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Networks inference problems are commonly found in multiple biomedical subfields such as genomics,
metagenomics, neuroscience, and epidemiology. Networks are useful for representing a wide range of
complex interactions ranging from those between molecular biomarkers, neurons, and microbial com-
munities, to those found in human or animal populations. Recent technological advances have resulted
in an increasing amount of healthcare data in multiple modalities, increasing the preponderance of net-
work inference problems. Multi-domain data can now be used to improve the robustness and reliability
of recovered networks from unimodal data. For infectious diseases in particular, there is a body of knowl-
edge that has been focused on combining multiple pieces of linked information. Combining or analyzing
disparate modalities in concert has demonstrated greater insight into disease transmission than could be
obtained from any single modality in isolation. This has been particularly helpful in understanding inci-
dence and transmission at early stages of infections that have pandemic potential. Novel pieces of linked
information in the form of spatial, temporal, and other covariates including high-throughput sequence
data, clinical visits, social network information, pharmaceutical prescriptions, and clinical symptoms
(reported as free-text data) also encourage further investigation of these methods. The purpose of this
review is to provide an in-depth analysis of multimodal infectious disease transmission network infer-
ence methods with a specific focus on Bayesian inference. We focus on analytical Bayesian inference-
based methods as this enables recovering multiple parameters simultaneously, for example, not just
the disease transmission network, but also parameters of epidemic dynamics. Our review studies their
assumptions, key inference parameters and limitations, and ultimately provides insights about improving
future network inference methods in multiple applications.

� 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Dynamical systems and their interactions are common across
many areas of systems biology, neuroscience, healthcare, and med-
icine. Identifying these interactions is important because they can
broaden our understanding of problems ranging from regulatory
interactions in biomarkers, to functional connectivity in neurons,
to how infectious agents transmit and cause disease in large pop-
ulations. Several methods have been developed to reverse engineer
or, identify cause and effect pathways of target variables in these
interaction networks from observational data [1–3]. In genomics,
regulatory interactions such as disease phenotype-genotype pairs
can be identified by network reverse engineering [1,4]. Molecular
biomarkers or key drivers identified can then be used as targets
for therapeutic drugs and directly benefit patient outcomes. In
microbiome studies, network inference is utilized to uncover asso-
ciations amongst microbes and between microbes and ecosystems
or hosts [2,5,6]. This can include insights about taxa associations,
phylogeny, and evolution of ecosystems. In neuroscience, there is
an effort towards recovering brain-connectivity networks from
functional magnetic resonance imaging (FMRI) and calcium fluo-
rescence time series data [3,7]. Identifying structural or functional
neuronal pairs illuminates understanding of the structure of the
brain, can help better understand animal and human intelligence,
and inform treatment of neuronal diseases. Infectious disease
transmission networks are widely studied in public health. Under-
standing disease transmission in large populations is an important
modeling challenge because a better understanding of transmis-
sion can help predict who will be affected, and where or when they
will be. Network interactions can be further refined by considering
multiple circulating pathogenic strains in a population along with
strain-specific interventions, such as during influenza and cold sea-
sons. Thus, network interactions can be used to inform interven-
tional measures in the form of antiviral drugs, vaccinations,
quarantine, prophylactic drugs, and workplace or school closings
to contain infections in affected areas [8–11]. Developing robust
network inference methods to accurately and coherently map
interactions is, therefore, fundamentally important and useful for
several biomedical fields.

As summarized in Fig. 1, manymethods have been used to iden-
tify pairwise interactions in genomics, neuroscience [12,13] and
microbiome research [14] including correlation and information
gain-based metrics for association, inverse covariance for condi-
tional independence testing, and Granger causality for causation
from temporal data. Further, multimodal data integration methods
such as horizontal integration, model-based integration, kernel-
based integration, and non-negative matrix factorization have
been used to combine information from multiple modalities of
‘omics’ data such as gene expression, protein expression, somatic
Fig. 1. Examples of multimodal network inference methods in different applications. Di
specific networks. Most network inference methods focus on recovering network topolo
mutations, and DNA methylation with demographic, diagnoses,
and phenotypical clinical data. Bayesian inference has been used
to analyze changes in gene expression from microarray data as
DNA measurements can have several unmeasured confounders
and thereby incorporate noise and uncertainty [15]. Multi-modal
integration can be used for classification tasks, to predict clinical
phenotypes such as tumor stage or lymph node status, for cluster-
ing of patients into subgroups, and to identify important regulatory
modules [16–20]. In neuroscience, not just data integration, but
multimodal data fusion has been performed by various methods
such as linear regression, structural equation modeling, indepen-
dent component analysis, principal component analysis, and par-
tial least squares [21]. Multiple modalities such as FMRI,
electroencephalography, and diffusion tensor imaging (DTI) have
been jointly analyzed to uncover more details than could be cap-
tured by a single imaging technique [21]. In metagenomics, net-
work inference from microbial data has been performed using
methods such as inverse covariance and correlation [2]. In evolu-
tionary biology, the massive generation of molecular data has
enabled Bayesian inference of phylogenetic trees using Markov
Chain Monte Carlo chain (MCMC) techniques [22,23]. In infectious
disease transmission network inference, Bayesian inference frame-
works have been primarily used to integrate data such as dates of
pathogen sample collection and symptom report date, pathogen
genome sequences, and locations of patients [24–26]. This problem
remains challenging as the data generative processes and scales of
heterogeneous modalities may be widely different, transforma-
tions applied to separate modalities may not preserve the interac-
tions between modalities, and separately integrated models may
not capture interaction effects between modalities [27].

As evidence mounts regarding the complex combination of bio-
logical, environmental, and social factors behind disease, emphasis
on the development of advanced modeling and inference methods
that incorporate multimodal data into singular frameworks has
increased. These methods are becoming more important to con-
sider given that the types of healthcare data available for under-
standing disease pathology, evolution, and transmission are
numerous and growing. For example, Internet and mobile connec-
tivity has enabled mobile sensors, point-of-care diagnostics, web
logs, and participatory social media data which can provide com-
plementary health information to traditional sources [28,29]. In
the era of precision medicine, it becomes especially important to
combine clinical information with biomarker and environmental
information to recover complex genotype-phenotype maps [30–
33]. Infectious disease networks are one area where the need to
bring together data types has long been recognized, specifically
to better understand disease transmission. Data sources including
high-throughput sequencing technologies have enabled genomic
data to become more cost effective, offering support for studying
fferent modalities of data have been integrated in several applications for inferring
gy.
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transmission by revealing pathways of pathogen introduction and
evolution in a population. Yet, genomic data in isolation is insuffi-
cient to obtain a comprehensive picture of disease in the popula-
tion. While these data can provide information about pathogen
evolution, genetic diversity, and molecular interaction, they do
not capture other environmental, spatial, and clinical factors that
can affect transmission. For infectious disease surveillance, this
information is usually conveyed through epidemiological data,
which can be collected in various ways such as in clinical settings
from the medical record, or in more recent efforts through Web
search logs, or participatory surveillance. Participatory surveillance
data types typically include age, sex, date of symptom onset, and
diagnostic information such as severity of symptoms. In clinical
settings, epidemiological data are generally collected from patients
reporting illness. This can include, for example, age at diagnosis,
sex, race, family history, diagnostic information such as severity
of symptoms, and phenotypical information such as presence or
absence of disease which may not be standardized. High-
throughput sequencing of pathogen genomes, along with linked
spatial and temporal information, can advance surveillance by
increasing granularity and leading to a better understanding of
the spread of an infectious disease [37]. Considerable efforts have
been made to unify genomic and epidemiologic information from
traditional clinical forms into singular statistical frameworks to
refine understanding of disease transmission [24–26,34–36].

One approach to design and improve disease transmission mod-
els has been to analytically combine multiple, individually weak
predictive signals in the form of sparse epidemiological, spatial,
pathogen genomic, and temporal data [24,25,34,35,38]. Molecular
epidemiology is the evolving field wherein the above data types
are considered together; epidemiological models are used in con-
cert with pathogen phylogeny and immunodynamics to uncover
disease transmission patterns [39]. Pathogen genomic data can
capture within-host pathogen diversity (the product of effective
population size in a generation and the average pathogen replica-
tion time [25,26]) and dynamics or provide information critical to
understanding disease transmission such as evidence of new trans-
mission pathways that cannot be inferred from epidemiological
data alone [40,41]. In addition, the remaining possibilities can then
be examined using any available epidemiological data.

As molecular epidemiology and infectious disease transmission
are areas in which network inference methods have been devel-
oped for bringing together multimodal data we use this review
Fig. 2. Modeling transmission of infectious diseases, an area in which use of multiple mo
as who infected whom or how did the infection transmit through the population or regio
temporal information, point-of-care diagnostic information, and mobile health informati
Some possible outputs are the transmission tree, latency period, epidemic reproduction
to investigate the foundational work in this specific field. A sum-
mary of data types, relevant questions and purpose of such studies
is summarized in Fig. 2, and we further articulate the approaches
below. In molecular epidemiology, several approaches have been
used to overlay pathogen genomic information on traditionally col-
lected epidemiologic information to recover transmission net-
works. Additional modeling structure is needed in these
problems because infectious disease transmission occurs through
contact networks of heterogeneous individuals, which may not
be captured by compartmental models such as Susceptible–Infec
tious–Recovered (SIR) and Susceptible–Latent–Infectious–Recov
ered (SLIR) models [42]. As well, for increased utility in epidemiol-
ogy, there is a necessity to estimate epidemic parameters in addi-
tion to the transmission network. Unlike other fields wherein
recovery of just the topology of the networks is desired, in molec-
ular epidemiology Bayesian inference is commonly used to reverse
engineer infectious disease transmission networks in addition to
estimating epidemic parameters (Fig. 2).

While precise features can be extracted from observed data,
there are latent variables not directly measured which must simul-
taneously be considered to provide a complete picture. Thus, Baye-
sian inference methods have been used to simultaneously infer
epidemic parameters and structure of the transmission network
in a single framework. Instead of capturing pairwise interactions,
such as correlations or inverse covariance, Bayesian inference is
capable of considering all nodes and inferring a global network
and transmission parameters [7]. Moreover, Bayesian inference is
capable of modeling noisy, partially sampled realistic outbreak
data while incorporating prior information.

While this review focuses on infectious disease transmission,
network inference methods have implications in many areas.
Modeling network diffusion and influence, identifying important
nodes, link prediction, influence probabilities and community
topology and parameter detection are key questions in several
fields ranging from genomics to social network analysis [43]. Anal-
ogous frameworks can be developed with different modalities of
observational genomics or clinical data to model information prop-
agation and capture the influences of nodes, nodes that are more
influential than others, and the temporal dynamics of information
diffusion. For modeling information spread in such networks, influ-
ence and susceptibility of nodes can serve to be analogous to epi-
demic transmission parameters. However, these modified methods
should also account for differences in the method of information
dalities of data has been developed. (a) Several key questions can be answered such
n. (b) Possible inputs to the model include pathogen genomic sequences, spatial and
on. The data are brought together in multimodal network inference frameworks. (c)
number, phylogenetic tree, and proportion of infected hosts sampled.
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propagation in such networks from infectious disease transmission
by incorporating constraints in the form of temporal decay of
infection, strengths of ties measured from biological domain
knowledge, and multiple pathways of information spread.

1.1. Selection criteria

To identify the studies most relevant for this focused review, we
queried PubMed. For practicality and relevance, our search, sum-
marized in Fig. 3, was limited to papers from the last ten years.
As our review is focused on infectious disease transmission net-
work inference, we started with the keywords ‘transmission’ and
‘epidemiological’. To ensure that we captured studies that incorpo-
rate pathogen genomic data, we added the keywords ‘genetic’, ‘ge-
nomic’ and ‘phylogenetic’ giving 5557 articles total. Next, to
narrow the results to those that are comprised of a study of
multi-modal data, we found that the keywords ‘combining’ or ‘in-
tegrating’ alongside ‘Bayesian inference’ or ‘inference’ were com-
prehensive. These filters yielded 73 and 61 articles in total. We
found that some resulting articles focused on outbreak detection,
sexually transmitted diseases, laboratory methods, and phyloge-
netic analysis. Also, the focus of several articles was to either over-
lay information from different modalities or to sequentially
analyze them to eliminate unlikely transmission pathways. After
a full-text review to exclude these and focus on methodological
approaches, 8 articles resulted which use Bayesian inference to
recover transmission networks from multimodal data for infec-
tious diseases, and which represent the topic of this review. This
included Bayesian likelihood-based methods for integrating patho-
gen genomic information with temporal, spatial, and epidemiolog-
ical characteristics for infectious diseases such as foot and mouth
disease (FMD), and respiratory illnesses, including influenza. As
incorporating genomic data simultaneously in analytical multi-
modal frameworks is a relatively novel idea, the literature on this
Fig. 3. Study design and inclusion-exclusion criteria. This is a decision tree showing our s
on genomic epidemiology methods utilizing Bayesian inference for infectious disease tr
is limited. Recent unified platforms have been made available to
the community for analysis of outbreaks and storing of outbreak
data [44]. Thus, it is essential to review available literature on this
novel and burgeoning topic. For validation, we repeated our
queries on Google Scholar. Although Google Scholar generated a
much broader range of papers, based on the types of papers
indexed, we verified that it also yielded the articles selected from
PubMed. We are confident in our choice of articles for review as
we have used two separate publications databases. Below we sum-
marize the theoretical underpinnings of the likelihood-based
framework approaches, inference parameters, and assumptions
about each of these studies and articulate the limitations, which
can motivate future research.
2. Review of multimodal integration methods for transmission
network inference

Infectious disease transmission study is a rapidly developing
field given the recent advent of widely available epidemiological,
social contact, social networking and pathogen genomic data. In
this section we briefly review multimodal integration methods
for combining pathogen genomic data and epidemiological data
in a single analysis, for inferring infection transmission trees and
epidemic dynamic parameters.

Advances in genomic technology such as sequences of whole
genomes of RNA viruses and identifying Single Nucleotide Varia-
tions using sensitive mass spectrometry have enabled the tracing
of transmission patterns and mutational parameters of the Severe
Acute Respiratory Syndrome (SARS) virus [45]. In this study, phylo-
genetic trees were inferred based on Phylogenetic Analysis Using
Parsimony (PAUP⁄) using a maximum likelihood criterion [46].
Mutation rate was then inferred based on a model which assumes
that the number of mutations observed between an isolate and its
earches and selection criteria for both PubMed and Google Scholar. We focused only
ansmission.
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ancestor is proportional to the mutation rate and their temporal
difference [47]. Their estimated mutation rate was similar to exist-
ing literature on mutation rates of other viral pathogens. Phyloge-
netic reconstruction revealed three major branches in Taiwan,
Hong Kong, and China.

Gardy et al. [29] analyzed a tuberculosis outbreak in British
Columbia in 2007 using whole-genome pathogen sequences and
contact tracing using social network information. Epidemiological
information collection included completing a social network ques-
tionnaire to identify contact patterns, high-risk behaviors such as
cocaine and alcohol usage, and possible geographical regions of
spread. Pathogen genomic data consisted of restriction-fragment-
length polymorphism analysis of tuberculosis isolates. Phyloge-
netic inference of genetic lineage based on Single Nucleotide Poly-
morphisms from the genomic data was performed. Their method
demonstrated that transmission information inference such as
identifying a possible source patient from contact tracing by epi-
demiological investigation can be refined by adding ancestral and
diversity information from genomic data.

In one of the earliest attempts to study genetic sequence data,
as well as dates and locations of samples in concert, Jombart
et al. [38] proposed a maximal spanning tree graph-based
approach that went beyond existing phylogenetic methods. This
method was utilized to uncover the spatiotemporal dynamics of
the influenza A (H1N1) from 2009 and to study its worldwide
spread. A total of 433 gene sequences of hemagglutinin (HA) and
of neuraminidase (NA) were obtained from GenBank. Classical
phylogenetic approaches fail to capture the hierarchical relation-
ship between both ancestors and descendants sampled at the same
time. Using their algorithm called SeqTrack [48], the authors con-
structed ancestries in samples based on a maximal-spanning tree.
SeqTrack [38] utilizes the fact that in the absence of recombination
and reverse mutations, strains will have unique ancestors charac-
terized by the fewest possible mutations, no sample can be the
ancestor of a sample which temporally preceded it, and the likeli-
hood of ancestry can be estimated from the genomic differentia-
tion between samples. SeqTrack was successful in reconstructing
the transmission trees in both completely and incompletely sam-
pled outbreaks unlike phylogenetic approaches, which failed to
capture ancestral relationships between the tips of trees. However,
this method cannot capture the underlying within-host virus
genetic parameters. Moreover, mutations generated once can be
present in different samples and transmission likelihood based
on genetic distance may not be reliable.

The above methods exploit information from different modali-
ties separately. Recent methodological advancements have seen
simultaneous integration of multiple modalities of data in singular
Bayesian inference frameworks. In the following section we discuss
state-of-the-art approaches based on Bayesian inference, to recon-
struct partially-observed transmission trees and multiple origins of
pathogen introduction in a host population [25,34,35,49,50]. We
specifically focus on Bayesian likelihood-based methods as the
methods consider heterogeneous modalities in a single framework
and simultaneously infer the transmission network and epidemic
parameters such as rate of infection transmission and rate of
recovery.
3. Bayesian inference-based approaches for transmission
network inference

Infectious disease transmission network inference is one prob-
lem area wherein there is a foundational literature of Bayesian
inference methods; reviewing them together allows understanding
and comparison of specific related features across models. Meth-
ods are summarized in Table 1.
In Bayesian inference, information recorded before the study is
included as a prior in the hypothesis. Based on Bayes theorem as
shown below, this method incorporates prior information and like-
lihoods from the sample data to compute a posterior probability
distribution or, PðHypothesisjDataÞ. The denominator is a normal-
ization constant or, the marginal probability density of the sample
data computed over all hypotheses [51]. The hypothesis for this
problem can be expressed in the form of a transmission network
over individuals, locations, or farms, parameters such as rate of
infectiousness and recovery, or mutation probability of pathogens.
The posterior probability distribution can then be estimated as in
the equation below.
PðHypothesisjDataÞ ¼ PðDatajHypothesisÞ � Prior
PðDataÞ

The posterior probability is then a measure that the inferred
transmission tree and parameters are correct.

It can be extremely difficult to analytically compute the poste-
rior probability distribution as it involves iterating over all possible
combinations of branches of such a transmission tree and parame-
ter values. However, it is possible to approximate the posterior
probability distribution using MCMC [52] techniques. In MCMC, a
Markov chain is constructed which is described by the state space
of the parameters of the model and which has the posterior prob-
ability distribution as its stationary distribution. For an iteration of
the MCMC, a new tree is proposed by stochastically altering the
previous tree. The new tree is accepted or rejected based on a prob-
ability computed from a Metropolis-Hastings or Gibbs update. The
quality of the results from the MCMC approximation can depend
on the number of iterations that it is run for, the convergence cri-
terion and the accuracy of the update function [22].

Cottam et al. [40] developed one of the earliest methods to
address this problem studying foot-and-mouth disease (FMD) in
twenty farms in the UK. In this study, FMD virus genomes (the
FMD virus has a positive strand RNA genome and it is a member
of the genus Aphthovirus in the family Picornaviridae) were col-
lected from clinical samples from the infected farms. The samples
were chosen so that they could be used to study variation within
the outbreak and the time required for accumulation of genetic
change, and to study transmission events. Total RNA was extracted
directly from epithelial suspensions, blood, or esophageal suspen-
sions. Sanger sequencing was performed on 42 overlapping ampli-
cons covering the genome [53]. As the RNA virus has a high
substitution rate, the number of mutations was sufficient to distin-
guish between different farms. They designed a maximum
likelihood-based method incorporating complete genome
sequences, date at which infection in a farm was identified, and
the date of culling of the animals. The goal was to trace the trans-
mission of FMD in Durham County, UK during the 2001 outbreak to
infer the date of infection of animals and most likely period of their
infectiousness. In their approach, they first generated the phyloge-
nies of the viral genomes [54,55]. Once the tip of the trees were
generated, they constructed possible transmission trees by recur-
sively working backwards to identify a most recent common
ancestor (MRCA) in the form of a farm and assigned each haplotype
to a farm. The likelihood of each tree was then estimated using epi-
demiological data. Their study included assumptions of the mean
incubation time prior to being infectious to be five days, the distri-
bution of incubation times to follow a discrete gamma distribution,
the most likely date of infection to be the date of reporting minus
the date of the oldest reported lesion of the farm minus the mean
incubation time, and the farms to be a source of infection immedi-
ately after being identified as infected up to the day of culling. Spa-
tial dependence in the transmission events was determined from
the transmission tree by studying mean transmission distance.



Table 1
Summary of network inference methods to-date used in infectious disease modeling.

Literature source Location Time span Pathogen Sample size Assumptions Inferred Parameters

Cottam et al. (2008)
[40]

Durham area 2001 FMD 22 � Farm infectiousness is not
quantified

� Different animals may have dif-
ferent levels of infectiousness

� Transmission tree
� Infection dates
� Most likely period of infectiousness
� Spatial dependence
� Probability of transitions, transversions,
deletions

Ypma et al. (2012)
[25]

The Netherlands 2003 Avian influenza A
(H7N7)

185 � Mutations happen before or
shortly after infection. The muta-
tion rate is constant

� Transmission tree
� Rate of decline of infectiousness
� Kernel parameters for scale and shape of
spatial kernel

� Expected number of transitions
� Expected number of transversions
� Probability of deletion

Morelli et al. (2012)
[24]

1. Durham County
2. Surrey and Berkshire, UK

1. 2001
2. 2007

FMD 1. 12 premises
2. 8 premises

� Prior centered on and sensitive to
lesion age

� Transmission tree
� Infection times
� Latency duration
� Duration from infectiousness to detection

Ypma et al. (2013)
[34]

Durham County, England 2001 FMD 12 premises � Within-host diversity different
from genetic diversity

� Phylogenetic tree
� Transmission tree
� Epidemiological parameters
� Mutational parameters
� Infection times

Teunis et al. (2013)
[56]

Netherlands December 2002 –
December 2007

Norovirus 160 � Likelihood proportional to pro-
duct of conditional probability
density and entry from transition
probability matrix

� Transmission tree
� Reproductive number

Didelot et al. (2014)
[26]

British Columbia 2004–2011 Tuberculosis 40 � All cases comprising an outbreak
have been sampled

� Transmission tree
� Rate of infectivity
� Rate of removal
� Effective population size
� Duration of replication cycle

Mollentze et al.
(2014) [49]

KwaZulu Natal province,
South Africa

1 March 2010–8 June 2011 Rabies virus 195 � Observation date is shortly after
infection date

� Transmission tree
� Population size

Jombart et al. (2014)
[35]

Singapore 2003 SARS 15 � Densely sampled outbreak
� Distribution of generation time
known

� Time from infection to sample
collection known

� Transmission tree
� Superspreaders
� Mutation rates
� Separate introductions of the pathogen
� Unobserved cases
� Effective reproduction number

B.R
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al./Journal

of
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64

(2016)
44–

54
49
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Their study indicated possible intermediate infected farms not
inferred by the method and multiple introductions of pathogens
in the area.

Ypma et al. [25] developed a Bayesian likelihood-based frame-
work integrating genetic and epidemiological data. This method
was tested on an epidemic dataset of 241 poultry farms in an epi-
demic of avian influenza A (H7N7) in The Netherlands in 2003 con-
sisting of geographical, genomic, and date of culling data.
Consensus sequences of the HA, NA and polymerase PB2 genes
were derived by pooling sequence data from five infected animals
for 185 out of the 241 farms analyzed. The likelihood of one farm
infecting another increased if the former was not culled at the time
of infection of the latter, if they were in geographical proximity, or
if the sampled pathogen genomic sequences were related. Their
model included several assumptions such as non-correlation of
genetic distance, time of infection, and geographical distance
between host and target farms. The likelihood function was gener-
ated as follows: for the temporal component, a farm could infect
another if its infection time was before the infection time of the
target farm or if the infection time of the latter was between the
infection and culling time of the former. If a farm was already
culled, its infectiousness decayed exponentially. For the geograph-
ical component, two farms could infect each other with likelihood
equal to the inverse of the distance between them. This likelihood
varied according to a spatial kernel. For the genomic component,
probabilities of transitions and transversions, and the presence or
absence of a deletion was considered. If there was no missing data,
the likelihood function was just a product of independent geo-
graphical, genomic, and temporal components. This method also
allowed missing data by assuming that all the links to a specific
missing data type are in one subtree. MCMC [52] was performed
to sample all possible transmission trees and parameters.
Marginalizing over a large number of subtrees over all possible val-
ues can also prove computationally expensive. Mutations were
assumed to be fixed in the population before or after an infection,
ignoring a molecular clock.

In the method by Morelli et al. [24], the authors developed a
likelihood-based function that inferred the transmission trees
and infection times of the hosts. The authors assumed that a pre-
mise or farm can be infected at a certain time followed by a latency
period, a time period from infectiousness to detection, and a time
of pathogen collection. This method utilized the FMD dataset from
the study by Cottam et al. In order to simplify the posterior distri-
bution further, latent variables denoting unobserved pathogens
were removed and a pseudo-distribution incorporating the genetic
distance between the observed and measured consensus
sequences was generated. The posterior distribution corresponded
to a pseudo-posterior distribution because the pathogens were
sampled at observation time and not infection time. The genetic
distance was measured by Hamming distance between sequences
in isolation without considering the entire genetic network. Sev-
eral assumptions including independence of latency time and
infectiousness period were made. In determining the interval from
the end-of-latency period to detection, the informative prior was
centered on lesion age. This made this inference technique sensi-
tive to veterinary estimates of lesion age. This study considered a
single source of viral introduction in the population, which is fea-
sible if the population size considered is small. This technique did
not incorporate unobserved sources of infection and assumed all
hosts were sampled. The authors also assumed that each host
had the same probability of being infected.

Teunis et al. [56] developed a Bayesian inference framework to
infer transmission probability matrices. The authors assumed that
likelihood of infection transmission over all observed individuals
would be equal to the product of conditional probability distribu-
tions between each pair of individuals i and j, and the correspond-
ing entry from the transition probability matrix representing any
possible transmissions from ancestors to i. The inferred matrices
could be utilized to identify network metrics such as number of
cases infected by each infected source and transmission patterns
could be detected by analyzing pairwise observed cases during
an outbreak. The likelihood function could be generated by
observed times of onset, genetic distance, and geographical loca-
tions. Their inferred parameters were the transmission tree and
reproductive number. Their method was applied to a norovirus
outbreak in a university hospital in Netherlands.

In a method developed by Ypma et al. [34], the statistical frame-
work for inferring the transmission tree simultaneously generated
the phylogenetic tree. This method also utilized the FMD dataset
from the study by Cottam et al. Their approach for generating
the joint posterior probability of the transmission tree differed
from existing methods in including the simultaneous estimation
of the phylogenetic tree and within-host dynamics. The posterior
probability distribution defined a sampling space consisting of
the transmission tree, epidemiological parameters, and within-
host dynamics which were inferred from the measured epidemio-
logical data and the phylogenetic tree and mutation parameters
which were inferred from the pathogen genomic data. The poste-
rior probability distribution was estimated using the MCMC tech-
nique. The performance of the method was evaluated by
measuring the probability assigned to actual transmission events.
The assumptions made were that all infected hosts were observed,
time of onset was known, sequences were sampled from a subpop-
ulation of the infected hosts, and a single source/host introduced
the infection in the population. In going beyond existing methods,
the authors did not assume that events in the phylogenetic tree
coincide with actual transmission events. A huge sampling fraction
would be necessary to capture such microscale genetic diversity.
This method works best when all infected hosts are observed and
sampled.

Mollentze et al. [49] have used multimodal data in the form of
genomic, spatial and temporal information to address the problem
of unobserved cases, an existing disease well established in a pop-
ulation, and multiple introductions of pathogens. Their method
estimated the effective size of the infected population thus being
able to provide insight into number of unobserved cases. The
authors modified Morelli et al.’s method described above by
replacing the spatial kernel with a spatial power transmission ker-
nel to accommodate wider variety of transmission. In addition, the
substitution model used by Morelli et al. was modified by a Kimura
three parameter model [57]. This method was applied to a
partially-sampled rabies virus dataset from South Africa. The sep-
arate transmission trees from partially-observed data could be
grouped into separate clusters with most transmissions in the
under-sampled dataset being indirect transmissions. Reconstruc-
tions were sensitive to choice of priors for incubation and infec-
tious periods.

In a more recent approach to study outbreaks and possible
transmission routes, Jombart et al. [35], in addition to reconstruct-
ing the transmission tree, addressed important issues such as
inferring possible infection dates, secondary infections, mutation
rates, multiple pathways of pathogen introduction, foreign
imports, unobserved cases, proportion of infected hosts sampled,
and superspreading in a Bayesian framework. Jombart tested their
algorithm outbreaker on the 2003 SARS outbreak in Singapore
using 13 known cases of primary and secondary infection
[35,45,58]. In this study, 13 genome sequences of Severe Acute
Respiratory Syndrome (SARS) were downloaded from GenBank
and analyzed. Their method relies on pathogen genetic sequences
and collection dates. Similar to their previous approach [50], their
method assumed mutations to be parameters of transmission
events. Epidemiological pseudo-likelihood was based on collection
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dates. Genomic pseudo-likelihood was computed based on genetic
distances between isolates. This method would benefit from
known transmission pathways and mutation rates and is specifi-
cally suitable for densely sampled outbreaks. Their method
assumed generation time—time from primary to secondary infec-
tions—and time from infection to collection were available. Their
method ignored within-host diversity of pathogens. Instead of
using a strict molecular clock, this method used a generational
clock.

Didelot et al. [26] developed a framework to examine if whole-
genome sequences were enough to capture transmission events.
Unlike other existing studies, the authors took into account
within-host evolution and did not assume that branches in phylo-
genetic trees correspond to actual transmission events. The gener-
ation time corresponds to the time between a host being infected
and infecting others. For pathogens with short generation times,
genetic diversity may not accrue to a very high degree and one
can ignore within-host diversity. However, for diseases with high
latency times and ones in which the host remains asymptomatic,
there is scope for accumulation of considerable within-host genetic
diversity. Their method used a timed phylogenetic tree from which
a transmission tree is inferred on its own or can be combined with
any available epidemiological support. Their simulations revealed
that considering within-host pathogen generation intervals
resulted in more realistic phylogenies between infector and
infected. The method was tested on simulated datasets and with
a real-world tuberculosis dataset with a known outbreak source
with only genomic data and then modified using any available epi-
demiological data. The latter modified network resembled more
the actual transmission activity in having a web-like layout and
fewer bidirectional links. Their approach would work well for den-
sely sampled outbreaks.

Some of the most common parameters inferred for infectious
disease transmission in these Bayesian approaches are the trans-
mission tree between infected individuals or animals, the mutation
rates of different pathogens, phylogenetic tree, within-host diver-
sity, latency period, and infection dates [24,34,40,26]. Additional
parameters in recent work are reproductive number [26], foreign
imports, superspreaders, and proportion of infected hosts sampled
[35].
4. Limitations of existing methods

Several simplifying assumptions have been made in the
reviewed Bayesian studies, limiting their applicability across dif-
ferent epidemic situations. In Cottam’s [40] approach, the phyloge-
netic trees generated from the genomic data are weighed by
epidemiological factors to limit analysis to possible transmission
trees. However, sequential approaches may not be ideal to recon-
struct transmission trees and a method that combines all modali-
ties in a single likelihood function may be necessary. Ypma et al.
[25] assumed that pathogen mutations emerge in the host popula-
tion immediately before or following infections. Moreover, the
approach weighed each data type via their likelihood functions
and considers each data type independent of the others, which
may not be a realistic assumption. Jombart et al. [38] also inferred
ancestral relationships to the most closely sampled ancestor as all
ancestors may not be sampled. Morelli et al. [24] assumed flat pri-
ors for all model parameters. However, the method was estimated
with the prior for the duration from latency to infection centered
on the lesion age making the method sensitive to it and to veteri-
nary assessment of infection age. The method developed by Mol-
lentze et al. [49] required knowledge of epidemiology for
infection and incubation periods. Identifying parents of infected
nodes, as proposed by Teunis et al., [56] assumes that all infectious
cases were observed which may not be true in realistic, partially-
observed outbreaks. Didelot et al. [26] developed a framework
based on a timed phylogenetic tree, which infers within-host evo-
lutionary dynamics with a constant population size and densely-
sampled outbreaks.

Several of these approaches rely on assumptions of densely-
sampled outbreaks, a single pathogen introduction in the popula-
tion, single infected index cases, samples capturing the entire out-
break, that all cases comprising the outbreak are observed,
existence of single pathogen strains, and all nodes in the transmis-
sion network having constant infectiousness and the same rate of
transmission. However, in real situations the nodes will have dif-
ferent infectiousness and rate of spreading from animal to animal,
or human to human. Moreover, the use of clinical data only is non-
representative of how infection transmits to a population as it gen-
erally only captures the most severely affected cases. Our literature
review is summarized in Table 1.
5. Future work

As large-scale and detailed genomic data becomes more avail-
able, analyses of existing Bayesian inference methods described
in our review will inform their integration in epidemiological and
other biomedical research. As more and more quantities of diverse
data becomes available, developing Bayesian inference frame-
works will be the favored tool to integrate information and draw
inference about transmission and epidemic parameters simultane-
ously. The specific focus in this review on the application of net-
work inference in infectious disease transmission enables us to
consider and comment on common parameters, data types and
assumptions (summarized in Table 1). Novel data sources have
increased the resolution of information as well as enabled a closer
monitoring and study of interactions; spatial and genomic resolu-
tion of the Bayesian network-inference studies reviewed are sum-
marized in Fig. 4 to illustrate the scope of current methods.
Further, we have added suggestions for addressing identified chal-
lenges in these methods regarding their common assumptions and
parameters in Table 2. Given the increasing number and types of
biomedical data available, we also discuss how models can be aug-
mented to harness added value from these multiple and higher-
granularity modalities such as minor variant identification from
deep sequencing data or community-generated epidemiological
data.

Existing methods are based on pathogen genome sequences
which may largely be consensus in nature where the nucleotide
or amino acid residue at any given site is the most common residue
found at each position of the sequence. Other recent approaches
have reconstructed epidemic transmission using whole genome
sequencing. Detailed viral genomic sequence data can help distin-
guish pathogen variants and thus augment analysis of transmis-
sion pathways and host-infectee relationships in the population.
Highly parallel sequencing technology is now available to study
RNA and DNA genomes at greater depth than was previously pos-
sible. Using advanced deep sequencing methods, minor variations
that describe transmission events can be captured and must also
then be represented in models [59,60].

Models can also be encumbered with considerable selection
bias by being based on clinical or veterinary data representative
of a subsample of only the most severely infected hosts who access
clinics. Existing multi-modal frameworks are designed based on
clinical data such as sequences collected from cases of influenza
[35,38] or veterinary assessment of FMD [24,53], which generally
represent the most severe cases with access to traditional health-
care institutions and automatically inherit considerable selection
bias. Models to-date do not consider participatory surveillance



Table 2
Summary of gaps in existing inference techniques and suggestions for future research.

Presently available data and methods Suggestions for future research

Genomic � Pathogen genomic sequences are largely
consensus in nature

� Use deep-sequencing for within-host identification of minor variants

Spatial � Individual to individual
� Farm to farm
� Country to country

� Use community-level resolution such as household to household, zipcode to zipcode, or
neighborhood-based geographical locations, which are reasonable for targeting of pub-
lic-health interventions

Methods � Fitted to disease
� Small sample size
� Biased towards the most severe cases

� Perform power analysis to identify sample size for inference
� Reduce selection bias in data by generating it from the community which captures a wide
range of infections

� Incorporate supplementary information such as social networking, point-of-care data, and
electronic medical record (EMR) data. Social networking data can capture social and family
contact structures which can augment information about how transmission spreads.
Point-of-care data can be utilized where access to clinics is not available or feasible.
EMR data includes information such as family, social, and medication history

Data Generation � Clinical � Community-generated data from the wide range of cases in the community who do not
necessarily report to a clinic or are symptomatic

� Crowdsourced data which includes multitudes of factors such as social network structures
and mobility data

� Participatory self-reported data
Parameters � Transmission tree

� Rate of infectiousness
� Rate of recovery
� Proportion of infected hosts sampled
� Genetic outliers
� Superspreaders

� Community parameters capturing location or neighborhood-based infectiousness and
transmissibility essential for proactive intervention such as quarantine and vaccination

� Incorporate population stochastics such as mobility and transportation
� Foreign exports

Fig. 4. Different spatial and genomic resolutions utilized to study disease spread. (a) Regions of interest considered for different studies. Influenza studies considered world-
wide spread, SARS was studied in Singapore, Tuberculosis (TB) dataset was from British Columbia, Norovirus in a university hospital in the Netherlands, and Foot and Mouth
Disease (FMD) in 12 farms in Durham. (b) Different genomic sequencing platforms utilized in studies. For the TB study, Whole genome sequencing was performed on Illumina
HiSeq platform with M. tuberculosis CDC1551 reference sequence and aligned using Burrows-Wheeler Aligner algorithm. SARS DNA sequences were obtained from GenBank
and aligned using MUSCLE. For avian influenza, RNA consensus sequences of the haemagglutinin, neuriminidase and polymerase PB2 genes were sequenced. For H1N1
influenza, isolates were typed for hemagglutinin (HA) and neuraminidase (NA) genes.
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data that has become increasingly available via mobile and Inter-
net accessibility (e.g. data from web logs, search queries, Web
survey-based participatory efforts such as GoViral with linked
symptomatic, immunization, and molecular information [61] and
online social networks and social network questionnaires).
Another approach to improve the granularity of collected data
could be community-generated data. These data can be fine-
grained and can capture information on a wide range of cases from
asymptomatic to mildly infectious to severe. This data can be
utilized to incorporate additional transmission parameters of a
community which can be more representative of disease transmis-
sion. As exemplified in Fig. 4a, community-generated data can be
collected at the fine-grained spatial level of households, schools,
workplaces, or zip codes and models must then also accommodate
these spatial resolutions.

Studies to-date have also generally depended on available small
sample sizes and some are specifically tailored to a specific disease
or pathogen such as SARS, avian influenza, or FMD [34,35,40].
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Methods will have to handle missing data and unobserved and
unsampled hosts to be applicable to realistic scenarios. In simpler
cases, assumptions of single introductions of infection with single
strains being passed between hosts may be adequate. However,
robust frameworks will have to consider multiple introductions
of pathogens in the host population with multiple circulating
strains and co-infections in hosts. In order to be truly useful, frame-
works have to address questions regarding rapid mutations of cer-
tain pathogens, phylogenetic uncertainty, recombination and
reassortment, population stochastics, super spreading, exported
cases, multiple introductions of pathogens in a population, within
and between-host pathogen evolution, and phenotypic informa-
tion. Methods will also need to scale up to advances in next-
generation sequencing technology capable of producing large
amounts of genomic data inexpensively [62,63].

In the study of infectious diseases, the challenge remains to
develop robust statistical frameworks that will take into account
the relationship between epidemiological data and phylogeny
and utilize that to infer pathogen transmission while taking into
account realistic evolutionary times and accumulation of within-
host diversity. Moreover, to benefit public health inference meth-
ods need to uncover generic transmission patterns, wider range
of infections and risks including asymptomatic to mildly infectious
cases, clusters and specific environments, and host types.

Network inference frameworks from the study of infectious dis-
eases can be analogously modified to incorporate diverse forms of
multimodal data and model information propagation and interac-
tions in diverse applications such as drug-target pairs and neuronal
connectivity or social network analysis. The detailed examination
of models, data sources and parameters performed here can inform
inference methods in different fields, and bring to light the way
that new data sources can augment the approaches. In general, this
will enable understanding and interpretation of influence and
information propagation by mapping relationships between nodes
in other applications.
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