subtracting the
mean of the graph from the value of each point
and dividing this difference by the standard devi-
ation for the graph. If the purpose of the inter-
ventions is to reduce behavior, the z scores must
also be multiplied by -1. Once the points have
been standardized, the code uses the z scores to
extract the mean, standard deviation, intercept,
and slope for each phase (eight features). The sec-
ond step involves providing these eight features
to the model previously developed by Lanovaz
and Hranchuk (2021). The model transforms
the features by adding an extra dimension and
places the data for our graph in a multi-
dimensional space (as depicted in three dimen-
sions in Figure 1). The model also has a
hyperplane, which separates the multidimensional
space in two (no change vs. change). The catego-
rization then depends on the position of the mul-
tidimensional value relative to this hyperplane. If
we take the exemplar presented in Figure 1

(bottom panel), each graph would produce a sin-
gle multidimensional point that falls either above
or below the plane (determining its category).

Analyses
For each rater and method, we calculated a

pairwise percentage of agreement by dividing
the number of agreements (i.e., change vs. no
change) by the total number of graphs (see
Comparison.py). We also calculated Cohen’s
kappa (Cohen, 1960). Kappa values range from
-1 (perfect disagreement) to 1 (perfect agree-
ment), with 0 indicating completely random
agreement. Landis and Koch (1977) proposed
interpretive guidelines of slight agreement
(0–0.20), fair agreement (0.21–0.40), moderate
agreement (0.41–0.60), substantial agreement
(0.61–0.80) and almost perfect agreement
(0.81–1.0). For continuous outcomes, our code
computed a Spearman’s rho pairwise correla-
tion between visual-inspection ratings and
machine-learning probability values for each
graph. The conservative dual-criteria method
was excluded from the prior analysis because it
does not produce a probability value. For each
rater and method, we compared average agree-
ment separately based on whether the conserva-
tive dual-criteria method and the support
vector classifier indicated an effect or no effect.
The next step involved a more in-depth analy-

sis of patterns of disagreements between the
visual raters, the conservative dual-criteria
method, and the support vector classifier (see dis-
agreement_analysis.py). First, we created four
groups of graphs. The first group of graphs,
agreement on visual inspection, included only the
graphs for which at least four of five raters agreed
on the outcome (n = 175). The second group of
graphs, disagreement on visual inspection,
involved the remaining graphs for which only
three raters agreed (n = 23). The next two
groups were subsets of the graphs showing agree-
ment on visual inspection. The third group
included graphs on which the conservative dual-
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criteria method disagreed with the visual raters in
cases where four or five raters agreed (n = 15).
Similarly, the final group involved graphs with
visual agreement with which the support vector
classifier disagreed (n = 13). Finally, we com-
pared the agreements and disagreement across
different lengths of Phases A and B.

Results

Proportion of correspondence for the binary
outcomes are presented in Table 1. Interrater
agreement using visual inspection averaged
84.3% (range, 72%–91%) across all raters with
kappa of .66 (range, .43–.79). The support vec-
tor classifier matched the ratings of the behavior
analysts on 85.0% (range, 78%–89%) of graphs
with kappa of .67 (range, .55–.75), on average.
The conservative dual-criteria method averaged
83.6% (range, 79%–87%) correspondence with
visual-inspection ratings with kappa of .64
(range, .58–.72). The support vector classifier
corresponded 81.0% with the conservative dual-
criteria method with kappa of .59. Table 2 pre-
sents the correlations for the continuous out-
comes. The correlation coefficient for visual
inspection averaged .78 (range, .66–.90) across
all raters. In comparison, the support vector clas-
sifier had an average correlation coefficient of .74
(range, .60–.79) with the visual raters.
Figure 2 presents average agreement based

on results from the conservative dual-criteria

(top panel) or support vector classifier (bottom
panel) indicating an effect or no effect. The
support vector classifier found an effect in
35.4% of graphs, and the conservative dual-
criteria found an effect in 33.8% of graphs.
Agreement was marginally lower when the
objective methods indicated effects (conserva-
tive dual-criteria: M = 78%; support vector
classifier: M = 79%) compared to no effect
(conservative dual-criteria: M = 87%; support
vector classifier: M = 87%). Agreement was
lower when the methods indicated an effect
compared to no effect for 13 of the 14 compari-
sons, with the exception of Rater A with the
support vector classifier.
Table 3 shows the proportion of graphs with

different phase lengths for each of the four
groups. When visual raters agreed, most graphs
had only three points in Phase A. In contrast,
graphs on which visual raters disagreed amongst
themselves or with the conservative dual-criteria
method were more likely to have 10 or more
points in Phase A. For Phase B, more graphs
with three points were present when visual
raters agreed, but this difference was offset by
the higher proportion of graphs with four or
five points in Phase B when visual raters dis-
agreed amongst themselves or with the conser-
vative dual-criteria method. A more in-depth
analysis of the patterns of agreement and dis-
agreement is available in Supporting
Information.

Table 1

Proportion of Correspondence and Kappa Agreement Between the Different Methods (Binary Outcomes)

Expert A Expert B Expert C Expert D Expert E CDC Method

Expert A
Expert B .79 / .57
Expert C .80 / .59 .90 / .77
Expert D .72 / .43 .88 / .71 .86 / .67
Expert E .83 / .65 .91 / .79 .89 / .75 .85 / .65
CDC Method .79 / .58 .84 / .64 .87 /.72 .83 / .59 .85 / .67
SVC .78 / .55 .89/ .75 .87 / .71 .84 / .63 .87 / .71 .81 / .59

Note. For each pair, the proportion of correspondence is on the left of the slash and the kappa value on the right.
CDC: conservative dual-criteria, SVC: support vector classifier.
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Discussion

Our results showed that average agreement
was generally consistent across different
methods of analysis when analyzing clinical
data. That is, the raters, the conservative dual-
criteria method, and the support vector classi-
fier agreed with each other on similar propor-
tions of graphs. Moreover, correlations were
high when we asked that the raters provide a

score varying from 0 to 10, suggesting that the
confidence in their ratings remains generally
consistent. This result extends prior research,
which has been mostly limited to examining
binary classification (i.e., change vs. no change)
although there are exceptions (e.g., 100-point
scale, DeProspero & Cohen, 1979). A further
analysis indicated that agreement was margin-
ally higher when the objective methods
suggested that there was no change in a graph.
One potential explanation is that our graphs
showing no effect depicted more stable patterns
than those showing an effect. Notably, some of
the graphs showing no effect showed no change
from one phase to the next (i.e., two flat lines
of equal level), which facilitated agreement. In
general, our findings suggest that agreement
between the two objective methods and visual
raters is no different than agreement between
raters themselves.
The agreements observed in the current

study were similar to those reported by Wolfe
et al. (2018) using published datasets. This
result is promising as it suggests that their pub-
lished graphs served as an acceptable approxi-
mation of clinical graphs, or at least that both
types of graphs produce similar ratings. In con-
trast, raters performed better on the clinical
graphs than previously reported by Lanovaz
and Hranchuk (2021) on simulated ones. One
potential explanation is that simulated graphs
may exaggerate patterns (e.g., trend) that are
infrequent in clinical graphs, which can be
difficult to analyze. Alternatively, clinical

Table 2

Correlation Between the Different Methods (Continuous Outcomes)

Expert A Expert B Expert C Expert D Expert E

Expert A
Expert B .66
Expert C .66 .86
Expert D .66 .82 .84
Expert E .72 .90 .87 .82
SVC .60 .79 .76 .78 .76

Note. SVC: support vector classifier.

Figure 2
Average Agreement of Each Analysis When the Conservative
Dual-Criteria (CDC) and Support Vector Classifier (SVC)
Indicated an Effect or No Effect
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graphs may show larger, less ambiguous
effects that facilitate analysis and make them
easier to rate consistently. Regardless of the
cause, this result underlines the importance
of replicating studies conducted using simu-
lated data with nonsimulated data.
The support vector classifier did not match

visual inspection more closely than the conserva-
tive dual-criteria method, which is inconsistent
with results reported by Lanovaz et al. (2020),
who examined thesis and dissertation data. This
discrepancy may be the result of the Lanovaz
et al. procedures that included only two raters.
Additionally, having only three points in Phase A
was associated with fewer disagreements, which is
inconsistent with prior research with simulated
data (e.g., Fisher et al., 2003; Lanovaz &
Hranchuk, 2021). One potential explanation is
that the decisions of behavior analysts are typi-
cally response guided. Hence, behavior analysts
may stop collecting data early when they observe
stability, making the graphs easier to agree on
(i.e., less variable).
Prior research has used simulated or publi-

shed datasets with professors and researchers as
raters (e.g., Ford et al., 2020; Lanovaz &
Hranchuk, 2021; Wolfe et al., 2016, 2018).
We used clinical data with varying phase
lengths and trends, containing both effective

and ineffective interventions, and with varying
degrees of variability, and most raters were
practitioners, all of which may extend prior
research on the topic. We also used a wide
range of variables and metrics (i.e., percentage,
latency, responses per minute) from pediatric
feeding data with varying characteristics,
including extinction bursts, extinction-induced
variability, as well as delayed effects. In pediat-
ric feeding, consistency of baseline replication
data may be lower because of graduated expo-
sure and skill development. Clinical cut-offs
and goals must be considered, for example,
with latency to swallowing and negative vocali-
zations. It is important to acknowledge that it
is unclear whether and the degree to which our
clinical datasets differed from published or sim-
ulated datasets in other studies. Given these
considerations, visual inspection and objective
methods remained comparable with these clini-
cal datasets.
Researchers, professors, and supervisors may

use objective-analysis methods to train visual
raters more efficiently and to improve reliability
and decrease decision-making errors. In clinical
practice, decisions are made in real time along
with data collection. We used machine learning
post hoc on clinical data, but future studies
could examine its use in real time during the

Table 3

Proportion of Graphs with Given Phase Lengths in the Presence and Absence of Agreement

Number of Data Points in the Phase

3 4 or 5 6 to 9 10 or more

Phase A n = 96 n = 18 n = 30 n = 54
Visual inspection – Agreement .531 .091 .143 .234
Visual inspection – Disagreement .130 .087 .217 .565
CDC – Disagreement .133 .267 .067 .533
SVC – Disagreement .615 .000 .231 .154

Phase B n = 66 n = 18 n = 42 n = 72
Visual inspection – Agreement .354 .086 .211 .349
Visual inspection – Disagreement .174 .130 .217 .478
CDC – Disagreement .067 .267 .400 .267
SVC – Disagreement .308 .077 .154 .462

Note. The disagreements for the CDC and SVC are relative to exemplars on which visual raters mostly agreed (see text
for details). CDC: conservative dual-criteria method, SVC: support vector classifier.

993Agreement Between Analysis Methods



treatment evaluation to aid in decision making
and decrease errors. Similar to entering and
graphing data into Excel to perform visual
inspection during treatment evaluation, practi-
tioners could enter or paste data into an
internet-based application and immediately
receive output results inclusive of graphs to
assist with decision making in real time. For
more advanced applications of machine learn-
ing by researchers and professors, tutorials
employing free software are already available
(e.g., Turgeon & Lanovaz, 2020).
As with most research involving nonsimulated

data, the main limitation of our study is that
agreement does not equate validity. Two
methods may agree, but still produce an incorrect
rating. That said, it remains important to exam-
ine how agreement varies under naturalistic con-
ditions (i.e., with nonsimulated clinical data). A
second limitation is that our dataset was too small
(few exemplars) to fully examine dataset charac-
teristics (e.g., phase length, variability, trend,
effect size) that may impact results. In the future,
researchers should conduct replications with
larger datasets to isolate the effects of these
variables.
An additional limitation is that participants

rated blinded graphs without clinically relevant
information (e.g., phase and axis labels indicating
the behavior, measurement system, scale, and
condition/intervention), reducing the ecological
validity of our study. This information can be
highly important when making decisions about
clinical data. Prior research on the impact of such
clinically relevant information on interrater agree-
ment has been shown to be minimal. Ninci
et al. (2015) did not identify an association
between providing clinically relevant information
and agreement. Ford et al. (2020) also did not
find that providing such information impacted
agreement on published research data, but all var-
iables were equally scaled percentages aimed to
increase behavior. An important area of future
research is to compare agreement for a variety of
graphs rated with and without relevant clinical

information. Additional research could examine
the impact of specific types of clinical informa-
tion on interrater agreement. Another extension
for future research would be to compare agree-
ment to ratings of graphs made for consecutive
phases in sequential order for the entire treatment
evaluation, approximating the conditions under
which behavior analysts typically analyze single-
case data.
Finally, the study relied on quasiexperimental

AB designs for analyses, which limits the
applicability of the results. AB designs are
insufficient to demonstrate experimental con-
trol. Our instructions to the raters asked
them to imagine the rest of the graph had the
AB graph been replicated, producing an
ABAB design. The hypothetical instruction
(i.e., to decide on functional control as if
there were a reversal and replication) removed
the real-life variables one may observe in
practice. Visual raters analyzing a graph as a
whole (rather than as independent AB graphs)
may produce different conclusions regarding
the presence of functional control. We do not
yet know if the machine-learning outcomes
would have differed if ABAB graphs were
used. We took this approach because AB
comparisons serve as the basic unit of many
other types of graphs (i.e., multiple baseline,
reversal, and changing-criterion designs), and
we did not have enough complete ABAB
graphs to conduct our analyses. Additionally,
the use of AB comparisons is not unique to
machine learning and is also used by all other
proposed objective methods designed to sup-
plement visual inspection (e.g., Fisher
et al., 2003; Manolov & Vannest, 2019).
However, it is possible to develop machine
learning models to analyze the full range of
single-case experimental designs, which is an
important future research direction. As Wolfe
et al. (2018) focused on multiple baseline
designs, future research should address these
issues carefully by replicating their study with
other types of experimental designs.
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Nonetheless, our study clearly supports prior
research by showing that structured methods
of analyses may produce results generally con-
sistent with visual inspection.
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