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Abstract: Natural soluble antagonist and decoy receptor on the surface of the cell membrane are
evolving as crucial immune system regulators as these molecules are capable of recognizing, binding,
and neutralizing (so-called inhibitors) their targeted ligands. Eventually, these soluble antagonists
and decoy receptors terminate signaling by prohibiting ligands from connecting to their receptors on
the surface of cell membrane. Interleukin-18 binding protein (IL-18BP) participates in regulating both
Th1 and Th2 cytokines. IL-18BP is a soluble neutralizing protein belonging to the immunoglobulin
(Ig) superfamily as it harbors a single Ig domain. The Ig domain is essential for its binding to the IL-18
ligand and holds partial homology to the IL-1 receptor 2 (IL-1R2) known as a decoy receptor of IL-1α
and IL-1β. IL-18BP was defined as a unique soluble IL-18BP that is distinct from IL-18Rα and IL-18Rβ
chain. IL-18BP is encoded by a separated gene, contains 8 exons, and is located at chr.11 q13.4 within
the human genome. In this review, we address the difference in the biological activity of IL-18BP
isoforms, in the immunity balancing Th1 and Th2 immune response, its critical role in autoimmune
diseases, as well as current clinical trials of recombinant IL-18BP (rIL-18BP) or equivalent.

Keywords: IL-18BP; soluble anti-IL-18; Th1/Th2 balance; autoimmune diseases; clinical trials

1. Regulation of IL-18BP

Interleukin-18 (IL-18) was discovered in 1995 as a novel interferon-γ (IFNγ) induc-
ing factor (IGIF), and later it was named IL-18 (also known as IL-1F4) due to the amino
acid sequence homology with IL-1β as well as sharing the processing enzyme, caspase-1.
Moreover, IL-18 induces IFNγ, including other proinflammatory cytokines in the immune
response to pathogens or cell damage. These danger inducements contact cell surface
through pathogen-associated molecular patterns (PAMPs) or damage-associated molecular
patterns (DAMPs), which in turn bind to the Toll-like receptors (TLR). Then, the activated
TLRs trigger myeloid differentiation factor 88 (MyD88) and allow it to make a complex
with the interleukin-1 receptor-associated kinase (IRAK) as well as TNF receptor-associated
factor (TRAF). This signaling pathway results in oligomerization of inflammasome, and
consequently, caspase-1 becomes activated. On the other hand, the translocation of nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) induces several proinflam-
matory cytokines, including pro-interleukin IL-18 (pro-IL-18). The activated caspase is
proteolytically cleaved and activates pro-IL-18 to be released from the cell as its mature
form; IL-18 (Figure 1, left panel). First, secreted IL-18 binds to the IL-18 receptor alpha chain
(IL-18Rα), then recruits the IL-18 receptor beta chain (IL-18Rβ) to initiate the signaling
pathway. IL-18 signaling cascades elicited the activation of mitogen-activated protein
kinases (MAPKs) and NF-κB, which in turn led to IFNγ and numerous inflammatory gene
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expressions and enabled continuous loop activation, as the binding of IL-18 to its receptor
acts as a downstream activation for NF-κB, (Figure 1, right panel) [1–8].
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Figure 1. IL-18BP Biological Role. Left panel, 1© danger stimuli, such as pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), activate the Toll-
like receptors (TLR) signaling pathway that triggers MyD88, TRAF, inflammasome oligomerization
that leads to subsequent activation of caspase-1 (Cas1). Consequently, the translocation of the NF-κB
takes place and leads to 2© the production of proinflammatory cytokines, including inductions of
the transcriptional activation of pro-interleukin IL-18 (pro-IL-18), which is proteolytically cleaved
and converted to its mature active form via the active caspase-1 (Cas1), then 3© IL-18 is secreted
from the cell. Right panel, 4© when secreted IL-18 binds to the cells expressing IL-18R (mainly
monocytes, NK cells, and T cells) and activates the respective signaling pathways, for example,
MAPKs and NF-κB activation, which in turn leads to the 5© expression of proinflammatory molecules
and induce the production of IFNγ. Next, IFNγ activates macrophages and allows them to produce
inflammatory cytokines. This IFNγ induction and the activation cascade of IL-18 is inhibited by its
natural neutralizing soluble inhibitor, interleukin IL-18 binding protein (IL-18BP).

IL-18 binding protein (IL-18BP) is a natural soluble antagonist, and it binds to the
IL-18 ligand with a high affinity. This high-affinity binding of IL-18BP sufficiently blocks
the interaction of IL-18 with the IL-18Rα ligand-binding chain on the cell surface and
eventually inhibits the IL-18 signaling pathway. Therefore, IL-18BP is considered a potent
IL-18 inhibitor (Figure 1, on the top). Furthermore, the production of IFNγ induces IL-18BP
to be present as a control role under the term of negative feedback (Figure 2, upper left
panel), and IL-18BP is found to be expressed in various organs, such as the spleen, small
intestine, stomach, colon, placenta, and lung [7–13]. This is not surprising, as IL-18 was
first described as an IFNγ inducing factor (IGIF) [14], and increasing evidence showed
that IL-18 induces IFNγ under various conditions [2,15–17]. Notably, IL-18BP was found
extracellularly and in 20-folds higher than IL-18 level in healthy sera, which conveys its



Biomedicines 2022, 10, 1750 3 of 17

important regulatory maintenance function [7,18–20]. Given that IL-18BP is constitutively
expressed from various organs/tissues and secreted into the blood in which it is not
anchored on the cell membrane. IL-18BP lacks a transmembrane domain; therefore, it
acts as a local as well as systemic IL-18 feedback regulation. As a result, it reduces IFNγ

production, avoiding the harmful effect of prolonged inflammatory reactions (Figure 2,
upper left panel).
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Figure 2. IL-18BP expression induced by IFNγ. IFNγ production is induced due to cytokines that are
released in response to infection, tissue damage, activation of pattern recognition receptors (PRRs) or
reactive antigen stimulation. Left side (up), the upregulated IL-18BP triggers the negative feedback
loop, which in turn allows IL-18BP to inhibit the production of IFNγ. Left side (down), the epigenetic
regulation of IL-18BP in various cells, methylation at the IL-18BP promoter region controls its
expression upon IFNγ stimulation. Epithelial cells have no CpG methylation; therefore, their IL-18BP
inducibility is strong and higher than monocytic cells, which have CpG methylation. Right side,
IFNγ signaling starts when it binds to its receptor IFNγR, which consists of two subunits, IFNγR1
and IFNγR2. Later, this binding induces the Janus kinase (JAK) signal transducer and activator of
transcription (STAT) signaling, particularly STAT1 makes a dimer, and then cooperates with IFNγ-
induced interferon regulatory factors (IRFs), resulting in translocation into the nucleus. IL-18BP
promoter holds several response elements, among them IFN regulatory factor 1 response element
(IRF-E) and STAT1. These transcriptional activations of the promoter induce IL-18BP expression.

Both IL-18 and IL-18BP occupied a location within chromosome 11 in human genomes.
However, each has a distinct cytoband location, q23.1 and q13, respectively [21]. Addition-
ally, the IL-18BP promoter was found to hold several response elements that are required
for basal activity. Among them, one site of IFN regulatory factor 1 response element (IRF-E),
one site of signal transducer and activator of transcription 1 (STAT1), and two sites of
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CCAAT-enhancer binding protein beta (CEBP-β), all play a significant role in direct IL-18BP
activation in several cell types [12,22]. Based on the existence of these transcription factors,
some reports discovered an unexpected expression for IL-18BP irrespective of the presence
of IL-18, such as its association with IL-27 [23]. It was found that IL-27 induces the mRNA
transcription level as well as the secretion of IL-18BP protein level in a dose-dependent
manner. This was accomplished through IL-27-mediated STAT1 activation, which in turn
binds to the Gamma-activated sequence (GAS) element within the promoter of IL-18BP,
and thus regulates its expression.

Moreover, this transcriptional activation of the IL-18BP promoter regulates the IL-18BP
expression by IFNγ and other different stimuli (Figure 2, right panel) [12,24,25]. Notably, the
IL-18BP induction was enhanced specifically upon IFNγ, while the levels of the induction
varied between monocytes and epithelial cells. These IFNγ induced IL-18BP variation
levels were controlled epigenetically through CpG methylation on the promoter region.
Therefore, they were diminished in monocytes as the promoter CpG was found to be
methylated in contrast to unmethylated in epithelial cells (Figure 2, lower left panel) [26].
As a result, not only CpG methylation, but also other epigenetic modifications can draw
the specificity of IL-18BP related to cell types, which is still waiting to be investigated.

2. Difference in the Biological Activity of IL-18BP Isoforms

Initially, IL-18BP was discovered in 1999 by the IL-18 ligand affinity chromatographic
analysis while looking for a soluble form of IL-18 receptor-ligand binding chain using
concentrated human urine as a source of body fluid proteins [7,18–20]. It was defined as a
unique soluble protein that is distinct from IL-18Rα and IL-18Rβ chain. IL-18BP is encoded
by a separated gene and contains 8 exons. The protein encoded by the IL-18BP gene trans-
lated into four isoforms in humans, which were produced through the alternative splicing
process. These isoforms are IL-18BPa, IL-18BPb, IL-18BPc, and IL-18BPd and have a length
of 194, 199, 115, and 163 amino acids, respectively as shown in Figure 3. As previously
mentioned, IL-18BP is a soluble neutralizing protein belonging to the immunoglobulin (Ig)
superfamily as it harbors a single Ig domain. The Ig domain is essential for its binding
to the IL-18 ligand and holds partial homology to the IL-1 receptor 2 (IL-1R2), which is
known as a decoy receptor of IL-1α and IL-1β. Among them, two isoforms were found
to be active, IL-18BPa and IL-18BPc, since both hold the complete Ig domain. However,
their binding affinities to the IL-18 are distinct. IL-18BPa showed an 18 times higher affinity
to the IL-18 than IL-18BPc, this is predominantly due to the C-terminal difference. While,
on the other hand, IL-18BPb and IL-18BPd lack the essential Ig domain, and thus show
no activity in sequestering IL-18. As a result, no inhibition of the IL-18 signal pathway
occur [4–7]. Furthermore, the sequence differences between isoforms point toward differ-
ent post translational modifications (PTM). Although IL-18BP was reported as a heavily
glycosylated protein, isoform b (O95998-3) showed missing conserved amino acids for
PTMs. While the two closer isoforms, IL-18BPa and IL-18BPc (O95998, and G3V1C5), hold
amino acids for all available PTMs, which are three sites for N-linked glycosylation, site for
O-linked glycosylation, and the cysteines for two disulfide bridges, as shown in Figure 3.
These modifications may play a key role in the activity of the respective protein/isoform,
which also might acknowledge the less or no activity for isoforms other than IL-18BPa.
In addition, the amino acid sequence of IL-37 was reported to have some similarity with
IL-18 within the binding motif. Therefore, it was suggested that IL-37 might bind to IL-18
receptors and IL-18BP. Yet, these binding and their consequent effect still require additional
investigation [27].
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Figure 3. IL-18BP isoforms. Multiple sequence alignment for the isoforms of human IL-18BP. PTM
features are indicated as glycosylation sites, which are displayed above the sequence (N-linked;
Triangle, O-linked; circle, blue for confirmed, red for predicted O-glycosylation). Disulfide bridges
are exposed as dashed lines (red and orange). Residues with homology are indicated with an asterisk
(*) below the residue. Residues shearing identity with the virus IL-18BP are highlighted within an
orange color shaded box. The domain of Ig-like C2-type is highlighted in green (starts at 65 and ends
at 166 with a length of 102aa based on the sequence of IL-18BPa). Uniport accession number; IL-18BPa
(O95998 I18BP_HUMAN/NP_766630.2), IL-18BPb (O95998-3 I18BP_HUMAN/NP_001138527.1), IL-
18BPd (O95998-4 I18BP_HUMAN/NP_766632.2), and IL-18BPc (G3V1C5 _HUMAN/NP_005690.2).
(:) Conservative residue; (.) Semi-conservative residue; ( ) Non-conservative residue.

3. IL-18BP in Immunity Balancing between Th1 and Th2 Immune Response

The anti-inflammatory function of IL-18BP is linked to IL-18 inflammatory activity.
Therefore, dysregulation in the balance between IL-18 and IL-18BP results in various disease
conditions, which are mainly associated with immunity, an immune response against non-
self-antibodies (pathogens), such as viruses, an immune reaction against self-antibodies
(autoimmune reactions), and immunity toward cancers [28–38]. As the balance of IL-18
and IL-18BP is disrupted, the immune cell balances are also disrupted, for example, the
balance of Th1 and Th2 as well as the balance of Th17 and Treg [28,29,39–44]. The balance
between Th1 and Th2 immunity at homeostasis or change in this equilibrium due to an
immune response to cope with a specific condition is highly regulated by the cellular
environment, including levels and types of Th1 and Th2 cytokines [40,41,45]. Negative
feedback is required to stop or avoid an overactivated immune response that may increase
damage to adjacent healthy cells. IL-18BP is one of the most interesting contributors for the
regulation of Th1 and Th2 immune responses (Figure 4) [2,7,28,43,46].

Moreover, as IL-18BP maintains its immune regulation through sequestering IL-18,
the IL-18 subsequent activation will be inhibited under various conditions. IL-18 together
with IL-12 is associated with immunity against foreign unknown antigens, such as harmful
pathogens or pathogenesis of autoimmune diseases. The activated M1 macrophage stim-
ulated Th1 T cells, which in turn induced NK cell activation, cytotoxic T cells, and IFNγ

production [47–52]. IL-18BP substantially downregulates the production of Th1 cytokines,
and thus regulates the balance between Th1 and Th2 responses [7,10].
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Figure 4. IL-18BP inhibiting IL-18 target cells and therapeutic interventions. IL-18 assists several
immune cells, it stimulates NK to produce IFNγ, which activates macrophages and allows them to
produce inflammatory cytokines. In addition, it participates in the Th1 and Th2 response, depending
on cytokine partners, when IL-18 is combined with IL-12 it facilitates the Th1 immune response,
which in turn activates DCs and releases inflammatory cytokines, such as IFNγ and TNFα. In
response to Th1 activation, M1 macrophages induce IL-18 and supply the loop. Alternatively, in the
absence of IL-12, and when IL-18 is combined with IL-2 and/or IL-4, together they facilitate Th2
immune response, which in turn secreted IgE and numerous Th2 cytokines, such as IL-4, IL-5, IL-9,
and IL-13. In response to Th2 activation, M2 macrophages and/or mast cells become activated, and
then the production of histamine takes place (allergic response), which is also facilitated when IL-18
is combined with IL-3. When IL-18BP sequestered IL-18, the following activated cascade is inhibited.
Therefore, IL-18BP can play potential roles in both Th1 and Th2 autoimmune diseases. Boxes indicated
the main pathological condition (RED), potential therapeutic options (BLUE; anticancer molecules
in the clinical trial, GREEN; IL-18BP or equivalent; Tadekinig-α, GSK1070806, and APB-3R are in
clinical and pre-clinical trials, IL-18BP∆N-EH showed higher affinity than full-length IL-18BP and
suggested for use in treating autoimmune diseases).

Additionally, in the absence of IL-12, IL-18 can stimulate Th2 or Th17 response, de-
pending on a costimulatory cytokine which combines with IL-18. For example, when IL-18
is combined with IL-2, they induce mucosal mast cytosis through elevating IL-3 and IL-9
cytokines [53]. Nonetheless, Th2 cytokines are found within allergic conditions and are
characterized by increasing IgE production. IL-4 is the major Th2 cytokine, and when
combined with IL-18, both induce M2 macrophage and Th2 cells activation resulting in an
increase in the production of IgE and Th2 cytokines, for instance, IL-13 and IL-4 [28,54–59].
Moreover, IL-18 is suggested to induce an allergic inflammatory response even without
IgE help, as is the case in basophils and mast cells activation upon IL-18 with IL-3 [3,57].
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Therefore, IL-18BP has also a regulatory effect on Th2 immune response by inhibiting IL-18
activation cascades.

4. IL-18BP in Immunity Balancing between Th17 and Treg

Inflammasome-derived IL-18 promotes the production of Th17 cells, cells that induce
inflammation, and thus reduce Treg cells, as well as cells that have an immunosuppressor
function [60–62]. By contrast, when IL-18BP blocks IL-18, subsequently, the Th17 differen-
tiation and Treg will eventually increase and disrupt the balance between Th17 and Treg.
The inhibition of Th17 and elevation of Treg cells are beneficial when the superior immune
reaction is unwanted, such as in the bone loss process. Additionally, in this case, IL-18BP
has been suggested for use in treating osteoporosis [44,63]. Although viruses and cancer
cells have granted the benefit of this inhibitory role of IL-18BP to increase Treg cells, and
thus evade immune system recognition.

On the one hand, a small number of viruses, such as Poxviruses (C12L, D5L, EVM013,
CPXV024), Yatapoxviruses (14L), and Molluscipoxvirus (MC053L, MC054L), encode at least
one copy of IL-18BP homologs (named viral IL-18BP; vIL-18BP) [64–70]. The vIL-18BP was
found to have similar human IL-18 binding sites [65], explaining the viral dissemination
and modulation of the host antiviral response, which result in immune evasion. In addition
to its ability to bind and neutralize IL-18, it was found to reduce IFNγ production in vitro
studies [64–66,69–71]. Moreover, deleting vIL-18BP in these viruses potentially improves
the respective live attenuated vaccines [72].

Moreover, mycobacterium tuberculosis (MTB), which caused tuberculosis (TB) pul-
monary illness, has been known for its immune evasion, and thus still has serious clinical
concerns. Lately, IL-18, as well as IL-18BP, has been found to be associated with active
TB infection [73]. In this regard, IL-18 was identified as one of the pivotal cytokines that
regulate macrophage cells during this infection in supplement with IL-12, IL-27, IFNγ,
and TNFα [74]. Recently, serum levels of IL-18BP were shown as one of the potential
biomarkers to discriminate between latent and active TB, further between active TB and
non-mycobacterial community-acquired pneumonia (CAP) [73,75,76].

On the other hand, IL-18 is highly expressed in several cancers, within its microenvi-
ronment IL-18BP acts as a barrier for the cancer niche not only by increasing Treg, but also
by attenuating natural killer (NK)-mediated killing [77–79]. In addition to the upregulation
of IL-18BP in inflammatory conditions as mentioned earlier, IL-18BP is upregulated in
various cancer types, such as breast [80], pancreas [33], prostate [31], and ovarian [34].
Therefore, IL-18BP has been suggested as an immunotherapy potential target for many
cancers [77,81]. Initially, a clinical trial started with a recombinant IL-18 (rIL-18: SB-485232).
However, during phase II, this recombinant cytokine demonstrated inadequate anti-tumor
activity, especially with metastatic cancers. Therefore, it was further tested in combination
with other therapies (ClinicalTrials.gov Identifier: NCT00107718) [82,83]. This unexpected
lower efficiency is mostly due to the production of IL-18BP in the cancer microenvironment
that neutralizes exogenous IL-18, as well. Recently, Zhou et al. have engineered an effective
anti-tumor decoy-resistant IL-18 (DR-18). Namely, in contrast to the wild type rIL-18, it is
characterized by the reinstate NK cell function, and thus promotes cancer clearance, sug-
gesting the enhancement of anti-tumor immunity with other immunotherapies [78,79,84].
Still, further studies are needed to evaluate the newly developed DR-18 agonist for several
cancer types. This finding encourages researchers and pharmaceutical companies to unveil
more similar molecules that can effectively facilitate cancer clearance.

Nevertheless, it was shown that the absence of IL-18BP resulted in excessive IL-18
activity, which leads to strong and uncontrolled immune reactions, such as in the case of
acute renal injury, cholestatic liver injury, and acute live injury [85–88]. In line with this
fact, the loss of IL-18BP function seems to be fatal for humans, considering that in 2019
a case report confirmed the death of a child with a loss-of-function mutation in IL-18BP
(homozygous 40-nucleotide deletion) upon hepatitis A virus infection [89]. As in this
recently mentioned case, the infection was followed by an endless NK activation due to



Biomedicines 2022, 10, 1750 8 of 17

continuously released IL-18 without its sequestering by the loss of IL-18BP function causing
cytotoxicity for healthy hepatic cells, thus disrupting immunity, and establishing toxicity
and lethality. Therefore, the absence of IL-18BP reveals that the baseline levels of IL-18 can
be destructive to humans, and thus it should be examined wisely and monitored continually.

5. IL-18BP in Autoimmune Diseases

IL-18/IL-18BP imbalance is highly linked to immunologically mediated diseases,
especially diseases that have a pathological role of IFNγ, such as macrophage activated
syndrome (MAS) [2,32,90–94]. MAS is a life-threatening condition that is not mainly a
syndrome on its own, but is also found to be associated with other infectious and au-
toinflammatory diseases [2,32,93,95–100]. Various infections developed MAS, including
Epstein–Barr virus, cytomegalovirus, and herpes virus, and infections with other pathogens,
such as intracellular bacteria and parasites, as well as numerous lymphomas [32,90–93].
Moreover, MAS could be present as a form of secondary hemophagocytic lymphohistiocyto-
sis (HLH), in addition to the rare and serious rheumatic diseases, such as adult-onset Still’s
disease (AOSD) and its counterpart in children and systemic juvenile idiopathic arthritis
(sJIA) [94,101–105]. In both conditions, secondary HLH and AOSD/sJIA, a significant
elevation of IL-18 was validated and found to be correlated to disease activity and sever-
ity [94,104,106–125]. MAS and IL-18 serum levels both represent the shared pathogenic
features between these two different disease conditions. Under active MAS, IL-18 induces
T cells expansion, and thus enhances the production of IFNγ and antigen-presenting cells
(APCs) activation, predominantly dendritic cells (DCs), which in turn support the acti-
vation of macrophages. Consequently, this activation results in prolonged activation of
these cells along with their inflammatory mediators, such as cytokine storm [106–108].
Therefore, increasing evidence showed that MAS-associated AOSD/sJIA had higher levels
of IL-18 when compared to patients with no MAS association, IL-18BP or equivalent, which
are suggested as a potential therapeutic option to neutralize IL-18 for MAS-associated
conditions [95,120,126–128]. This suggestion was translated into drugs that are currently
under distinct phases of clinical trials, which were summarized in Table 1.

Table 1. Clinical trials associated with IL-18.

Condition/Disease Clinical Phase Clinical Trial Status No. of Participants Type of Intervention or
Treatment NCT Number

Still’s Disease, Adult-Onset Phase II Completed 23 participants
Biological: Tadekinig alfa

(recombinant human IL-18
binding protein)

NCT02398435

XIAP Deficiency,
NLRC4-MAS Phase III Recruiting 10 participants Drug: Tadekinig alfa NCT03512314

XIAP Deficiency,
NLRC4-MAS Phase III Recruiting 10 participants Drug: Tadekinig alfa NCT03113760

Inflammatory Bowel
Diseases Phase I Completed 78 participants Drug: GSK1070806

(block IL-18) NCT01035645

Kidney Transplantation
(Status Post) Phase II Terminated * 7 participants Drug: GSK1070806 + others NCT02723786

Melanoma Phase II Completed 64 participants Drug: SB-485232 (rhIL-18) NCT00107718
Dermatitis, Atopic Phase I Recruiting 48 participants Drug: GSK1070806 NCT04975438

Crohn Disease Phase I
Phase II Completed 5 participants Drug: GSK1070806 NCT03681067

Behcet’s Disease Phase II Unknown # 12 participants Drug: GSK1070806 NCT03522662

* Lack of efficacy. # Study has passed its completion date and status has not been verified in more than 2 years.

Tadekinig-α is a human recombinant IL-18BP (rhIL-18BP) with an IL-18 high affinity
and has been investigated in two serious inflammatory conditions that are associated with
unusual elevation of IL-18 plasma levels; AOSD/sJIA and a refractory HLH bearing a gain
of function mutation named NLR family CARD domain containing 4 (NLRC4)-related MAS.
To date, promising results showed a favorable response toward Tadekinig-α in AOSD/sJIA
and NLRC4-related MAS, which are currently under phase II and III, respectively (Clinical-
Trials.gov Identifier: NCT02398435, NCT03113760, NCT03512314) [104,129–131]. Notably,
in phase II clinical trial on Tadekinig-α, 50% of the AOSD cohort reached normal body
temperature and reduced C-reactive protein (CRP) levels within 3 weeks under treatment,
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confirming the neutralization effect of the free bioactive IL-18 [129]. More recently, a case
report revealed undetectable serum levels of the free IL-18 after only 2 h upon first adminis-
tration of Tadekinig-α, while again increased when the administration of Tadekinig-α was
discontinued [130].

MicroRNAs (miRNAs) are known as short non-coding sequences of RNA, which
show a repression function. Notably, the reported miRNA (miRNA-134) that targeted
IL-18BP, was found to be elevated in AOSD plasma and correlated with the activity of the
disease [132]. It is well known that changes in miRNAs are considered as post-transcription
gene regulators, and participate in human disorder pathogenesis [133]. Therefore, miRNA-
134 can be an AOSD biomarker as well as a target for augmentation therapy. On the other
hand, HLH patients carrying the NLRC4 mutation were examined under the Tadekinig-α
regimen earlier than AOSD/sJIA, demonstrating a successful treatment in HLH holding
NLRC4 genetic background [131,134,135].

Although IL-18/IL-18BP has significantly dysregulated in the abovementioned MAS-
associated diseases, the imbalance of IL-18/IL-18BP has also been noticed in other inflamma-
tory diseases, including rheumatoid arthritis (RA), psoriasis, asthma, lupus erythematosus,
multiple sclerosis, atherosclerosis, renal and liver injury, inflammatory bowel disease (IBD),
Crohn’s disease (CD), organ transplant rejection together with Graft versus host disease
(GvHD), and most recently in pyogenic sterile arthritis, pyoderma gangrenosum, and acne
(PAPA) syndrome [15,37,86,136–148], where cytokine imbalance is a major feature of these
autoimmune disorders. The refractory monogenic inflammatory disorder, PAPA, resulted
from a dominant mutation with the proline-serine-threonine phosphatase interacting pro-
tein 1 (PSTPIP1) gene and is characterized by acne and skin ulceration. In addition, the
autoimmune neutrophilic destruction of joints and skin is the major clinical presentation of
PAPA, but it was not associated with MAS [149,150]. Moreover, a recently published study
found that IL-18 is elevated in the patient serum and this elevation was highly associated
with the disease outcome, again with no MAS risk [148].

Therefore, IL-18 elevation and depletion in IL-18BP function is a biomarker for most
of these diseases. However, targeting IL-18 by IL-18BP or equivalent is yet to be fully
explored. Humanized IgG1 monoclonal antibody (anti-IL-18), GSK1070806, is instantly in
the development phase for treating a variety of inflammatory conditions, atopic dermatitis
(AD) and IBD in phase I, delayed graft function, CD, and Behcet’s disease in phase II
(ClinicalTrials.gov Identifier: NCT04975438, NCT01035645, NCT02723786, NCT03681067,
NCT03522662) [151]. In addition to Tadekinig-α and GSK1070806, a long-acting antibody
drug targeting IL-18 and APB-R3 is developed for inflammatory autoimmune disease
treatment in preclinical stages, and will soon enter phase I clinical trial [152].

Improving IL-18 targeting by allowing it to act for a longer time or with superior
affinity appears to be promising and beneficial, taking into consideration sequence and
structural features that affect the binding interaction. A recent structural study aimed
to characterize the IL-18BP sequestration mechanism and reveal a novel disulfide-linked
boundary, resulting in tetrameric assembly between IL-18BP and IL-18 [153]. During their
study, due to N-terminal heavy glycosylation, they produce hIL-18BP∆N, an hIL-18BP that
lacks N-terminal residues 63-194 and is treated with Endoglycosidase H. This form has
lower glycosylation and still has the disulfide bridge, which shows a comparable IL-18
sequestering ability with high affinity, but at a higher rate. Therefore, hIL-18BP∆N might
be a promising IL-18 neutralizing drug (see Figures 3 and 4).

IL-18 has been involved in the injury of several organs as well as in potentially fatal
conditions, which are exemplified by a cytokine storm. Lately, after the emergence of the
COVID-19 crisis, heavy-handed cases of SARS CoV-2 infection showed a cytokine storm
that derives tissue damage [154–157]. The COVID-19 mediated cytokine storm showed that
elevated IL-18 is one of the cytokines involved in the storm. Moreover, due to its remarkable
elevation, IL-18 was recognized as a biomarker for disease severity [154,155,157–159].
Therefore, IL-18BP has been suggested as a promising therapy for COVID-19. Yet, there
are no pre or clinical trials in this regard [17,160,161]. Furthermore, the lack of proper and
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well-characterized animal models slows down the movement for further discovering and
understanding IL-18BP as a potential therapeutic option for a wide range of disorders.
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Abbreviations

AD Atopic dermatitis
AOSD Adult-onset Still’s disease
APCs Antigen-presenting cells
CAP Community-acquired pneumonia
CD Crohn’s disease
CEBP-β CCAAT-enhancer binding protein beta
COVID-19 Coronavirus disease 2019
CRP C-reactive protein
DAMPs damage-associated molecular patterns
DCs Dendritic cells
GAS Gamma-activated sequence
GvHD Graft versus host disease
HLH hemophagocytic lymphohistiocytosis
Ig Immunoglobulin
IBD Inflammatory bowel disease
IFN Interferon
IFNγR1 IFNγ receptor 1
IFNγR2 IFNγ receptor 2
IRAK interleukin-1 receptor-associated kinase
IRFs Interferon regulatory factors
IRF-E IFN regulatory factor 1 response element
IL Interleukin
IL-1R IL-1 receptor
IL-18BP IL-18 binding protein
IL-18Rα IL-18 receptor alpha chain
IL-18Rβ IL-18 receptor beta chain
JAK Janus kinase
MAS Macrophage activated syndrome
miRNAs MicroRNAs
MTB Mycobacterium tuberculosis
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NK Natural killer
NLRC4 NLR family CARD domain containing 4
PAMPs Pathogen-associated molecular patterns
PAPA Pyoderma gangrenosum and acne
Pro-IL-18 pro-interleukin IL-18
PRRs Pattern recognition receptors
PTM Post translational modifications
RA Rheumatoid arthritis
SARS CoV-2 Severe acute respiratory syndrome coronavirus 2
STAT1 signal transducer and activator of transcription 1
TB Tuberculosis
TLR Toll-like receptors
TRAF TNF receptor associated factor
vIL-18BP viral IL-18BP
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