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Macrophages in homeostatic immune function
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Macrophages are not only involved in inflammatory and anti-infective processes, but also
play an important role in maintaining tissue homeostasis. In this review, we summarize
recent evidence investigating the role of macrophages in controlling angiogenesis,
metabolism as well as salt and water balance. Particularly, we summarize the importance
of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of
activated T-cells 5 [NFAT5]) expression in the regulation of salt and water homeostasis.
Further understanding of homeostatic macrophage function may lead to new therapeutic
approaches to treat ischemia, hypertension and metabolic disorders.
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INTRODUCTION
Leukocytes, consisting of diverse cell types, are the cellular con-
stituents of the body’s immune system. As they patrol throughout
the blood and lymphatic systems, these cells become recruited to
infected or damaged tissue and then act to restore the integrity of
the site. Leucocytes share a common origin from haematopoietic
stem cells and develop into a variety of subsets according to dis-
tinct differentiation stimuli. The mononuclear phagocyte system
(MPS) constitutes a subgroup of leukocytes comprising mono-
cytes, macrophages, and dendritic cells; the latter representing
specialized antigen-presenting cells linking innate and adaptive
immune responses (reviewed in Geissmann et al., 2010).

The cells of the MPS are not only involved in inflamma-
tory and anti-infective processes but also play an important
homeostatic role in maintaining the steady state of the tissue
(Medzhitov, 2008; Lutz and Kurts, 2009; Pollard, 2009); for exam-
ple, monocytes derived from the spleen act to rapidly promote
tissue repair after myocardial infarction (Swirski et al., 2009).
Particularly, macrophages have essential and diverse roles in
regulating tissue homeostasis. Over a century ago Metchnikoff
proposed that macrophages are not only involved in combat-
ing invading intruders, but play other roles within the body
to maintain homeostasis. He used the terms “physiological”

and “pathological” (e.g., induced by pathogens) tissue insults to
describe the initial “disharmony” facing different cells within a
multicellular organism. Whilst these two types of insults have
different and competing demands on the tissue, in both situa-
tions macrophages have a central homeostatic role to re-establish
the steady state of the tissue (Tauber, 2003). Recent classifica-
tion proposes that macrophages have a continuum of phenotypic
subsets, each with overlapping functions ranging from classi-
cally activated (M1) to alternatively activated (M2) macrophages,
where the latter includes both wound healing and regulatory
macrophages (Gordon, 2003; Mosser and Edwards, 2008; Murray
and Wynn, 2011; Locati et al., 2013; Mantovani et al., 2013).
In addition to these well recognized activities, macrophages are
important for various other functions including tissue develop-
ment, such as neuronal patterning, bone morphogenesis, and
generation of adipose tissue (Pollard, 2009), promoting angiogen-
esis and arteriogenesis (Murdoch et al., 2008; Pollard, 2009), and
the maintenance of internal body fluids or the “milieu interieur.”
Regulation of the mileu interiur is especially important for tissue
homeostasis as, according to Bernard, this guarantees a “free and
independent” life (Bernard, 1957). In this review, we will summa-
rize recent developments of the role of macrophages in regulating
blood supply and metabolism. Finally, we will highlight the role of
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macrophages as central regulators of internal body fluids via the
expression of NFAT5. Further understanding into this emerging
concept of homeostatic macrophage function may offer new
insight into the regulation of energy and electrolyte metabolism,
and thus offer new therapeutics to so-called “Western diseases.”

MACROPHAGES AS ANGIOGENIC AND ARTERIOGENIC
ACCESSORY CELLS
Tissue hypoxia drives the development of new blood vessels from
existing blood vessels (angiogenesis), and the remodeling of exist-
ing collateral vessels (arteriogenesis), in order to ensure sufficient
tissue perfusion and hence, tissue oxygenation (Potente et al.,
2011). It has been shown that macrophages play an important
role in both processes, as angiogenic, and arteriogenic accessory
cells (Pollard, 2004; Murdoch et al., 2008; Coffelt et al., 2009;
David Dong et al., 2009; Nucera et al., 2011; Chambers et al.,
2013; Owen and Mohamadzadeh, 2013). Myeloid cells are first
attracted to the site of injury, for example by the chemokine CCL2
(Low-Marchelli et al., 2013). Accordingly, interference with local
monocyte attraction to ischemic tissue resulted in flap necro-
sis due to impaired flap revascularization (Khan et al., 2013).
Once at the ischemic site, macrophages are exposed to vessel-
and tissue-derived cytokines [such as Angiopoietin (ANG) 1,
ANG2, vascular endothelial growth factor A (VEGF)], which
reprogram them to become highly angiogenic and arteriogenic
accessory cells (Avraham-Davidi et al., 2013; Hamm et al., 2013).
The expression and composition of these vessel- and tissue-
derived cytokines are tightly regulated at the ischemic site, and
may critically affect the angiogenic and arteriogenic function of
macrophages (Folkman, 2006; Saharinen et al., 2010; Saharinen
and Alitalo, 2011). For example, ANG1-mediated macrophage
reprogramming resulted in the repression of the oxygen-sensitive
prolyl hydroxylase domain (PHD) protein 2 (PHD2). PHD2
repression promoted a M2-like, proarteriogenic phenotype of
macrophages by activating canonical nuclear factor ‘kappa-light-
chain-enhancer’ of activated B-cells (NF-kB) signaling (Takeda
et al., 2011). Furthermore, ANG1-mediated Phd2-repression
enhanced the expression of ANG-receptor TIE2, which ampli-
fies ANG-dependent TIE2 signaling in a positive feedback loop
and hence promoted vessel maturation (Hamm et al., 2013). In
addition, local tissue hypoxia and endothelial cell derived sig-
nals might maintain this regulatory circuit by promoting TIE2
expression (Lewis et al., 2007; He et al., 2012).

In many different models of angiogenesis, M2-like alterna-
tively activated macrophages supported the proliferation and
migration of endothelial cells and vessel sprouting (Jetten et al.,
2014; Fantin et al., 2010; Marchetti et al., 2011). Further to serv-
ing as a source of the potent angiogenic mediators such as VEGF
and fibroblast growth factor (FGF)-2 (Schulze-Osthoff et al.,
1990; Xiong et al., 1998; Dirkx et al., 2006), IL-4-driven alter-
natively activated macrophages promoted the release of VEGF
from the tissue matrix, thereby enhancing the sprouting of ves-
sels (Zajac et al., 2013). This was shown to be as a result of a
blockade of the tissue inhibitor of metalloproteinase 1 (TIMP1)
gene expression, that promotes the secretion of highly angiogenic
matrix metalloproteinase (MMP) 9, which in turn results in the
release of matrix-sequestered angiogenic growth factors such as

VEGF and FGF-2 from the tissue (Zajac et al., 2013). Release
of macrophage-derived MMP9 might be further augmented by
hypoxia, as MMP9 expression is known to be governed by hypoxia
inducible factor (HIF) 2a(alpha) -signaling (Yang et al., 2010).

In addition to the above described proangiogenic role of IL-
4-dependent M2-like macrophages (Zajac et al., 2013; Jetten
et al., 2014), non-IL-4 stimulated macrophages also have impor-
tant roles. In this context, ANG2-dependent TIE2-signaling in
macrophages was also found to promote angiogenesis in mod-
els of inflammation and cancer (Coffelt et al., 2010, 2011;
Mazzieri et al., 2011; Krausz et al., 2012). Additionally, hypoxia
was found to enhance ANG2 expression in murine and human
macrophages, which may subsequently boost their proangiogenic
function (Fang et al., 2009).

These data demonstrate that macrophage cell function is crit-
ically involved in angio- and arteriogenesis (Figure 1). Given the
role of T cell-derived cytokines on macrophage polarization and
activation it is obvious that alteration in T cell activation will also
affect angiogenesis and arteriogenesis, and will thus bring another
level of complexity to the effect of immune cells on vascular biol-
ogy (Starnes et al., 2001; Naldini et al., 2003; Stabile et al., 2003,
2006; Facciabene et al., 2012).

MACROPHAGES AS GLUCOSE AND LIPID SENSORS
Whilst cytokines and chemokines are the main drivers of the acti-
vation and function of macrophages, recent studies have revealed
that macrophages also respond to environmental cues in the form
of small metabolites such as glucose, lipids, and sodium chlo-
ride (to be discussed further in the following section). These
small metabolites also influence programming of macrophages
into either classical or alternative subsets, and can thus modulate
macrophage function.

Macrophages infiltrate and reside in nearly every tissue,
including adipose. Accompanied with the observation that
macrophages accumulate within adipose tissue with obesity
(Weisberg et al., 2003; Xu et al., 2003), there has been great

FIGURE 1 | Macrophages as angiogenic and arteriogenic accessory

cells. Macrophages are attracted to ischemic sites where they are
transformed into potent angiogenic and arteriogenic accessory cells by
tissue- and T cell-derived signals.
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interest on the effect of lipids on macrophage function and
activation. Macrophages take up lipids via scavenger receptors,
such as CD36 and scavenger receptor A (SR-A). This process is
not subject to a negative feedback mechanism and as such, where
there is excess lipid present macrophages can become loaded with
lipid and form pro-atherogenic foam cells (Nagy et al., 2012). In
cases of overnutrition, where the adipose tissue is overwhelmed
with nutrients resulting in various amounts of cellular stress
(reviewed by Odegaard and Chawla, 2013), macrophages accu-
mulate within adipose tissue and subsequently switch from an
alternative activated (M2) phenotype to a classically activated
(M1), suggesting that excess fat can enhance the activation of
inflammatory signaling pathways (Lumeng et al., 2007a). This has
also been demonstrated by in vitro experiments, where incuba-
tion of macrophage with free fatty acids led to the activation of
Toll-like receptor 4 signaling, NF-kB activation and subsequently
fatty acid-induced insulin resistance (Shi et al., 2006; Pal et al.,
2012). The JNK signaling pathway has additionally been shown
to be involved in the activation of inflammatory M1 macrophages
and the development of obesity and insulin-resistance (Han
et al., 2013). This was also shown by the deletion of JNK1 in
hematopoietic-derived cells, which subsequently resulted in pro-
tection against diet-induced inflammation and insulin resistance
without affecting obesity (Solinas et al., 2007).

Under normal conditions, the transcriptional effect of the
uptake of lipids by macrophages is the activation of peroxisome
proliferator activator receptors (PPAR) (Ricote et al., 1998). In
humans, there are three PPAR subtypes (α, δ, and γ), which are
expressed in a variety of cell types and tissues. These three PPAR’s
act as transcription factors and coordinate the transcription of
molecules important for every facet of fatty acid metabolism
(reviewed by Desvergne et al., 2006). In terms of macrophage
activation, both PPAR-δ and -γ have been shown to be espe-
cially important in modulating alternative macrophage activation
(reviewed extensively by Nagy et al., 2012). In a recent study,
PPAR-δ was implicated in Salmonella replication, where upon
infection M2 macrophages had elevated PPAR-δ expression. As
the deletion of PPAR-δ in macrophages prevented the replication
and survival of the bacteria, the authors propose that Salmonella
have evolved to utilize the metabolic state of M2 macrophages
in order to survive (Eisele et al., 2013). PPAR-γ seems to be of
particular importance to alternative macrophage activation, as
its expression is induced by IL-4 (Huang et al., 1999). It has
subsequently been shown that signal transducer and activator
of transcription 6 (STAT6), the downstream transcription factor
of IL-4 signaling, physically interacts with PPAR-γ at transcrip-
tionally important regions of M2 signature genes to augment
their expression (Szanto et al., 2010). Macrophage-specific PPAR-
γ knockout mice have also been shown to have an attenuated M2
phenotype: the expression of M2 signature genes such as Arg1
were blunted, which was coupled with a reduced fatty acid oxida-
tive metabolism (Odegaard et al., 2007). Surprisingly PPAR-γ
knockout mice had an increased weight gain on a high fat diet,
which was attributed to a decrease in the number of alterna-
tively activated macrophages, and thus a decrease in the homeo-
static capacity provided by these macrophages under conditions
of overnutrition to ensure that efficient lipid metabolism is

occurring (Odegaard et al., 2007). It is tempting to speculate
that PPAR-γ-dependent signaling pathways may empower the
macrophages to efficiently clear cholesterol from tissue (Martel
et al., 2013).

In addition to obesity, the onset of diabetes (type 1 or 2) is
closely linked to macrophage activation and function. Type 2
diabetes in particular is closely linked to macrophage function,
where the infiltration of macrophages into adipose tissue and
their modulation of the inflammation level of this tissue greatly
contributes to the development of insulin resistance (Arkan et al.,
2005; Kanda et al., 2006; Weisberg et al., 2006; Lumeng et al.,
2007b). In addition, macrophages have been shown to directly
infiltrate the pancreatic islet and subsequently modulate the
function of this organ to promote the onset of diabetes (Ehses
et al., 2007). Conversely, glucose itself seems to have an influ-
ence on macrophage function (de Souza et al., 2008; Kanter et al.,
2012). Furthermore, the state of glucose metabolism within the
cell is also important for macrophage polarization. Whilst M1
macrophages rely on glycolytic metabolism via HIF1a (Cramer
et al., 2003), M2 macrophages utilize fatty acid oxidation via
PPAR (as discussed above; Vats et al., 2006). More recently,
two studies have identified pathways important for mediating
the metabolic activity of macrophages, and thus their activation
state. Haschemi et al. demonstrated that the carbohydrate kinase-
like (CARKL) protein controls M1-M2 activation by directing
the metabolic reprogramming of the macrophage from oxidative
phosphorylation to glycolysis (Haschemi et al., 2012). It has also
been shown that the mammalian target of rapamycin (mTOR), a
master signaling pathway involved in growth and metabolism, is
involved in regulating the switch from M2 to M1 activation (Byles
et al., 2013). These studies all point toward glucose itself being
a “physiological insult” which influences macrophage activation
and eventually, their homeostatic function.

MACROPHAGES ACT AS LOCAL SENSORS AND
REGULATORS OF ELECTROLYTE COMPOSITION IN THE SKIN
INTERSTITIUM
Recently, Machnik et al attributed a new role to macrophages in
regulating internal body fluids (Machnik et al., 2009, 2010). The
conventional key regulator for salt and water regulation is the
kidney. This traditional concept is based on the idea that body
fluids readily equilibrate and that Na+ is the major extracellu-
lar cation and holds water in the extracellular space due to its
osmotic activity. Consequently, it is believed that renal excretion
of excess Na+ is sufficient to govern intravascular and interstitial
electrolyte content. Thus, researchers interested in the regulation
of intravascular and interstitial fluids have previously focused on
mechanisms as to how the kidneys handle Na+. In contrast to
this view, there is now ample evidence that Na+ is stored with-
out commensurate water retention in the skin (reviewed in Titze
and Machnik, 2010; Titze, 2014). This suggests that the elec-
trolytes in the skin do not readily equilibrate with plasma, and
hence escape renal homeostatic control. These findings support
the idea that the intravascular and interstitial spaces are two dis-
tinct extracellular electrolyte compartments which are regulated
separately. In a series of experiments by our laboratory, we have
identified that the electrolyte composition of the skin is regulated
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by macrophages and by its local interstitial lymph capillary system
(Machnik et al., 2009, 2010; Wiig et al., 2013).

Macrophages infiltrate to the sites of Na+ and Cl− over-
load in the skin which display a hypertonic microenviron-
ment, indicating that the salt-gradient may be the driving
force of macrophage cell attraction (Muller et al., 2013). These
recruited macrophages sense the interstitial electrolyte composi-
tion and subsequently upregulate the transcription factor, tonicity
enhancer binding protein [TonEBP, also termed nuclear factor
of activated T-cells 5 (NFAT5)], which is an essential transcrip-
tion factor required for the expression of osmoprotective genes
in response to hypertonicity-induced osmotic stress (Halterman
et al., 2012).

The molecular events which lead to NFAT5 activation has been
the focus of many studies. The p38/mitogen activated protein
kinase (MAPK) signaling pathway is one which is activated by
osmotic stress in both mammalian (Han et al., 1994) and yeast
cells [Brewster et al. (1993); via its MAPK homolog high osmolar-
ity glycerol response protein 1 (HOG1)]. This has been confirmed
in many other studies (Shapiro and Dinarello, 1995; Nadkarni
et al., 1999; Ko et al., 2002; Morancho et al., 2008; Kuper et al.,
2009; Roth et al., 2010; Kleinewietfeld et al., 2013). However,
what remains to be shown are the macrophage-specific molecular
events which occur upon osmotic stress, upstream of the acti-
vation of p38/ MAPK. One possibility is MAPK1 phosphatase-1
(MKP-1), which augments p38/ MAPK signaling upon high con-
centrations of NaCl (Zhou et al., 2008). Whether this molecule
is also important for macrophages has not been shown. In addi-
tion to p38/ MAPK, several other signaling cascades have been
induced in response to osmotic stress. These include the phos-
phatidylinositol 3-kinase signaling cascades (Irarrazabal et al.,
2004), protein kinase A dependent processes (Ferraris et al.,
2002), as well as a Rac1/osmosensing scaffold (Zhou et al., 2011).
More recently, a sucrose nonfermenting-1-related serine/ thre-
onine kinase (SIK1) was identified as a sensor of extracellular
Na+ gradients, subsequently transducing this information into
signaling cascades which modulates cellular function (Sjostrom
et al., 2007). Importantly, this axis has been demonstrated in
macrophages, where inhibition of SIK1 activity was shown to
affect M2 regulatory macrophage activation (Clark et al., 2012).
Also, serum glucocorticoid kinase-1 (SGK1) is another salt-
inducible kinase (reviewed extensively by Lang et al., 2006) which
has recently been identified as an important modulator of IL-
17 producing CD4+ T helper (Th17) cell activation (Wu et al.,
2013). How the salt-inducible kinases such as SGK1 and SIK1
interact with NFAT5 in macrophages is unknown. Furthermore,
how these signaling cascades are induced and interplay with each
other and which effect they have on NFAT5 activation especially
in macrophages is yet to be elucidated.

Our laboratory has demonstrated one biological outcome
for the activation of NFAT5 in macrophages. The induction of
NFAT5 in macrophages of the skin was shown to directly govern
the expression of vascular endothelial growth factor C (VEGF-C),
resulting in the hyperplasia of lymph capillaries via and inter-
action with the VEGF receptor 3 (VEGFR3) (Wiig et al., 2013).
Similar to a breakdown of the renal salt and water excretion,
failure of this local extrarenal macrophage-dependent control

FIGURE 2 | Macrophages act as local sensors and regulators of

electrolyte composition in the skin interstitium. Macrophages are
attracted to tissues with high concentrations of salt. Under these
conditions NFAT5 is activated in macrophages. NFAT5 then drives the
expression of vascular endothelial growth factor C (VEGFc), resulting in the
hyperplasia of skin lymph capillaries. This results in the clearance of
electrolytes from the skin and subsequently a reduction in blood pressure.

mechanism to regulate interstitial electrolyte and water home-
ostasis, resulted in arterial hypertension and massive disturbances
in skin electrolyte composition (Machnik et al., 2009, 2010;
Wiig et al., 2013). Thus, these data indicate that the traditional
model for electrolyte and water homeostasis, which considers the
intravascular and interstitial space as one functional extracellu-
lar compartment, is an oversimplification. Instead, the interstitial
space is a distinct compartment that relies on tissue-specific regu-
latory mechanisms for controlling its electrolyte content; this role
being fulfilled by macrophages (Figure 2).

Recently, it has become possible to measure the concentra-
tion of Na+ in the tissue of humans via a non-invasive technique
using 23Na-MRI (Kopp et al., 2012a). These studies revealed
that there is an increased local sodium storage in humans that
suffer from hyperaldosteronism, hyernatriemia, and hyperten-
sion (Kopp et al., 2012a,b, 2013). Harnessing the potential of
macrophages to regulate salt and water balance may therefore be
of interest to physicians that aim to treat arterial hypertension as
well as salt-balance disorders.

CONCLUSION
The new homeostatic functions reviewed here, extends the classi-
cal role of macrophages as cells which remove foreign microor-
ganisms from the body, to those which tightly regulate the
microenvironments of the body to ensure correct blood sup-
ply and concentrations of metabolites, electrolytes, and maintain
proper tissue function. In light of the amount of overnutri-
tion and excessive dietary intake of sugar, salt and saturated fats
in western civilizations, further understanding of the molecular
details by which macrophages sense these metabolites is war-
ranted. The identification of other metabolites and electrolytes
which influence macrophage polarization and function may
reveal new mechanisms by which diseases such as hypertension,
type II diabetes and autoimmune diseases may occur.
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