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Interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β) are pro-inflammatory cytokines 
that are induced after Cryptococcus neoformans infection and activate the interleukin-1 
receptor type I (IL-1RI). To establish the role of IL-1RI signaling in protection against cryp-
tococcal infection, we analyzed wild-type (WT) and IL-1RI-deficient (IL-1RI−/−) mice on 
the BALB/c background. IL-1RI−/− mice had significantly reduced survival compared to 
WT mice after intratracheal challenge with C. neoformans 52D. Microbiological analysis 
showed a significant increase in the lung and brain fungal burden of IL-1RI−/− compared to 
WT mice beginning at weeks 1 and 4 postinfection, respectively. Histopathology showed 
that IL-1RI−/− mice exhibit greater airway epithelial mucus secretion and prominent 
eosinophilic crystals that were absent in WT mice. Susceptibility of IL-1RI−/− mice was 
associated with significant induction of a Th2-biased immune response characterized by 
pulmonary eosinophilia, M2 macrophage polarization, and recruitment of CD4+ IL-13+ 
T cells. Expression of pro-inflammatory [IL-1α, IL-1β, TNFα, and monocyte chemoattrac-
tant protein 1 (MCP-1)], Th1-associated (IFNγ), and Th17-associated (IL-17A) cytokines 
was significantly reduced in IL-1RI−/− lungs compared to WT. WT mice also had higher 
expression of KC/CXCL1 and sustained neutrophil recruitment to the lung; however, 
antibody-mediated depletion of these cells showed that they were dispensable for lung 
fungal clearance. In conclusion, our data indicate that IL-1RI signaling is required to 
activate a complex series of innate and adaptive immune responses that collectively 
enhance host defense and survival after C. neoformans 52D infection in BALB/c mice.

Keywords: Cryptococcus neoformans, fungal pneumonia, interleukin-1, interleukin-1 receptor, lung inflammation, 
cytokines, macrophage polarization, lymphocyte differentiation

inTrODUcTiOn

Cryptococcus neoformans is an encapsulated yeast that is estimated to cause approximately 223,000 
cases of meningitis each year and is responsible for 15% of AIDS-related deaths (1). In healthy 
individuals, inhalation of infectious propagules is usually contained in the lung, but among those 
with a defective immune response, uncontrolled replication may result in dissemination to other 
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parts of the body with a tropism for the brain (2, 3). Severe cryp-
tococcal disease occurs primarily in patients with uncontrolled 
HIV/AIDS and is also found in solid organ transplant recipients, 
those receiving exogenous immunosuppression, patients with 
primary or acquired immunodeficiency, and increasingly among 
immunologically normal hosts (4–7).

The pattern of cytokine expression is a crucial determinant 
of the pathogenesis of cryptococcal infection (3, 8–11). Th1-type 
cytokines [interleukin (IL)-12 and IFNγ] promote phagocytosis 
by dendritic cells (DCs) and polarize macrophages toward a 
classically activated phenotype (M1), thereby increasing fungal 
clearance (12–15). On the other hand, Th2-type cytokines (IL-
4, IL-5, and IL-13) are associated with a significant eosinophil 
chemotaxis to the lungs and induction of alternatively activated 
(M2) macrophages that facilitate cryptococcal proliferation and 
dissemination (16–18). There is some evidence that Th17-type 
cytokines (IL-17A and IL-23) contribute to protection against 
infection with wild-type (WT) C. neoformans; however, they 
appear to be less effective compared to Th1-type cytokines 
(19–23). Inhibition of IL-17A expression or signaling had no 
significant effect on M1 macrophage polarization, resolution of 
infection, or survival in mice infected with C. neoformans H99 
that has been engineered to express IFNγ (24, 25). Finally, a 
prospective analysis of HIV-infected humans suggested a poten-
tial role for IL-17 in the immunopathogenesis of cryptococcal 
meningitis; however, further studies are required to confirm this 
hypothesis (26).

The mechanisms that initiate and regulate the innate immune 
response against C. neoformans infection are not fully understood. 
The interaction of C. neoformans with host cells triggers production 
of several pro-inflammatory cytokines including TNFα, IL-6, and 
IL-1 (27–30). Both interleukin-1 alpha (IL-1α) and interleukin-1 
beta (IL-1β) are induced during cryptococcal infection in vitro 
(27, 28, 31–34) and in vivo (35–40) in a NLRP3-dependent man-
ner, and internalization of opsonized encapsulated cryptococci 
has been shown to activate the canonical NLRP3–ASC–caspase-1 
and non-canonical NLRP3–ASC–caspase-8 inflammasome  
(34, 41). The magnitude of IL-1 expression between inbred mice 
with different genetic backgrounds has also been associated with 
natural resistance or susceptibility to progressive cryptococcal 
infection (35). After intratracheal infection with C. neoformans 
52D, the level of IL-1β expression was 11-fold higher in the 
lungs of resistant SJL/J inbred mice compared to the susceptible 
C57BL/6 inbred strain. A subsequent analysis of WT and inter-
leukin-1 receptor (IL-1R)-deficient mice on the C57BL/6 genetic 
background did not identify significant differences in survival or 
fungal dissemination after intranasal infection with C. neofor-
mans H99; however, at day 12 postinfection, the IL-1R−/− mice 
had a modest elevation of lung fungal burden (37).

Given the essential role for cytokine-mediated inflammation 
and the evidence for IL-1α and IL-1β induction in response to 
C. neoformans, we hypothesized that the contribution of IL-1R-
dependent signaling to host defense may have been underesti-
mated by infection of WT and IL-1R−/− mice on the susceptible 
C57BL/6 genetic background with a highly virulent C. neofor-
mans strain. To test this hypothesis, we performed intratracheal 
inoculation of inbred BALB/c mice and IL-1R−/− mice on the 

same genetic background with C. neoformans 52D and analyzed 
fungal burden and immune responses at serial time points. This 
approach was chosen to model the process of natural infection in 
a relatively resistant host with a moderately virulent cryptococ-
cal strain. Our findings demonstrate that IL-1RI−/− mice had a 
significantly higher fungal burden in the lungs and brains as well 
as a significantly higher mortality compared to BALB/c mice. In 
IL-1RI−/− mice, C. neoformans 52D infection was associated with 
heightened lung eosinophilia, elevated airway mucus secretion, 
and a greater percentage of M2 macrophages and CD4+ Th2 cells 
along with significantly fewer lung neutrophils, DCs, Th1, and 
Th17 cells. Taken together, this study shows that IL-1R-dependent 
signaling contributes to protection against C. neoformans 52D 
infection in BALB/c mice by triggering a complex innate and 
adaptive immune response and raises the possibility that modula-
tion of this signaling axis could be a potential therapeutic strategy.

MaTerials anD MeThODs

Mice
Inbred BALB/c mice were purchased from Charles River and 
maintained in our facility. IL-1RI−/− mice were purchased from 
Jackson Labs and backcrossed to BALB/c for 10 generations. Mice 
were provided with sterile food and water and cared for according 
to the Canadian Council on Animal Care guidelines. All experi-
ments were performed using 7- to 9-week-old male and female 
mice. Mice were humanely euthanized with CO2 upon completion 
of experiments, and every effort was made to minimize suffering. 
All experimental protocols were reviewed and approved by the 
McGill University Animal Care Committee.

Cryptococcus neoformans
Cryptococcus neoformans 52D (ATCC 24067) was grown and 
maintained on Sabouraud dextrose agar (SDA; BD, Becton 
Dickinson and Company). To prepare an infectious dose, a single 
colony was suspended in Sabouraud dextrose broth (BD) and 
grown to early stationary phase (48 h) at room temperature on a 
rotator. The stationary phase culture was then washed with sterile 
phosphate-buffered saline (PBS), counted on a hemocytometer, 
and diluted to 2 × 105 CFU/ml in sterile PBS. The fungal con-
centration of the experimental dose was confirmed by plating a 
dilution of the inoculum on SDA and counting the CFU after 72 h 
of incubation at room temperature.

intratracheal infection with C. neoformans
For intratracheal administration of C. neoformans, mice were 
anesthetized with 150  mg/kg of ketamine (Ayerst Veterinary 
Laboratories) and 10 mg/kg of xylazine (Bayer) intraperitoneally. 
A small skin incision was made below the jaw along the trachea, 
and the underlying glands and muscle were separated. Infection 
was performed by intratracheal injection of 104 C. neoformans 
in 50 µl PBS through a 22-gauge catheter via a 1-ml tuberculin 
syringe. The incision was closed using the 9-mm EZ clip wound 
closing kit (Stoelting CO), and mice were monitored daily after 
surgery.
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Tissue isolation and cFU assay
After mice were euthanized with CO2, their lungs, spleen, and 
brain were excised and placed in sterile, ice-cold PBS. Tissues 
were then homogenized using a glass tube and pestle attached to 
a mechanical tissue homogenizer (Glas-Col) and plated at various 
dilutions on SDA. Plates were incubated at 37°C for 72  h, and 
CFU were counted. For survival analyses, mice were inoculated 
as stated above and monitored twice daily for up to 110  days 
postinfection.

histopathological analysis
After euthanasia, lungs were perfused with ice-cold PBS via the 
right ventricle of the heart. Using 10% buffered formalin acetate 
(Fisher Scientific), the lungs were inflated to a pressure of 25 cm 
H2O and fixed overnight. Subsequently, lungs were embedded in 
paraffin, sectioned at 5 µm, and stained with hematoxylin–eosin 
(H&E), periodic acid–Schiff (PAS), or mucicarmine reagents at 
the Histology Facility of the Goodman Cancer Research Centre 
(McGill University). Representative photographs of lung sections 
were taken using a BX51 microscope (Olympus), QICAM Fast 
1394 digital charge-coupled device camera (QImaging), and 
Image-Pro Plus software version 7.0.1.658 (Media Cybernetics).

Flow cytometry
Lungs were excised using sterile technique and placed in 
RPMI (Gibco, Invitrogen) supplemented with 10% fetal bovine 
serum (Wisent). Subsequently lungs were minced using surgi-
cal blades and incubated with 1 mg/ml collagenase (Sigma) at 
37°C for 1 h. After incubation, lung pieces were passed through 
a 16-gauge needle and filtered through a 70-µm cell strainer 
(BD). Red blood cells were removed using ACK lysis buffer, 
cells were counted with a hemacytometer using trypan blue dye, 
and 5 × 106 cells in 100 µl FACS buffer/well were dispensed in 
96-well plates. Fc receptors were blocked with the addition of 
unlabeled anti-CD16/32 antibodies [93; eBioscience (eBio)], 
and single-cell suspensions were stained with the following 
fluorescence-conjugated anti-mouse monoclonal antibodies 
purchased from eBio, BD, and BioLegend: CD45 (30-F11), B220 
(RA3-6B2), CD3e (145-2C11), CD4 (GK1.5), CD8 (53-6.7), 
CD49b (DX5), γδ TCR (GL3), CD11b (M1/70), CD11c (N418), 
MHCII (M5/114.15.2), Ly6G (1A8), CD86 (GL1), CD80 (16-
10A1), CD64 (X54-5/7.1), CD24 (M1/69), SiglecF (E50-2440), 
CD103 (2E7), Ly6C (HK1.4), and CD206 (C068C2). Non-viable 
cells were excluded using a fixable viability dye reagent (eBio). 
Lineage negative cells (Lin−) were defined as CD45+ cells that did 
not express any other surface markers in this panel. Data were 
acquired using a LSRFortessa flow cytometer (BD) and analyzed 
using Flow Jo software. The absolute number of leukocytes was 
determined by multiplying the percentage of CD45+ cells by the 
total number of counted cells.

intracellular staining
Lungs were processed as described above, and 5 × 106 cells/well 
were dispensed in 96-well plates. For cytokine analysis, cells were 
stimulated for 4 h with phorbol 12-myristate 13-acetate (PMA) 
and calcium ionophore (ionomycin) in the presence of brefeldin 

A (GolgiPlug) for the final 3 h. Cells were then washed, blocked 
with anti-CD16/32 antibodies, and stained with the surface 
antibodies. Cells were then fixed, permeabilized, and stained 
with IL-13 (eBio13A), IFNγ (XMG1.2), and IL-17A (17B7). 
Intracellular staining for Nos2 (CXNFT) was done as described 
for cytokines without PMA and ionomycin stimulation. Data 
were acquired using a LSRFortessa flow cytometer with gating 
determined by fluorescence-minus-one controls and analyzed 
using FlowJo software.

Total lung cytokine and chemokine 
Production
Mice were euthanized and lungs flushed with 10 ml of ice-cold 
PBS. Whole lungs were homogenized in 2  ml PBS with Halt 
protease and phosphatase inhibitor cocktail (Fisher Scientific) 
using a sterilized glass tube and pestle attached to a mechani-
cal tissue homogenizer (Glas-Col) and spun at 12,000  rpm 
for 20  min. Supernatants were collected, and aliquots were 
stored at −80°C for further analysis. The following cytokines 
and chemokines in whole-lung protein samples were analyzed 
using DuoSet enzyme-linked immunosorbent assay kits (R&D 
Systems): TNFα (DY410), IL-6 (DY406), IL-1β (DY401), IL-1α 
(DY400), monocyte chemoattractant protein 1 (MCP-1; MJE00), 
IL-12/IL-23P40 (DY2398), IFNγ (DY485), CXCL1/KC (DY453), 
IL-17A (DY421), and IL-13 (DY413).

neutrophil Depletion
BALB/c mice received an intratracheal inoculum of 1 × 104 CFU 
of C. neoformans strain 52D. Mice were treated with 100  µl of 
PBS or 200  µg of anti-1A8 antibody (Bio X Cell) in a volume 
of 100 µl, 1 day before infection and daily during the study. At 
day 12 postinfection, lungs were excised, and fungal burden was 
analyzed.

statistical analysis
To test the significance of single comparisons, an unpaired 
Student’s t-test was applied with a threshold P  ≤  0.05. For all 
experiments, the mean and SEM is shown. Survival curves 
were analyzed by the log-rank test. All statistical analysis was 
performed with GraphPad Prism software version 6 (GraphPad 
Software Inc.).

resUlTs

il-1ri−/− Mice have impaired survival and 
an increased Fungal Burden in the lung, 
Brain, and spleen following C. neoformans 
52D infection
To investigate the role of IL-1RI-mediated signaling after  
C. neoformans 52D infection, we constructed IL-1RI−/− mice 
on the BALB/c background by repeated backcrossing. We chal-
lenged mice with C. neoformans 52D and measured the survival 
rate and tissue fungal burden. No deaths were observed in WT 
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FigUre 1 | Interleukin-1 receptor type I (IL-1RI) signaling is required for survival and control of fungal burden after infection with Cryptococcus neoformans 52D. 
Wild-type (WT) and IL-1RI-deficient (IL-1RI−/−) mice were infected intratracheally with 104 CFU of C. neoformans strain 52D. (a) Mice were observed for up to 
110 days for survival analysis (n = 12 mice/strain, using a log-rank test). (B–D) Fungal burden in the lung, brain, and spleen at serial time intervals was determined 
by plating tissue homogenates on Sabouraud dextrose agar. CFU data are shown as mean ± SEM and representative of two independent experiments (n = 6–15 
mice/strain/time point). *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.
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mice; however, IL-1RI−/− mice started to die at 40 days postin-
fection and had a 73% mortality rate at 100 days postinfection 
(Figure 1A). Microbiological analysis also showed a significant 
increase of fungal burden in IL-1RI−/− mice compared to the 
WT strain at all time points tested (Figure 1B). Importantly, a 
significant difference in lung fungal burden was observed at 
7 days postinfection, suggesting that the IL-1RI signaling affects 
the initial host response to C. neoformans infection. At 35 days 
postinfection, there was almost a 20-fold increase of lung CFU 
in the IL-1RI−/− compared to the WT strain. Analysis of the 
spleen showed a trend toward higher CFU in the IL-1RI−/− mice 
compared to the WT strain that reached statistical significance at 
day 14 postinfection (Figure 1C). Analysis of the brain showed 
comparable CFU in both strains at 14 days postinfection; how-
ever, at 35  days postinfection, all of the WT mice had cleared 
the infection, while 10 of 16 (62%) of IL-1RI−/− mice still had 
detectable fungal growth (Figure 1D). Taken together, these data 
establish a role for IL-1R-mediated signaling in controlling fungal 
growth in the lungs and brain, limiting organ dissemination, and 
increasing survival after C. neoformans 52D infection.

an altered Pattern of Pulmonary 
inflammation is Present in il-1ri−/− lungs 
following C. neoformans 52D infection
The significant differences in survival and fungal burden 
between WT and IL-1RI−/− mice prompted us to investigate the 
effect of IL-1RI signaling on lung pathology after infection with 
C. neoformans 52D. Histopathological analysis was conducted at 
35 days postinfection to correspond with the greatest difference 
in fungal burden prior to the onset of mortality (Figures 2A–C). 
H&E staining revealed that WT mice displayed abundant lung 
leukocyte infiltration that was almost absent in the IL-1RI−/− 
strain. Notably, eosinophilic crystals that have been associated 
with alternatively activated macrophages in C. neoformans 52D 
infection were clearly observed in IL-1RI−/− lung sections but 
were absent in the WT. Mucicarmine staining of the cryptococ-
cal cell wall showed that most fungi were located within WT 
phagocytes with only a few visible extracellular organisms in the 
parenchyma or airways. In contrast, IL-1RI−/− sections showed 
lung parenchyma that was filled with heavily encapsulated 
extracellular cryptococci. PAS staining clearly revealed mucus 
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FigUre 2 | Decreased inflammation in the lungs of interleukin-1 receptor type I-deficient (IL-1RI−/−) mice following infection with Cryptococcus neoformans 52D. 
Wild-type (WT) and IL-1RI−/− mice were infected intratracheally with 104 CFU of C. neoformans 52D. Lungs were harvested at day 35 postinfection; perfused with 
phosphate-buffered saline; embedded in paraffin; and stained with hematoxylin–eosin (H&E), mucicarmine, or periodic acid–Schiff (PAS). Representative H&E 
images (a) show a significant reduction of inflammation in IL-1RI−/− compared to WT mice; the black arrow points to eosinophilic crystals in IL-1R−/− lung. 
Mucicarmine staining (B) shows numerous heavily encapsulated extracellular C. neoformans in the airspaces of IL-1RI−/− mice compared to WT mice. 
Representative images of lungs stained with PAS (c) show goblet cell hyperplasia and mucus in the airways of infected IL-1RI−/− mice compared to WT mice.  
Each image is representative of 100 fields examined (n = 4 mice/strain from two independent experiments).
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secretion by airway epithelial cells in IL-1RI−/− mice that was 
not observed in the airways of WT mice. Taken together, this 
histopathological analysis confirmed the results of the lung 
fungal burden studies and demonstrated reduced inflammation 
with signs of Th2 polarization in IL-1RI−/− mice compared to the 
WT strain.

inflammatory cytokine and chemokine 
Production is Decreased in the lungs of 
il-1ri−/− Mice following C. neoformans 
52D infection
To determine the effect of IL-1RI signaling on the production 
of soluble inflammatory mediators, WT and IL-1RI−/− mice 
were infected with C. neoformans 52D, and the concentration 
of pro-inflammatory cytokines (IL-1α, IL-1β, TNFα, and IL-6), 
chemokines (MCP-1 and KC), Th1-associated cytokines (IFNγ 
and IL-12), and representative Th2-associated (IL-13) and Th17-
associated (IL-17A) cytokines was measured in whole-lung 

homogenates at serial time points (Figure  3). No significant 
differences in the level of these mediators were observed between 
two strains prior to infection. In WT mice, both IL-1α and IL-1β 
were produced in the lungs at day 7 postinfection and continued 
to increase until day 14 postinfection. Compared to WT, IL-1RI−/− 
mice had significantly lower production of these two cytokines 
at day 14 postinfection. The production of TNFα, MCP-1, and 
KC was significantly higher in WT compared to IL-1RI−/− mice 
at day 14 postinfection. Significantly greater production of IFNγ 
and IL-17A was also observed in the lungs of WT mice compared 
to IL-1RI−/− at day 14 postinfection. IL-13 production did not 
differ between strains at day 7 and day 14 postinfection, although 
a modest increase was observed in IL-1R−/− mice compared to 
WT at day 21 postinfection. In summary, BALB/c mice exhibited 
significantly greater production of pro-inflammatory, Th1, and 
Th17 cytokines, as well as chemokines, compared to IL-1RI−/− 
mice; these findings demonstrate a broad effect of IL-1RI signal-
ing on the lung inflammatory response after C. neoformans 52D 
infection.
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il-1ri−/− Mice exhibit reduced neutrophil 
and increased eosinophil recruitment to 
the lungs following C. neoformans 52D 
infection
To characterize the effect of IL-1RI signaling on the cellular 
immune response after C. neoformans infection, flow cytom-
etry analysis of whole-lung digests was performed on WT and 
IL-1RI−/− mice at serial time points postinfection. A comprehen-
sive gating strategy was used for the identification of resident 
and recruited myeloid cell subsets (Figure 4) (42–44). Prior to 

infection, no significant difference was observed in the total 
number of lung leukocytes between the two strains. The total 
number of CD45+ cells peaked at day 14 in both strains; however, 
it was significantly higher in WT compared to IL-1RI−/− mice 
at 14 and 21 days postinfection (Figure 5A). At 7 days postin-
fection neutrophils (CD11c−, CD11b+, and Ly6Ghigh) were the 
most frequent leukocyte subset in both strains; however, their 
percentage and total number was significantly higher in the 
WT compared to the IL-1RI−/− at 14 and 21  days postinfec-
tion (Figures  5B,C). Conversely, the percentage and number 
of lung eosinophils (CD11c−, CD11b+, Siglec F+, and CD24+) 
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FigUre 3 | Interleukin-1 receptor type I-deficient (IL-1RI−/−) lungs have decreased inflammatory cytokine and chemokine production after Cryptococcus neoformans 
52D infection. Whole-lung protein was collected at 0, 7, 14, and 21 days postinfection with 104 CFU of C. neoformans 52D. Enzyme-linked immunosorbent assay 
was performed to determine the level of pro-inflammatory cytokines (a–c, e), chemokines (D, F), and Th1/Th2/Th17-type cytokines (g–J). Data are shown as 
mean ± SEM and representative of two independent experiments (n = 4 mice/strain/time point). *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001. MCP-1, monocyte 
chemoattractant protein 1.
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was significantly higher in IL-1RI−/− mice compared to the WT 
strain at 14 and 21 days postinfection (Figures 5D,E). These data 
suggest that IL-1R signaling plays an important role in recruit-
ment of neutrophils during the host response to C. neoformans 
52D infection. In the absence of IL-1R, mice develop significant 
and sustained lung eosinophilia that is associated with a higher 
fungal burden.

To evaluate the functional significance of early and sustained 
neutrophil recruitment to the lungs of BALB/c mice after infec-
tion with C. neoformans 52D, the effect of antibody-mediated 
depletion on tissue fungal burden and lung cell infiltration was 
characterized. Briefly, WT mice received 200 µg of anti-Ly6G 
antibody (clone 1A8) in a volume of 100 µl via intraperitoneal 
injection 24 h before infection and daily thereafter. To capture 
the overall effect of neutrophil depletion during the innate 
and adaptive phases of immunity, lung fungal burden was 
determined at 12 days postinfection. Interestingly, this analysis 
showed that neutrophil-depleted mice had a significantly lower 

cryptococcal burden in the lungs compared to control mice 
(Figures 5F–G).

il-1ri−/− Mice recruit Fewer Monocyte-
Derived Dc and Macrophages to the lung 
following C. neoformans 52D infection
Inflammatory monocyte-derived macrophages (ExMs) and DCs 
are important for protection against C. neoformans infection  
(45, 46). We investigated the effect of IL-1RI signaling on the 
number of resident and monocyte-derived myeloid cells by har-
vesting lungs at different times postinfection and analyzing cells 
by flow cytometry. No significant difference in the percentage of 
pDCs, CD103+ DCs, and CD11b+ cDCs was observed in the lungs 
of BALB/c and IL-1R−/− mice after C. neoformans 52D infection; 
however, at day 21 postinfection, there was a significantly higher 
percentage and number of AMs in BALB/c compared to IL-1R−/− 
mice (Figures 6 A,B,D). As both monocyte-derived ExMs and 
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FigUre 4 | Flow cytometry gating strategy used to identify myeloid cell subsets in the lungs after Cryptococcus neoformans 52D infection. Lung cell suspensions 
were stained with fluorochrome-labeled antibodies and analyzed as described in Section “Materials and Methods.” Representative gating plots for CD45+ subsets 
are shown; neutrophils (CD11c−, CD11b+, and Ly6Ghigh), eosinophils (CD11c−, CD11b+, Ly6G low/negative, CD24+, and SiglecF+), monocytes (CD11c−, CD11b+, 
Ly6G low/negative, CD64+, and Ly6Chigh), AMs (CD11c+, CD11b−, CD64+, SiglecF+, and AF+), CD103+DCs (CD11c+, CD11b−, CD24+, CD103+, and MHCII+), pDCs 
(CD11c+, CD11b−, CD24+, CD103−, and MHCII+), cDCs (CD11c+, CD11b+, CD64−, CD24+, and MHCII+), mDCs (CD11c+, CD11b+, CD24−, CD64+, AF−, MHCIIhigh, 
and Ly6C+/−), and ExMs (CD11c+, CD11b+, CD24−, CD64+, AF+, MHCII+, and Ly6C+/−).
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DCs are CD11b+, CD11c+, CD24−, MHCII+, and CD64+, we used 
autofluorescence to distinguish macrophages from DCs (42, 45, 47)  
(Figure 4). This analysis showed comparable recruitment of both 
cell types between the two strains at day 7 postinfection; however, 
WT mice had a significantly higher number of inflammatory DCs 
(days 14 and 21) and ExMs (day 21) compared to IL-1RI−/− mice 
(Figures 6C,E).

The macrophage polarization pattern is also important for 
protection against cryptococcal infection (8, 48). Classically 
activated macrophages (M1) that express high levels of pro-
inflammatory cytokines and costimulatory molecules, produce 
high levels of reactive nitrogen and oxygen intermediates, and 
promote strong IL-12-mediated Th1 responses are efficient 
killers of C. neoformans. In contrast, alternatively activated 
macrophages (M2) that express chitinase-like 3 (Ym1), found 
in inflammatory zone (FIZZ1), mannose receptor (CD206), and 
arginase-1 (Arg1), have reduced pro-inflammatory cytokine 
secretion and are less microbicidal (3, 9, 42, 43, 47, 49–53). As 
the number of recruited macrophages peaked at day 14 postinfec-
tion in both strains, we characterized polarization at this time 
point using iNOS and CD206 as representative markers for M1 
and M2 macrophages, respectively. At 14  days postinfection, 
the percentage of M1 macrophages was significantly greater in 
WT mice compared to IL-1R−/− mice, while the percentage of 
M2 macrophages was greater in IL-1R−/− compared to WT mice 
(Figures 6F,G). Notably, IL-1RI−/− macrophages showed greater 

upregulation of the M2-associated marker CD206 at 14  days 
postinfection (Figures 6H,I), while WT macrophages displayed 
higher expression of the M1-associated marker CD80 (43) at 
14 and 21  days postinfection (Figures  6J,K). Taken together, 
these results indicate that IL-1RI signaling has an important 
role in recruitment of inflammatory DCs and macrophages 
and increases the ratio of M1/M2-polarized macrophages after  
C. neoformans 52D infection.

T cells are the Predominant sources of 
il-17a and iFnγ in WT lungs infected  
with C. neoformans 52D
To characterize the mechanism of differential IL-17A and IFNγ 
expression between WT and IL-1RI−/− lungs, we identified the 
main sources of these cytokines after C. neoformans 52D infec-
tion. Compared to IL-1RI−/− mice, WT mice showed significantly 
more IL-17A-producing cells at 7, 14, and 21 days postinfection 
and a trend toward a higher number of IFNγ-producing cells at 
day 21 postinfection (Figures 7A–C). Several immune cell types 
including CD4+ (Th17), CD8+ T (Tc17) cells, NK cells, iNKT cells, 
γδT cells, B cells, ILCs, DCs, and neutrophils have been shown to 
produce IL-17 during fungal infection (25, 54–56). In our study, 
at day 7 postinfection, intracellular cytokine staining of WT lym-
phocytes showed that CD4+ and γδT cells were the most common 
IL-17A+ subsets (Figure 7D). A similar pattern was observed at 
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FigUre 5 | Interleukin-1 receptor type I-deficient (IL-1RI−/−) mice have decreased neutrophil and increased eosinophil recruitment to the lungs after Cryptococcus 
neoformans 52D infection. Lung cell suspensions from uninfected and infected wild-type (WT) and IL-1RI−/− mice were stained with fluorochrome-labeled antibodies 
and analyzed by flow cytometry as described in Section “Materials and Methods.” (a) Absolute numbers of total CD45+ cells in the lungs at 0, 7, 14, and 21 days 
postinfection. (B–e) Percentage and total number of neutrophils and eosinophils at 0, 7, 14, and 21 days postinfection. Data are shown as mean ± SEM and 
representative of two independent experiments (n = 4 mice/strain/time point). *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001. (F,g) BALB/c mice underwent intratracheal 
infection with 1 × 104 CFU of C. neoformans strain 52D. Mice were treated with phosphate-buffered saline or anti-Ly6G antibody 1 day prior to infection and daily 
during the study. At 12 days postinfection, lungs were excised for analysis of neutrophil recruitment and CFU. (F) The number of neutrophils and (g) fungal burden is 
shown. Data are pooled from two independent experiments and shown as mean ± SEM (n = 8 mice/group). ***P ≤ 0.001.
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FigUre 6 | Interleukin-1 receptor type I-deficient (IL-1RI−/−) mice have fewer monocyte-derived dendritic cells (DCs) and macrophages in the lungs after 
Cryptococcus neoformans 52D infection. Lung cell suspensions from uninfected and infected mice were stained with fluorochrome-labeled antibodies and analyzed 
by flow cytometry as described in Section “Materials and Methods.” (a,B) Percentage of DC and macrophage subsets at 0, 7, 14, and 21 days postinfection.  
(c–e) Total number of mDCs, AMs, and ExMs at 0, 7, 14, and 21 days postinfection. (F) Representative plots of M1 (CD11b+, iNOS+) and M2 (CD11b+, CD206+) 
polarized macrophages in wild-type (WT) and IL-1RI−/− mice at 14 days postinfection. (g) Percentage of M1- and M2-polarized macrophages in WT and IL-1RI−/− 
mice at 14 days postinfection. (h) Mean fluorescence intensity (MFI) of CD206 expression on macrophages in WT compared to IL-1RI−/− mice and (i) Upregulation 
of CD206 in AMs and ExMs in IL-1RI−/− compared to WT mice at 14 days postinfection. (J) MFI and (K) upregulation of CD80- and CD86-positive cells derived from 
ExMs at 14 days postinfection is shown; (i,K) IL-1RI−/−, gray filled lines; WT, white filled solid lines; uninfected mice, dashed lines. Data are shown as mean ± SEM 
and representative of two independent experiments (n = 4 mice/strain/time point). *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.
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FigUre 7 | T cells are the predominant sources of interleukin (IL)-17A and IFNγ in BALB/c lungs infected with Cryptococcus neoformans 52D. (a) Lung cell 
suspensions from uninfected and infected mice were harvested and restimulated with phorbol 12-myristate 13-acetate (PMA)–ionomycin followed by intracellular 
staining for IL-17A and IFNγ. (a,B) Percentage of total CD45+IFNγ+ and CD45+IL-17A+ cells at 7, 14, and 21 days postinfection. (c) Representative flow cytometry 
plots of lung CD45+ cells from individual mice harvested at 21 days postinfection. (D,e) Percentage of IL-17A- and IFNγ-producing cell types in WT mice at 7 and 
21 days postinfection is shown. Data are shown as mean ± SEM and representative of two independent experiments (n = 4 mice/strain/time point). **P ≤ 0.01 and 
***P ≤ 0.001.
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day 21 postinfection with CD4+ T cells and γδT cells accounting 
for 60 and 20%, respectively, of IL-17A+ cells. CD4+ and CD8+ 
T-cells, NK  cells, γδT  cells, and neutrophils have been shown 
to produce IFNγ during fungal infection (57–59). In our study, 
CD4+ T and NK  cells were the predominant IFNγ-producing 
subsets at day 7 and day 21 postinfection (Figure 7E).

effect of il-1ri signaling on the lung 
lymphocyte infiltration following  
C. neoformans 52D infection
As lymphocytes are necessary for effective clearance of C. neo-
formans, we compared the recruitment of CD4+ or CD8+ T cells, 
γδT cells, and B cells to the lungs of WT and IL-1RI−/− mice at 
different time points after infection. Flow cytometry analysis 
showed that WT mice recruit a significantly higher number of 
CD4+ cells compared to the IL-1RI−/− strain at 14 and 21 days 
postinfection (Figure  8A). Recruitment of CD8+ T  cells was 
comparable between the two strains at all time points, although 
WT mice showed a trend toward a higher number of CD8+ 
T cells at day 21 compared to IL-1RI−/− mice (Figure 8B). WT 
mice demonstrated increased recruitment of γδT  cells at day 
14 and day 21 postinfection compared to uninfected mice; in 

contrast, there was no significant increase of this cell type in 
IL-1RI−/− mice during infection (Figure 8C). No differences in 
the number of B  cells recruited to the lungs during infection 
were observed between the two strains (Figure  8D). Taken 
together, this analysis demonstrates that IL-1RI signaling 
selectively regulates T  lymphocyte recruitment to the lungs 
during the adaptive phase of immunity against C. neoformans 
52D infection.

Pulmonary cD4+ T cells from il-1ri−/− 
Mice Display Diminished Th17 and 
increased Th2 cytokine Production 
following C. neoformans infection
It has been clearly shown that a Th1/Th17 response is protec-
tive and a Th2 response is detrimental, respectively, against  
C. neoformans infection (60). To analyze the effect of IL-1R 
signaling on T  cell differentiation during infection, we har-
vested lungs at serial time points, restimulated the cells with 
PMA/ionomycin, and stained for intracellular IFNγ, IL-13, 
and IL-17A as representative cytokines for Th1, Th2, and 
Th17 polarization states, respectively (Figure  9). The results 
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FigUre 8 | Lungs of interleukin-1 receptor type I-deficient (IL-1RI−/−) mice display fewer CD4+ and γδT+ lymphocytes during the adaptive phase of immunity after 
Cryptococcus neoformans 52D infection. Lung cell suspensions from uninfected and infected mice were stained with fluorochrome-labeled antibodies and analyzed 
by flow cytometry as described in Section “Materials and Methods.” (a–D) Total number of CD3+CD4+, CD3+CD8+, CD3+γδ+, and B220+ cells in the lungs at 0, 7, 
14, and 21 days postinfection. Data are shown as mean ± SEM and representative of two independent experiments (n = 4 mice/strain/time point). **P ≤ 0.01 and 
***P ≤ 0.001.
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demonstrated a significantly higher number of CD4+ IFNγ+ 
cells in the lungs of WT compared to IL-1RI−/− mice at 7 days 
postinfection with a trend toward more CD4+ IFNγ+ cells at 
days 14 and 21. Compared to the IL-1RI−/− strain, WT mice 
showed a trend toward more CD4+ IL-17A+ cells at day 7 
with a significant increase of this cell type at days 14 and 21. 
In contrast, IL-1RI−/− lungs contained a significantly higher 
percentage of CD4+ IL13+ cells compared to WT lungs at 14 and 
21 days postinfection. In summary, these findings demonstrate 
that after C. neoformans infection, IL-1RI signaling significantly 
increased Th1 differentiation during the early phase of infec-
tion and strongly promoted Th17 differentiation during the late 
phase of infection.

DiscUssiOn

Induction of IL-1α/β during mouse cryptococcal infection has 
been reported, but a clear role for IL-1R-dependent signaling in 
the host immune response has not been demonstrated (27, 32, 
34, 35, 37). Here, we provide evidence that IL-1RI deficiency on 
the BALB/c background has deleterious effects on the outcome 
of pulmonary C. neoformans 52D infection. The most significant 
findings of this study are as follows: (1) IL-1RI−/− mice cannot clear 
moderately virulent C. neoformans 52D and develop progressive 

infection of the lungs and brain resulting in death starting at day 
40 postinfection; (2) susceptibility of IL-1RI−/− mice is associ-
ated with reduced levels of pro-inflammatory, Th1, and Th17 
cytokines; (3) IL-1RI signaling in response to C. neoformans 
52D infection regulates the recruitment of inflammatory DCs 
to the lung, contributes to recruitment and M1 polarization of 
macrophages, and promotes Th1/Th17 differentiation of CD4+ 
T cells; and (4) lung neutrophil recruitment associated with IL-1R 
signaling is dispensable for protection against C. neoformans 52D 
infection. Taken together, these data clearly demonstrate that 
IL-1R-dependent signaling plays a complex and essential role in 
the control of progressive C. neoformans 52D infection.

Previously, intranasal infection of C57BL/6 and IL-1RI−/− mice 
with 2 × 104 CFU of the virulent C. neoformans H99 strain was 
shown to cause >90% mortality in both groups (37). In the same 
report, mice lacking MyD88, an intracellular adaptor for IL-1RI, 
IL-18R, and several Toll-like receptors, had a trend toward reduced 
survival but no significant difference in fungal burden compared to 
WT mice after C. neoformans challenge (37). Notably, two earlier 
studies showed that MyD88−/− mice have a significantly shorter 
survival time and a higher lung fungal burden compared to WT, 
TLR2−/−, and TLR4−/− mice after C. neoformans infection (61, 62). 
These differences may be attributable, at least in part, to variation 
in the experimental methods that were used including the dose, 
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FigUre 9 | Decreased Th1/Th17 type cytokine expression by CD4+ T cells from interleukin-1 receptor type I-deficient (IL-1RI−/−) lungs infected with Cryptococcus 
neoformans 52D. (a) Representative flow cytometry plots of lung lymphocytes from individual mice harvested at 14 days postinfection and restimulated with phorbol 
12-myristate 13-acetate (PMA)–ionomycin, followed by intracellular staining for IFNγ, IL-17A, and IL-13. (B) Percentage and (c–e) total numbers of CD4+IFN+, 
CD4+IL-17A+ and CD4+IL13+ cells are shown. Data are shown as mean ± SEM and representative of two independent experiments (n = 4 mice/strain/time point). 
*P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001. WT, wild type.
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route, and strain of C. neoformans (60, 63–65). Furthermore, 
inbred mouse strains also display marked differences in resist-
ance or susceptibility to a standardized cryptococcal infection, 
highlighting the importance of the host genetic background in 
disease pathogenesis (66–68). Our data are consistent with other 
studies showing that BALB/c mice have a naturally resistant phe-
notype after respiratory infection with the moderately virulent C. 
neoformans 52D strain. Specifically, BALB/c mice progressively 
clear pulmonary C. neoformans 52D infection in association with 
numerous hallmarks of a protective Th1 response including tight 
mononuclear cell infiltrates and classically activated macrophages 
and do not develop central nervous system dissemination (18, 66, 
69, 70). Our observation that both IL-1α and IL-1β were induced 
in the lungs of BALB/c mice after intratracheal infection with C. 
neoformans 52D is also consistent with earlier reports that associ-
ated the induction of IL-1β in lung and brain with resistance to 
cryptococcal infection (35, 71, 72).

Interleukin-1 is a central mediator of inflammation and links 
innate and adaptive immune response mechanisms (73). Binding 
of IL-1α or IL-1β to IL-1RI is followed by the recruitment of the 
IL-1 receptor accessory protein (IL-1RAcP) and activation of 
signal transduction pathways that induce the expression of IL-1 
responsive genes including IL-6, MCP-1, and TNFα (74–77). 
Induction of pro-inflammatory cytokines followed by genera-
tion of a Th1 adaptive immune response is critical for control of 
cryptococcosis (8, 11, 78). Compared to the BALB/c strain, 

IL-1RI−/− mice had significantly reduced expression of KC, TNFα, 
and MCP-1 that was associated with increased lung fungal burden 
at day 7 after infection. TNFα is one of the main target genes of the 
IL-1 signaling cascade (76, 77), and both mediators share down-
stream pathways that induce pro-inflammatory gene expression 
(79, 80). TNFα signaling in the afferent phase of cryptococcal 
infection is associated with optimal DC activation and induction 
of Th1/Th17 polarization and protective immunity (78, 81–84). 
MCP1/CCR2 signaling is also responsible for the recruitment of 
inflammatory DCs and macrophages after cryptococcal infection 
(45, 46, 85). Thus, the reduced expression of pro-inflammatory 
cytokines and chemokines is one mechanism that could explain 
the susceptibility of IL-1RI−/− mice to progressive cryptococcosis.

After C. neoformans infection, DCs phagocytose and kill 
cryptococci by oxidative and non-oxidative mechanisms, play 
an important role in antigen presentation, and drive protective 
immune responses by secreting cytokines and chemokines 
(86–89). Compared to other innate cell types, lung DCs express a 
high level of IL-1RI and signaling via this receptor has been shown 
to promote the maturation and survival of pulmonary DCs and 
their CCR7-dependent migration to lymph nodes after Influenza 
A infection (90). At 21  days postinfection with C. neoformans, 
the total number of moDCs in the lung was significantly lower in 
IL-1RI−/− compared to WT mice, suggesting that recruitment and 
activation of DCs in the LALNs may be regulated by IL-1R signal-
ing in this model. In addition to DCs, inflammatory macrophages 
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that strongly express microbicidal enzymes such as iNOS play 
a significant role in fungal clearance (45, 46, 69, 91). After C. 
neoformans 52D infection, we observed that lung macrophages of 
IL-1R−/− mice had reduced expression of the classical activation 
markers CD80 and iNOS and increased expression of the alterna-
tive activation marker CD206 compared to WT, a pattern that is 
associated with reduced fungal killing capacity. Our findings are 
similar to a recent study in BALB/c mice infected with C. neofor-
mans 52D that correlated an elevated ratio of Arg1/iNOS expres-
sion with an increase in fungal burden and showed a reversal of 
this ratio during the subsequent period of fungal clearance (48).

In addition to monocyte-derived macrophages and DCs, 
significantly greater neutrophil recruitment was observed in WT 
compared to IL-1R−/− lungs. Both IL-1α and IL-1β can promote 
neutrophil migration (92–95), and diminished neutrophil 
recruitment to the site of infection due to IL-1R deficiency has 
been associated with increased susceptibility to several bacterial 
and fungal infections including Legionella pneumophila, Group 
B Streptococcus, Citrobacter rodentium, and Candida albicans 
(55, 96–100). Inbred mouse strains including SJL/J, CBA/J, and 
BALB/c are naturally resistant to pulmonary cryptococcal infec-
tion and exhibit substantial neutrophil recruitment the lungs; 
however, the importance of these cells in host protection is not 
clear (35, 67, 68). For example, an early study of BALB/c mice 
given a single injection of anti-Gr-1 (anti-Ly6C/6G) antibody 
showed less inflammatory damage and significantly longer 
survival compared to controls after C. neoformans 52D infection 
(101). A subsequent study of BALB/c mice that had undergone 
prior immunization with C. neoformans strain H99γ showed that 
neutrophil depletion with a specific anti-Ly6G antibody did not 
affect pulmonary fungal burden (102). Finally, a recent report 
showed that profound neutrophilia in type 2-deficient STAT6−/− 
mice on a C57BL/6 background was associated with immuno-
pathology and exacerbation of cryptococcal disease (103). To 
specifically analyze the contribution of neutrophils to resistance 
against C. neoformans 52D, we used anti-Ly6G to deplete these 
cells in WT BALB/c mice throughout the course of infection  
(104, 105). In the absence of neutrophil recruitment, we observed 
a significantly lower lung fungal burden at 12 days postinfection 
compared to controls. This finding suggests that, despite their 
abundance in the lung, neutrophils may have a detrimental 
effect on host defense against moderately virulent C. neoformans 
52D (101). Several mechanisms may explain this observation, 
including competition for cryptococcal antigen between neu-
trophils and antigen-presenting cells, neutrophil secretion of 
the immunosuppressive cytokine TGFβ1, or production of IL-1 
receptor antagonist, a molecule that inhibits IL-1R signaling  
(100, 106–110). Further research is necessary to precisely establish 
the physiological mechanisms that control neutrophil recruit-
ment during cryptococcal infection and to determine whether 
these cells make a positive contribution to host resistance.

Along with reduced pro-inflammatory cytokines, IL-1R−/− mice 
showed diminished levels of lung IFNγ compared to WT mice at 
the early (day 7) and late (days 14 and 21) phases of infection. 
Intracellular cytokine staining identified CD4+ lymphocytes as the 
most prominent IFNγ-producing cell type. As very few studies 
have identified IL-1R expression on Th1 cells (111), induction of 

IFNγ expression by CD4+ T cells appears to be an indirect effect 
of IL-1RI signaling on DCs and possibly other cell types (90). 
IFNγ plays a central role in host defense against cryptococci by 
enhancing the fungal internalization and killing by phagocytes 
(78, 83). An important role for early IFNγ secretion and the 
development of a Th1 response against C. neoformans 52D infec-
tion was previously shown in resistant C.B-17 mice (a BALB/c 
strain congenic for C57BL/6 immunoglobulin heavy chain gene 
segment), whereas the absence of this response in the C57BL/6 
strain correlated with susceptibility (11).

IL-1 is known to regulate the expression of the transcription 
factors IRF4 and RORγt, both of which play a major role in 
the induction of CD4+IL-17+ (Th17) cells in mice and humans 
(112–114). IL-1 signaling has been shown to be essential for the 
development of Th17 immunity to infection with Coccidioides sp 
(115), and mice with deletions of IL-17 or IL-17R are susceptible 
to candidiasis, pulmonary aspergillosis, and histoplasmosis 
(55). The role of IL-17 during cryptococcal infection has been 
analyzed using mice with a C57BL/6 genetic background. In one 
study, IL-17RA deficiency did not impair pulmonary clearance 
of C. neoformans 52D at 1 or 6  weeks postinfection nor did it 
alter survival compared to WT mice (116). Another study using 
IL-17A-deficient mice showed that this cytokine does contrib-
ute to fungal clearance from the lung but was not essential for 
8-week survival (19). In contrast, administration of IL-23, which 
is essential for the differentiation of Th17 lymphocytes, led to 
prolonged survival and reduced fungal burden in C57BL/6 mice 
(22). A Th17-polarized immune response appears to facilitate 
the resolution of C. neoformans 52D infection through several 
mechanisms including lung recruitment of activated DCs and 
inflammatory macrophages, induction of IFNγ-producing CD4+ 
and CD8+ T cells, and enhanced fungal containment within mac-
rophages (19–22). Compared to BALB/c, IL-1R−/− mice display 
several phenotypes that may be attributable to a diminished Th17 
response including reduced recruitment of DCs and inflamma-
tory macrophages and increased recruitment of eosinophils and 
CD4+IL-13+ cells to the lungs. On the basis of marked difference 
between WT and IL-1R−/− mice, we speculate that IL-17 plays a 
non-redundant role in survival after C. neoformans 52D infec-
tion; however, studies of BALB/c mice that are deficient for IL-17 
or IL-17RA would be required to formally test this hypothesis.

In mouse models, IL-1 signaling is protective against infec-
tion with a wide spectrum of intracellular pathogens including 
Leishmania amazonensis, Mycobacterium avium, Toxoplasma 
gondii, and Listeria monocytogenes (117–121). IL-1RI-deficient 
mice are also highly susceptible to pulmonary challenge with 
Aspergillus fumigatus; in this model, IL-1α has been shown to 
be crucial for optimal leukocyte recruitment and IL-1β has been 
shown to be essential for optimal activation of macrophage anti-
fungal activity (122). It has been suggested that polymorphisms 
in the IL-1 gene cluster might be important in susceptibility 
or resistance to invasive pulmonary aspergillosis in humans  
(123, 124). Both IL-1α and IL-1β have also been shown to 
play an important role in disseminated candidiasis (125–128), 
and IL-1 signaling has shown to contribute to host resistance 
against pulmonary histoplasmosis and Coccidioides sp. infection  
(115, 129). This study expands the role of IL-1 in host defense 
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