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Abstract

In prokaryotes, genome size is associated with metabolic versatility, regulatory complexity, effective population size, and horizontal

transfer rates. We therefore analyzed the covariation of genome size and operon conservation to assess the evolutionary models of

operonformationandmaintenance. Inagreementwithprevious results, intraoperonicpairsofessential andofhighlyexpressedgenes

are more conserved. Interestingly, intraoperonic pairs of genes are also more conserved when they encode proteins at similar cell

concentrations, suggesting a role of cotranscription in diminishing the costofwaste and shortfall in gene expression. Largergenomes

have fewer and smaller operons that are also less conserved. Importantly, lower conservation in larger genomes was observed for all

classes of operons in terms of gene expression, essentiality, and balanced protein concentration. We reached very similar conclusions

in independent analyses of three major bacterial clades (a- and b-Proteobacteria and Firmicutes). Operon conservation is inversely

correlated to the abundance of transcription factors in the genome when controlled for genome size. This suggests a negative

association between the complexity of genetic networks and operon conservation. These results show that genome size and/or its

proxies are key determinants of the intensity of natural selection for operon organization. Our data fit better the evolutionary models

based on the advantage of coregulation than those based on genetic linkage or stochastic gene expression. We suggest that larger

genomes with highly complex genetic networks and many transcription factors endure weaker selection for operons than smaller

genomes with fewer alternative tools for genetic regulation.
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Introduction

Most genes in the genomes of prokaryotes are expressed in

polycistronic units called operons. The operon model was pub-

lished more than 50 years ago and had a key role in the

development of molecular biology as it highlighted the impor-

tance of gene expression regulation (Jacob and Monod 1961).

Operons start with a transcription promoter, include between

two and more than a dozen genes (average ~3 genes), and

end in a transcription terminator (Zheng et al. 2002; Lawrence

2003). The presence of alternative promoters and attenuators

can lead to heterogeneous transcription rates within operons.

Furthermore, mRNA and proteins in prokaryotes have very

different half-lifes (7 min and ~24 h, respectively, in both

Escherichia coli and Mycoplasma pneumoniae; Koch and

Levy 1955; Selinger et al. 2003; Maier et al. 2009; Yus et al.

2009). This leads to poor correlations between transcription

rates and protein concentrations (Maier et al. 2009). Never-

theless, genes in the same operon are expressed at more sim-

ilar rates than random pairs of genes (Sabatti et al. 2002; Price

et al. 2006).

Operons are highly enriched in genes encoding related

functions. Accordingly, operons often include genes encoding

enzymes of consecutive steps in metabolic pathways (Zaslaver

et al. 2006) or genes encoding interacting proteins (Mushe-

gian and Koonin 1996; Huynen et al. 2000). Conservation of a

gene in an operon is thus a strong indication of functional

neighborhood and can be used to make functional inferences

(Overbeek et al. 1999; Moreno-Hagelsieb and Janga 2008).

Proteins often participate in several processes. Hence, the
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presence of a gene in an operon, and the closeness between

operons, reflects a compromise between the different pro-

cesses (Yin et al. 2010). Operon structure is thus a key variable

to understand the regulation of gene expression in prokary-

otes. Operons are much more conserved than expected given

rearrangement rates (de Daruvar et al. 2002; Rocha 2006a;

Moreno-Hagelsieb and Janga 2008), presumably because of

the advantages of such genetic organization (Lathe et al.

2000; Omelchenko et al. 2003; Price et al. 2006).

A number of models aim at explaining the advantages of

the organization of genes in operons. Some models propose

that tight genetic linkage favors physical clustering of func-

tional neighbor coevolving genes (genetic linkage models).

Indeed, coadaptive changes in interacting genes are less

likely to be broken by recombination if genes are closely

spaced (recombination model; Stahl and Murray 1966). It is

unclear if this hypothesis is compatible with the typically low

recombination rates found in bacteria (Vos et al. 2009), and

with the short size of recombination tracts (typically smaller

than a gene; Kennemann et al. 2011). Tight linkage between

genes under strong selection could also diminish the deleteri-

ous effects of large genetic deletions, which are very frequent

in Prokaryotes, by reducing their pleiotropic effects and pro-

tecting functions under very strong selection (persistence

model; Fang et al. 2008). These models are plausible, but

the formation of operons requires some additional explanation

because genes do not have to be cotranscribed to be under

tight linkage. As an example, the yeast Saccharomyces cer-

evisiae shows coevolution of gene order and recombination

rates leading to linkage between essential genes even

though it practically lacks operons (Pal and Hurst 2003).

Horizontal gene transfer drives the expansion of the gene

repertoires of prokaryotes (Ochman et al. 2000; Gogarten

et al. 2002; Treangen and Rocha 2011). Genes encoding func-

tions under constant selection—persistent genes—are stably

maintained in genomes for long periods of time. This trend is

particularly strong for genes encoding essential functions.

Inversely, accessory genes are frequently gained and lost

(Medini et al. 2005). According to the selfish model, operons

form and persist because they facilitate the horizontal transfer

of coregulated functional modules (Lawrence and Roth 1996).

Such a set of functionally neighbor, coregulated genes is more

likely to be functional in the new genetic background and thus

be kept by natural selection in the new genome. However,

essential genes are more clustered than the average gene and

are more often in operons (Pal and Hurst 2004). Accordingly,

new operons do not overrepresent horizontally transferred

genes and often include essential or persistent genes (Price,

Alm, et al. 2005). Interestingly, the most frequently clustered

genes in genomes are either present in nearly all or in very few

genomes in a clade (Fang et al. 2008). Thus, the domains of

application of the selfish model and the other linkage-based

models might be different. The latter could apply to the genes

that persist for long periods of time in prokaryotic lineages

whereas the selfish model could explain why accessory

genes with high rates of transfer and loss are often found in

operons.

Recent works suggest that noise minimization drives

operon formation and within operon organization (Swain

et al. 2002; Swain 2004; Sneppen et al. 2010; Ray and

Igoshin 2012; stochastic expression models). In these

models, cotranscription lowers the cost of stochastic gene

expression because it synchronizes the different components

of the same functional module thus minimizing shortfall or

waste. Translational coupling, the interdependence of trans-

lational efficiency of genes encoded within the same operon,

might also favor similar expression levels for proteins ex-

pressed from the same operon (Lovdok et al. 2009). Noise

in gene expression decreases rapidly with increasing level of

expression (Elowitz et al. 2002) and should be particularly rel-

evant for lowly expressed (LE) genes in small cells such as the

ones of most bacteria. Cotranscription places a series of genes

under the control of a single regulatory region. This single

region could be more efficiently selected for adaptive

changes—relative to the set of promoters required to regulate

transcription of monocystronic units—favoring more efficient

regulation of expression levels (Price, Huang, et al. 2005; pro-

moter sharing model). Genomes structured in operons have

fewer target sites for deleterious mutations in regulatory re-

gions. Hence, operons could result from selection to minimize

the deleterious impact of these mutations. Accordingly, it has

been proposed that reduction of effective population sizes, as

observed in many eukaryotes, leads to operon disruption (drift

model; Lynch 2006). This highlights the expected positive as-

sociation between effective population size, through its effect

in the efficiency of natural selection, and operon conservation.

The study of the formation and maintenance of operons is

important to establish the evolutionary mechanisms shaping

the structure of prokaryotic genomes and their regulatory net-

works. Unfortunately, the direct test of these models requires

the quantification of parameters such as effective population

sizes, rates of horizontal transfer, and selective coefficients for

operons formation and change. These are notoriously difficult

to estimate in prokaryotes. One variable that might be useful

in this framework is genome size, which in bacteria varies

from 0.14 Mb to more than 13 Mb (Schneiker et al. 2007;

McCutcheon and von Dohlen 2011). Bacterial genomes are

tightly packed with genes. Hence, variations in genome size

correspond to proportional variations in the number of genes

in the genome (Mira et al. 2001). These variations affect the

classes of functional repertoires of the cell at very diverse levels

(Boussau et al. 2004). Smaller genomes tend to correspond to

obligatory mutualists or pathogens and arise by reduction of

larger genomes of free-living bacteria (Moran 2003; Klasson

and Andersson 2004; Moya et al. 2009). Large bacterial ge-

nomes correspond to species that are able to tackle a large

number of environmental stimuli and sometimes encode

complex developmental processes such as multicellularity
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(Schneiker et al. 2007). Of particular relevance for the evolu-

tion of operons is the observation that the number of tran-

scription factors increases more than linearly with genome size

(van Nimwegen 2003; Konstantinidis and Tiedje 2004). Large

bacterial genomes encode many transcription factors, whereas

many of the smallest genomes encode none (Minezaki et al.

2005). Genome size is also correlated with the strength of

purifying selection suggesting that it is a proxy for effective

population size (Kuo et al. 2009). Finally, genome size is the net

result of accretion events, notably horizontal gene transfer,

and genetic deletions (Lawrence et al. 2001). Hence, larger

genomes are expected to have acquired genes by horizontal

transfer at much higher rates than small genomes.

As genome size is correlated with the number of genes

encoding transcription factors, with effective population size

and with the frequency of horizontal gene transfer, it is a key

amenable variable to study the evolution of operons. Yet,

previous results showed equivocal trends. A seminal analysis

of 26 bacterial genomes showed a negative correlation be-

tween operon and genome sizes (Cherry 2003). Accordingly,

the small genomes of Buchnera aphidicola and M. pneumo-

niae have long operons (Guell et al. 2009; Yus et al. 2009;

Brinza et al. 2010). However, other small genomes, for exam-

ple, Borrelia spp., have short operons (Zheng et al. 2002).

Operon detection methods use, amongst other information,

the length of intergenic spacers to distinguish between intra-

and interoperonic spacers (Salgado et al. 2000; Chuang et al.

2012). Hence, the use of the number of operons as a proxy of

selection on operon conservation could be affected by the

covariation of genome size and the length of intergenic

spacers if operon detection is made with state-of-the-art

methods. Pairs of intraoperonic genes are much more con-

served than pairs of interoperonic genes (Rocha 2006a). A

methodological artifact leading to spuriously large operons

in compact genomes will lead to lower operon conservation

in these genomes because the false putative “operons” are

less likely to be conserved. As a result, while errors in operon

annotation in compact genomes may lead to an overestima-

tion of the selection acting upon large operons in these ge-

nomes, they will also lead to an underestimation of operon

conservation. Operon conservation between species is also a

more accurate and natural measure of the selection imposed

on operons than other simple traits such as operon length and

operon number. We therefore decided to analyze operon con-

servation as a function of genome size.

To examine the organization and distribution of operons,

we analyzed three different clades: a-proteobacteria,

b-proteobacteria, and Firmicutes. Analyzing different clades

enabled us to inspect independent processes of genomic evo-

lution. These clades, in particular, include many sequenced

genomes and a broad range of genome sizes (from: 0.14 to

9.10 Mb in a-proteobacteria; 0.2 to 9.73 Mb in b-proteobac-

teria; and 1.42 to 7.18 Mb in Firmicutes; supplementary

fig. S1, Supplementary Material online). In this study, we

first analyzed general features of operon organization in

each of the three clades. Next, we compared the operon

structure of each genome with that of E. coli. As we analyzed

each clade separately, E. coli is always an outgroup relative to

the other genomes. Finally, we studied the variation in operon

conservation as a function of genome size and relevant bio-

logical traits such as essentiality, gene expression and protein

concentration.

Materials and Methods

Data

Complete genome sequences and annotations were down-

loaded from NCBI GenBank (ftp://ftp.ncbi.nih.gov, last

accessed November 20, 2013; supplementary table S1,

Supplementary Material online). We excluded pseudogenes

and genes with internal in-frame stop codons. All the pre-

dicted operons for these organisms were downloaded from

the Prokaryotic Operon DataBase (ProOpDB; http://operons.

ibt.unam.mx/OperonPredictor/, last accessed November 20,

2013), which claims to be the most accurate method available

(Taboada et al. 2012). As different operon predictions may

differ in a number of cases (Brouwer et al. 2008), we also

calculated all results using the operons predicted in the

Database of prOkaryotic OpeRons (DOOR) at http://csbl1.

bmb.uga.edu/OperonDB (last accessed November 20, 2013;

Mao et al. 2009; supplementary text S1, Supplementary

Material online). We analyzed Escherichia coli K-12

MG1655, 102 a-Proteobacteria, 63 b-Proteobacteria, and

124 Firmicutes. To avoid overrepresentation of highly similar

organisms, those above 97% in 16SrRNA identity were clus-

tered and the largest genome was selected for this study. We

did not include Tenericutes, the basal branch of Firmicutes, in

our study because their genomes are always small and evolve

fast. Their inclusion would lower the accuracy of the method

to detect homology and might affect our results. For the three

clades, we included in our study all species with complete

public annotated genome sequences for which there were

whole-genome operon predictions in both databases.

Identification of Orthologs

We identified for each genome the genes that were ortholo-

gous to the ones of E. coli K-12 MG1655 using reciprocal best

hits. For every gene, we conducted a FASTA search in the

other genome and vice versa. We retained the ten best hits

for every gene. For these ten hits, we constructed exact pair-

wise alignments using the BLOSUM62 matrix and the

Needleman–Wunsch algorithm where we did not penalize

gaps at the edge of smaller sequences, that is, end-gap free

alignment following (Erickson and Sellers 1983). We consid-

ered as putative orthologs the reciprocal best hits with more

than 38% similarity and less than 30% difference in protein

length.
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Operon Gene Pairs

The operon structure of a given genome was analyzed as a

succession of intraoperon gene pairs (OGP). Starting from the

operon prediction data of a given genome, the OGP were

constructed for each pair of adjacent genes within the

operon (there are [k�1] adjacent gene pairs for a k-gene

operon). For example, a set of adjacent genes ABC will be

decomposed in two pairs: AB and BC. Under a null model

of neutral evolution of operons, the individual OGPs are

statistically independent, because disruption of the adjacency

between B and C will not affect the adjacency between A and

B. Deletion of B leads to exclusion of the two pairs from fur-

ther analysis. We made a test to check that counting a gene

twice—its two pairs—is not affecting our results under a se-

lection model where disruption of an operon between AB

might lead also to decrease selection for BC. We made a

complementary set of the operon conservation analyses

(below) with a data set where each gene is only counted

once (one of the pairs is randomly discarded). Despite the

fewer data points (decreasing the power of the test), we

find very high correlations between the analysis with the orig-

inal and the restricted data sets (all correlations larger than 0.9,

see supplementary table S2 [Supplementary Material online]

for a comparison). The analysis of independent OGP also

avoids overrepresenting large operons. For example, we ana-

lyze two OGP in 3-gene operons and 9 OGP in 10-gene op-

erons. If all pairwise analyses within the operon were done,

there would be three comparisons for 3-gene operons and 45

comparisons for 10-gene operons. Our method assures that

only one OGP is affected by one given rearrangement inde-

pendently of operon size.

Operon Conservation

We used the conservation of OGP as a measure of operon

conservation between a given focal genome “A” and E. coli

K-12 MG1655. First, from all intra-OGPs in E. coli K-12

MG1655, we selected those having orthologs in genome A

(OGPA). We then identified within the intra-OGPs in the

genome A those for which the orthologs in E. coli K-12

MG1655 were also in the same operon (OGPA,EC). Finally,

we calculated the operon conservation index for A (OCIA) as

follows:

OCIA ¼ #OGPA, EC=#OGPA

We also computed OCI values for subsets of pairs of genes

according to the variables of interest such as essentiality, gene

expression, and protein concentration (supplementary table

S1, Supplementary Material online).

Analysis of Expression Levels

To estimate E. coli K-12 MG1655 mRNA levels per cell, we

used four public transcriptomic data sets (Allen et al. 2003;

Corbin et al. 2003; Covert et al. 2004; Lu et al. 2007). Data

obtained from different experiments were normalized. For

this, we selected the genes that were assayed in all experi-

ments (ubiquitous genes). We computed the average values

for these genes in each experiment. If in experiment A the

average is XA and in experiment B it is 1.3*XA, then 1.3 is the

multiplicative factor that has to be applied to the values in A so

that these genes can be compared with the ones of B. The

ratio of the averages between experiments gives then the

multiplicative factors that allow us to normalize the experi-

ments so that we can compare them directly. In the earlier

example, a gene z assayed in A and B has a normalized value

of (zA + zB/1.3)/2. To estimate the mRNA levels of each OGP,

we averaged the normalized values of both genes. Then, we

used the median of this distribution (supplementary fig. S2,

Supplementary Material online) to divide the set of genes in

two equal size subsets of highly expressed (HE) and LE genes.

Essentiality Data

We classified genes as essential or nonessential using E. coli

data (Baba et al. 2006). An intraoperonic gene pair was con-

sidered essential (EE) if both genes were essential and nones-

sential (NN) when both genes were nonessential.

Protein Level Analysis

To estimate E. coli K-12 MG1655 protein levels per cell, we

used three proteomic experimental data sets (Lopez-

Campistrous et al. 2005; Lu et al. 2007; Masuda et al.

2009). Data obtained from different experiments were nor-

malized relative to their average values as the ones of the

expression levels (discussed earlier). The relative difference

(�AB) between concentrations of proteins encoded by two

intraoperonic genes A (of concentration CA) and B (of concen-

tration CB) was calculated as:

�AB ¼ jðCA � CBÞj=ðCA+CBÞ;

We used the median value of � to group proteins in two

classes of respectively high and low concentration (supple-

mentary fig. S3, Supplementary Material online). Pairs of

intraoperonic genes belonging to the same class of concen-

tration (both high or both low) were marked as having bal-

anced protein concentrations (BAL). The remaining pairs were

marked as having unbalanced protein concentrations (UNB).

Analysis of Transcription Factors

Information for the predicted transcription factors for each

genome was downloaded from the DBD transcription factor

database (Charoensawan et al. 2013). We analyzed all

organisms in our study for which there were predictions

available of transcription factors: 49 a-proteobacteria, 35

b-proteobacteria, and 59 Firmicutes. We included in the anal-

ysis the nonredundant transcription factor protein families

using UCLUST with a threshold of 80% (Edgar 2010).
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Phylogenetic-Independent Contrasts

For each clade (plus E. coli K-12 MG1655), we built a super-

matrix concatenating the aligned protein sequences of the

core genome (described earlier for the persistence analysis).

The phylogenetic trees of the three clades were inferred from

this supermatrix by maximum likelihood algorithms using

PHYML (Guindon and Gascuel 2003) with the model

LG + �(8) and default parameters. The trees were rooted

using E. coli K-12 MG1655 as an outgroup. For each variable

of interest, we carried out the phylogenetic-independent con-

trast (PIC) analysis (Felsenstein 1985) using the package ape

(Paradis et al. 2004) for R software (R Development Core

Team 2011). The analysis of contrasts showed in some

clades some systematic outliers, caused by long internal

branches in the tree. To include these points in the analysis

without giving them unwarranted weight, we used nonpara-

metric methods (Spearman rank) to examine the correlation

between contrasts.

Statistical Analysis

Correlations were analyzed by nonparametric Spearman rho

association measure. The statistical differences between sub-

sets (e.g., HE vs. LE) were assessed by t-paired tests. The

Spearman partial correlation test was used to analyze the re-

lation between the number of transcription factors and OCI

while controlling for genome size. The tests of difference be-

tween correlation coefficients were computed from the

Fisher’s Z-transformation (Kvam and Vidakovic 2007). All sta-

tistics were computed using R (R Development Core Team

2011).

Results

Associations between General Features of Operon
Organization and Genome Features

We used two independent databases of operon predictions,

ProOpDB and DOOR, to class pairs of adjacent genes as in-

traoperonic or interoperonic (see Materials and Methods).

These analyses were done for 124 genomes of Firmicutes,

102 of a- and 63 of b-Proteobacteria (one genome per spe-

cies). The analysis of both operon databases gave concordant

results and we only present in the main text the results con-

cerning ProOpDB, which reports the highest accuracy

(Taboada et al. 2012; see supplementary text S1 [Supplemen-

tary Material online] for a comparison). Species in our data set

are not independent statistical instances because they are re-

lated by a common evolutionary history. To correct for this

effect, we retested all correlation analyses using PICs (see

Materials and Methods; Felsenstein 1985; supplementary

tables S3 and S4, Supplementary Material online). For simplic-

ity, we indicate the results of these analyses in the main text

only when they qualitatively contradict the significance of the

Spearman nonparametric association test.

The number of genes and the number of operons in ge-

nomes grows linearly with genome size (supplementary fig.

S1, Supplementary Material online). This is expected given the

high coding density of the genomes of prokaryotes (Mira et al.

2001). We found that a group of a-protebacteria shows a

singular behavior in several plots regarding coding densities

(supplementary fig. S4, Supplementary Material online).

The group consists of organisms with an obligate intracel-

lular lifestyle—either parasites or endosymbionts of the

order Rickettsiales—ongoing extensive pseudogenization

(Andersson and Andersson 2001). Many of these genomes

have thus large intergenic regions. As mentioned earlier, inter-

genic distances are one of the key variables used to delimit

operons. To avoid spurious definitions of operons caused

by extensive pseudogenization, we excluded this group of

21 genomes of a-proteobacteria (supplementary table S5,

Supplementary Material online) from further analyses. This

had no qualitative impact on our results (supplementary

fig. S5, Supplementary Material online). We found significant

negative associations between genome size and the fraction

of genes in operons and the average operon length in

all clades (fig. 1A–F). We also found pervasive and strong

positive correlations between the coding density of a

genome and the average number of genes in operons

(fig. 1G–I). This shows clear associations between genome

size, operon organization and coding density. Notably,

larger genomes tend to have relatively larger intergenic re-

gions and fewer and shorter operons. This might be caused

by stronger selection for operons in smaller genomes or simply

by smaller intergenic distances within than between operons.

To distinguish between these two hypotheses, we studied

operon conservation.

Operon Conservation and Genome Size

We computed for each genome the OCI (see Materials and

Methods). OCI is the fraction of intraoperonic pairs of adjacent

genes in a genome having orthologs in one same operon

in E. coli. OCI values are higher in b-proteobacteria

(median¼ 0.57) as expected because this is the clade closest

to E. coli. The other clades have lower medians and their re-

spective ranks—Firmicutes (median¼ 0.50) and a-proteobac-

teria (median¼0.46)—are opposite to the expected given

phylogenetic relatedness. Next, we examined the association

between genome size and OCI. The three clades showed

negative, statistically significant, correlations between

operon conservation and genome size (fig. 2). Hence, larger

genomes have fewer, shorter and less conserved operons

than smaller genomes. To shed some light in the gene traits

shaping operon conservation, we introduced in our analysis

a series of biologically relevant variables such as gene essen-

tiality, protein expression levels, and balanced protein

concentration.

Nuñez et al. GBE

2246 Genome Biol. Evol. 5(11):2242–2254. doi:10.1093/gbe/evt174 Advance Access publication November 6, 2013

Phylogenetic 
. 
above 
phylogenetic 
-
. 
Fisher's 
.
-
-
) (
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
-
phylogenetic independent contrast
) (
) (
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
, 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
-
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
 - 
 - 
above
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evt174/-/DC1
-
-
.
operon conservation index
OCI, 
see 
methods
-
since 
 - 
 - 


Effects of Essentiality in Operon Conservation

Essential genes are usually defined as those whose inactivation

prevents growth even in rich medium (Baba et al. 2006). The

operons of E. coli overrepresent essential genes and those

encoding them are highly conserved (Pal and Hurst 2004;

Price, Huang, et al. 2005). Small genomes, which we have

shown have more conserved operons, have a larger fraction

of essential genes. We have thus tested the hypothesis that

essentiality plays a role in the association between operon

conservation and genome size. We classed genes as essential

or nonessential using E. coli data (Baba et al. 2006), and tested

whether pairs of essential genes (EE) are more often conserved

in the same operon than pairs of nonessential genes (NN). This

was true and statistically significant in all clades (t-paired tests,

FIG. 1.—Association between genome size and the fraction of genes in operons, the length of operons and the density of coding sequences. Association

between the fraction of genes in operons (A–C) and the length of operons as a function of genome size (D–F). Association between the fraction of genes in

operons and the density of coding sequences (G–I). Results for a-Proteobacteria (A, D, G), b-Proteobacteria (B, E, H), and Firmicutes (C, F, I). Operon length

was calculated as the average number of genes per operon for the whole genome operon predictions. Association between the variables was computed

using the nonparametric Spearman rho.
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all P< 0.0001; fig. 3A–C), with stronger effects in

a-Proteobacteria, then b-Proteobacteria and finally Firmicutes.

We then tested how the presence of essential genes affected

operon conservation in function of genome size. Both pairs of

essential and nonessential genes tend to be less conserved in

the operons of larger genomes (fig. 3A–C). Yet, the correla-

tion is weak and often nonsignificant. These results not only

show that operons with essential genes are more conserved,

but also show that both operons with essential and nonessen-

tial genes are less conserved in large genomes.

Expression Levels

Highly expressed genes in bacteria are under stronger purify-

ing selection and thus show higher codon usage bias (Gouy

and Gautier 1982), encode less expensive amino acids (Akashi

and Gojobori 2002), and evolve slower (Rocha and Danchin

2004). Similarly, gene organization of highly expressed genes

is expected to be under stronger purifying selection because

the cost of inefficient tuning of expression levels in highly ex-

pressed proteins is presumably higher. To study the effect of

expression levels on operon conservation, we analyzed pub-

lished transcriptomic data sets (see Materials and Methods).

As expected, we found that pairs of HE genes in the same

operon are more conserved than pairs of LE genes in all three

clades (t-paired test on OCI values, P<0.0001; fig. 4A–C). We

then investigated the dependence of operon conservation on

expression levels given genome size. We found that conser-

vation of intraoperonic pairs of highly expressed genes show a

systematic negative relationship with genome size (fig. 4A–C).

Intraoperonic pairs of lowly expressed genes show less consis-

tent patterns in the three clades and tend to be less conserved

in larger genomes.

Protein Dosage Effects

Processes that depend on several proteins are often sensitive

to changes in their relative concentration (Papp et al. 2003;

Veitia 2004). If cotranscription allows minimization of gene

dosage imbalance then one would expect operons to overrep-

resent pairs of genes encoding proteins with similar cell con-

centrations. Indeed, we observed in all three clades that OGPs

encoding proteins with similar concentrations in E. coli cells

were more conserved than OGPs with very different protein

cell concentrations (see Materials and Methods, t-paired tests

on OCI values, all P< 0.0001; fig. 5A–C). Posttranslation mod-

ifications and different protein turnovers may lead to different

protein concentration in the cell even for genes expressed at

similar levels in the same operon. Our results suggest that

operons encoding proteins that are present at very different

concentrations are under weaker selection. In both types of

pairs of intraoperonic genes, there is a systematic trend for

lower conservation in larger genomes, although trends are

often weak as measured by the rho coefficient of association

and its statistical significance (fig. 5A–C). Hence, the trends of

operon conservation with genome size are similar for both

classes and follow the general trend of weaker conservation

in larger genomes.

Transcriptional Regulation Complexity and Operon
Conservation

As mentioned earlier, the fraction of genes that encode tran-

scription factors increases with the polynomial of genome size.

Larger genomes encode complex regulatory networks and

this might lead to decreased selection for operons in these

bacteria for two reasons. First, it might be easier to encode

a complex genetic network in monocystronic units where

each gene is expressed independently. Second, the presence

of a large number of transcription factors may lower the pres-

sure to place coexpressed genes under the action of the same

promoter. Conversely, small genomes often lack genes encod-

ing transcription factors, which might increase the selection

pressure for the presence of operons. To test this hypothesis,

we analyzed the association between the number of transcrip-

tion factors coded by each genome and its OCI, while

FIG. 2.—Association of the OCI with genome size. (A) a-Proteobacteria; (B) b-Proteobacteria; and (C) Firmicutes. Association between the variables was

computed using the nonparametric Spearman rho.
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FIG. 3.—Association of the OCI with gene essentiality. Box plots indicate the distribution of OCI values per genome for pairs of intraoperonic essential

(EE) and nonessential genes (NN). The box plots indicate the median (central line), the 25% and 75% percentiles (edges of boxes), the 1.5 interquartile ranges

(whiskers), and the outliers (dots). Box plot associated P values correspond to the paired t-tests that means between the groups differ. Association between

OCI and genome size for pairs of EE (black dots) and NN (gray dots) genes was computed using the nonparametric Spearman rho. For the a-Proteobacteria,

the obligate intracellular cluster organisms were excluded of the correlation analysis (supplementary fig. S5, Supplementary Material online). Clades: (A)

a-Proteobacteria, (B) b-Proteobacteria, and (C) Firmicutes.

FIG. 4.—Association of the OCI with expression levels. Box plots indicate the distribution of OCI values per genome for intra-operonic pairs of HE and LE

genes. The box plots indicate the median (central line), the 25% and 75% percentiles (edges of boxes), the 1.5 interquartile ranges (whiskers) and the outliers

(dots). Box plot associated P values correspond to paired-t statistical tests that means differ. Association between OCI and genome size for pairs of HE (black

dots) and LE (gray dots) genes was computed using the nonparametric Spearman rho. For the a-Proteobacteria, the obligate intracellular cluster organisms

were excluded of the correlation analysis (supplementary fig. S5, Supplementary Material online). Clades: (A) a-Proteobacteria, (B) b-Proteobacteria, and (C)

Firmicutes. (*) The associations for b-Proteobacteria become nonsignificant after control for phylogenetic contrasts (supplementary table S4, Supplementary

Material online).

FIG. 5.—Association of the OCI with balanced protein concentration levels. Box plots indicate the distribution of OCI values per genome for pairs of

genes encoding proteins with BAL and UNB concentrations in the cell. The box plots indicate the median (central line), the 25% and 75% percentiles (edges

of boxes), the 1.5 interquartile ranges (whiskers) and the outliers (dots). Box plot associated P values correspond to paired t-tests that means differ.

Association between OCI and genome size for pairs of genes encoding proteins with balanced (black dots) and unbalanced (gray dots) concentrations in

the cell was computed using the nonparametric Spearman rho. For the a-Proteobacteria, the obligate intracellular cluster organisms were excluded of the

correlation analysis (supplementary fig. S5, Supplementary Material online). Clades: (A) a-Proteobacteria, (B) b-Proteobacteria, and (C) Firmicutes. (*) The

associations for b-Proteobacteria become nonsignificant after control for phylogenetic contrasts (supplementary table S4, Supplementary Material online).
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controlling for genome size (see Materials and Methods). The

number of transcription factors per genome and the OCI are

inversely correlated (fig. 6; supplementary fig. S6,

Supplementary Material online). They are also inversely corre-

lated when controlling for genome size for each clade

(Spearman partial correlation: a-proteobacteria P¼0.044, b-

proteobacteria P¼ 0.087, and Firmicutes P¼ 0.065; fig. 6).

Although the effects are weak, they are clearly significant

using Fisher’s combined probability test (P¼0.01).

Discussion

In this study, we confirmed previous suggestions that larger

genomes tend to have fewer and shorter operons (Cherry

2003; Yus et al. 2009). Furthermore, we showed that larger

genomes have less conserved operons. We confirmed that

operons including highly expressed and essential genes are

more conserved (Pal and Hurst 2004; Price, Huang, et al.

2005; Fang et al. 2008). Furthermore, we showed that op-

erons with these traits are also less conserved in larger ge-

nomes. We cannot exclude the possibility that different

gene repertoires in small and large genomes account for

part of the effect we describe. Yet, lower operon conservation

in larger genomes is not just caused by the overabundance in

these genomes of nonessential, weakly expressed and recently

acquired genes. Instead, all types of intraoperonic gene pairs,

including the ones with essential genes that are nearly ubiq-

uitous, are less conserved in larger genomes. Furthermore, the

negative correlations of OCI with genome size are never sig-

nificantly different between complementary traits (e.g., HE vs.

LE) for a given clade (supplementary table S6, Supplementary

Material online). This suggests that the correlation between

OCI and genome size transcends these traits. Interestingly, we

found that operons with genes expressing proteins at similar

concentrations are more conserved. This conservation also de-

creases with increasing genome size.

Genome size is thought to correlate with a number of im-

portant traits such as effective population size (Kuo et al.

2009), the number of transcription factors (Konstantinidis

and Tiedje 2004), and the frequency of horizontal gene trans-

fer (Cordero and Hogeweg 2009). Genome size is also corre-

lated with the abundance of transposable elements (Touchon

and Rocha 2007). Abundance of transposable elements and

horizontal gene transfer might increase the rates of chromo-

somal rearrangements and therefore lower operon conserva-

tion. On the other hand, the processes of genome reduction

might also be associated with increased rearrangement rates

and less efficient selection for genome organization (Moran

and Mira 2001). Comparative genomics studies have observed

that the conservation of gene order is under very strong pu-

rifying selection, with rearrangements having very small prob-

abilities of fixation, and is not strongly correlated with genome

size (Rocha 2006a). The conservation of operons over vast

evolutionary timescales, despite high genome rearrangement

rates and very frequent horizontal transfer, and the depen-

dency of operon conservation on biologically relevant traits

suggest that natural selection drives the evolution of operons.

As genome size and operon structure and conservation are

anticorrelated, we can use this information to assess the per-

tinence of the different evolutionary models of operon forma-

tion (tables 1 and 2).

Linkage models consider that operons should be more con-

served when encoding highly persistent (recombination and

persistence models) or highly transferred genes (selfish

model). The selfish model is at odds with the observation of

less conserved operons in larger genomes (larger genomes

endure higher rates of horizontal transfer) and with the

higher conservation of operons with essential genes.

However, this model is intended to explain best the existence

of operons encoding highly transferred genes. It is possible

that our emphasis on genes with homologs in E. coli leads

to the dismissal of these genes. We therefore divided the

genes of each genome in two categories: with and without

orthologs in E. coli. We found a higher proportion of genes in

operons for genes with orthologs in E. coli than for genes

without (t-paired tests, all clades P<0.001). This suggests

that our approach is not biasing our conclusions regarding

FIG. 6.—Association between the number of transcription factors, genome size, and the OCI. (A–C) For the three clades (a-Proteobacteria,

b-Proteobacteria, and Firmicutes), the TF total number was inversely correlated with the OCI. Spearman correlation test (rho and P value) are indicated.
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the selfish model. The other linkage models are consistent

with high conservation of operons with essential and highly

expressed genes. Operons with essential genes should be

more conserved under the recombination model if linkage

was under stronger purifying selection for pairs of these

genes, which is plausible and has been observed in yeast

(Pal and Hurst 2003). The persistence model predicts cluster-

ing of genes whose deletion is very deleterious as is the case

for essential genes (Fang et al. 2008). As highly expressed

genes are under strong purifying selection (Rocha 2006b),

both models predict tight clustering of these genes. But

these two models also predict increased selection for operons

in larger genomes because these correspond to bacteria with

higher effective population sizes (more efficient selection) and

more gene transfer (increased selection for linkage). Our re-

sults point to the opposite trends, providing little evidence in

favor of linkage models.

Models suggesting that operons reduce stochastic noise

in gene expression are in agreement with the higher con-

servation of operons encoding proteins with balanced

concentrations. They are also consistent with selection for op-

erons with genes having higher fitness impact (essential

genes; Wang and Zhang 2011). However, the high conserva-

tion of highly expressed operons does not fit these models,

because these should be much less affected by stochastic

noise in gene expression (Swain et al. 2002). These results

do not preclude the possibility of selection for noise minimi-

zation within operons, for example, concerning the order of

genes in operons and colinearity (Kovacs et al. 2009), or the

relevance of protein interactions at lower expression levels

(Ray and Igoshin 2012). Yet, they cast some doubts on the

predominance of these effects on operon conservation.

Regulation models suggest that operons are selected for

the intrinsic value of cotranscription (or cotranslation) as a

gene expression strategy. These models fit well many of our

observations. Indeed, one would expect stronger selection for

tight gene regulation of expensive genes (highly expressed

genes) and for genes with strong fitness effects (essential

genes). Selection for operons containing proteins at similar

cell concentrations is also expected under this model: operons

Table 2

Summary of the Statistical t-Paired Tests and Associated P Values When Testing the Difference in the OCI between Genes Pairs

with Different Traits (EE vs. NN; HE vs. LE; BAL vs. UNB)

OCI a-Proteobacteria b-Proteobacteria Firmicutes

t-Paired (P Value) t-Paired (P Value) t-Paired (P Value)

EE P< 0.001 # P< 0.001 # P<0.001 #

NN

HE P<0.001# P< 0.001 # P<0.001 #

LE

BAL P< 0.001 # P< 0.001 # P<0.001 #

UNB

NOTE.—(#) Arrow direction goes from higher to lower conservation.

Table 1

Summary of the Statistical Spearman Association Tests (Rho) between Genome Size and the OCI in Function of Different Traits

Data Sets a-Proteobacteria b-Proteobacteria Firmicutes

Rho (P Value) Rho (P Value) Rho (P Value)

Genome features

% Coding density (%) �0.24 (P< 0.03) �0.37 (P< 0.007) �0.34 (P< 0.0001)

% Genes in operons �0.40 (P< 0.0001) �0.58 (P< 0.001) �0.60 (P< 0.002)

Operon length �0.28 (P< 0.009) �0.38 (P< 0.001) �0.46 (P< 0.002)

OCI

Total OGP �0.43 (P< 0.0001) �0.48 (P< 0.001) �0.21 (P< 0.01)

EE �0.33 (P< 0.002) �0.19 (P¼ 0.13) �0.15 (P< 0.0001)

NN �0.46 (P< 0.0001) �0.40 (P< 0.001) �0.25 (P< 0.1)

HE �0.48 (P< 0.0001) �0.25 (P< 0.04)* �0.20 (P< 0.02)

LE �0.25 (P< 0.02) �0.27 (P< 0.03)* �0.10 (P¼ 0.19)

BAL �0.45 (P< 0.0001) �0.26 (P< 0.03)* �0.39 (P< 0.001)

UNB �0.41 (P< 0.0001) �0.25 (P< 0.04)* �0.15 (P¼ 0.09)

NOTE.—NS, nonsignificant (P> 0.05).

*Nonsignificance in the phylogenetic contrast analysis.

Selection for Operons Depends on Genome Size GBE

Genome Biol. Evol. 5(11):2242–2254. doi:10.1093/gbe/evt174 Advance Access publication November 6, 2013 2251

Since 
since 
) (
since 
e.g.
-
-


with very unbalanced protein concentrations require unnec-

essary transcription of the less abundant protein to allow ex-

pression of the most abundant one. Hence, operons encoding

proteins with similar concentration levels minimize transcrip-

tion/translation costs.

All other things being equal, decreased selection for op-

erons in larger genomes contradicts all available models, in-

cluding the regulatory model, because selection should be

more efficient in larger genomes. Yet, there is one difference

between large and small genomes that deeply impacts the

expectations of the regulatory model: transcription factors

are proportionally much more abundant in larger genomes

(Konstantinidis and Tiedje 2004). We have shown that there

is a negative association between the abundance of transcrip-

tion factors and operon conservation. This suggests that op-

erons are under stronger selection in genomes with fewer

transcription factors. The lack of transcription factors in smal-

ler genomes might thus lead to increased selection of operons,

as an alternative means of coregulating gene expression.

Naturally, the number of transcription factors is just one of

the variables shaping the complexity of genetic networks.

These depend on the number and diversity of regulatory ele-

ments and of the elements regulating them, like environmen-

tal sensors. The latter are also much more abundant in large

genomes (Galperin 2006).

We propose that smaller effective population sizes of bac-

teria harboring smaller genomes are compensated by in-

creased selection for operons in these genomes. This

increased selection pressure for operons might be caused by

the fewer alternative ways of regulating gene expression that

are available to these bacteria. Inversely, the very complex

regulatory networks of large genomes might lead to lower

selection for cotranscription. This might also explain why

Eukaryotes, which typically have large complex regulatory net-

works, have so few operons even when their effective popu-

lation sizes are very large.

Supplementary Material

Supplementary text S1, figures S1–S7, and tables S1–S6 are

available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).

Acknowledgments

This work was supported by the Agencia Nacional de
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