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Abstract: The molecular dynamics method was used to simulate the fracture process of monocrys-
talline silicon with different sizes of point defect under a constant strain rate. The mechanism of
the defect size on the mechanical properties of monocrystalline silicon was also investigated. The
results suggested that the point defect significantly reduces the yield strength of monocrystalline
silicon. The relationships between the yield strength variation and the size of point defect fitted
an exponential function. By statistically analyzing the internal stress in monocrystalline silicon, it
was found that the stress concentration induced by the point defect led to the decrease in the yield
strength. A comparison between the theoretical strength given by the four theories of strength and
actual strength proved that the Mises theory was the best theory of strength to describe the yield
strength of monocrystalline silicon. The dynamic evolution process of Mises stress and dislocation
showed that the fracture was caused by the concentration effect of Mises stress and dislocation
slip. Finally, the fractured microstructures were similar to a kind of two-dimensional grid which
distributed along the cleavage planes while visualizing the specimens. The results of this article
provide a reference for evaluating the size effects of point defects on the mechanical properties of
monocrystalline silicon.

Keywords: monocrystalline silicon; molecular dynamics; point defect; mechanical properties

1. Introduction

Monocrystalline silicon exhibits excellent photoelectric performance, doping charac-
teristics and chemical properties due to its microstructure, and is commonly used in the
manufacturing of large-scale integration and photovoltaics. The monocrystalline silicon
was cut from silicon ingots by wire saw [1] as the raw materials of these products. However,
in the production of silicon ingot, there is edge collapse, hidden crack, debris and other
defective products [2], which reduce the utilization rate of raw silicon, increase the eco-
nomic cost and hinder the development of the monocrystalline silicon industry. Therefore,
there is a need to investigate and improve the mechanical properties of the monocrystalline
silicon product.

Many scholars have carried out research on the mechanical properties of silicon.
Liu et al. [3] used the indentation method to investigate the deformation and surface dam-
age of monocrystalline silicon, combined with the results given by molecular dynamics
simulation to verify the deformation theories of crystal substructure. Because molecu-
lar dynamics simulation provides detailed information about the evolution of atomic
microstructures, it is also a powerful research tool for understanding the properties of
materials. During the decades of development of the monocrystalline silicon industry,
through theoretical analysis, experimental tests and computational simulations, the rein-
forcement effect of nitrogen [4], oxygen [5] and dislocation [6] on the mechanical properties
of monocrystalline silicon and the mechanisms of these impurities above have been fully
comprehended by the research community. However, due to negative factors, such as
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temperature, thermal stress and rapid crystallization, point defects are formed in the pro-
duction of monocrystalline silicon. Thus, the point defect should be considered in order to
completely discuss the factors which may affect the mechanical properties of monocrys-
talline silicon. At present, many outstanding works have been carried out through theory,
experiments and simulation methods in the research of point defects on the mechanical
properties of metals [7,8], composites [9–11] and carbon-based materials [12,13]. The ef-
fects of crystal defect were pointed out by Wu et al. [14] on the mechanical properties
of multicrystalline silicon, which is the main competitor of monocrystalline silicon. The
silicon defects induced by some experimental methods, such as spot laser melting [15]
and directional solidification [16], were also carried out by some researchers. As for the
mechanical properties of monocrystalline silicon, the size effects of point defects at the
nanoscale view of molecular dynamics have not been reported yet.

On the other hand, the monocrystalline product of silicon gained wide application in
new electrode materials, such as silicon anode, for its high theoretical gravimetric capacity
and being environmentally friendly. However, volume expansion will appear in the
lithiation/delithiation process if the anode is based on silicon. This results in low coulomb
efficiency and capacity fading [17]. Thus, the suppression of volume expansion in the
lithiation/delithiation process has become very crucial for current silicon anode research.
To solve this problem, Darbaniyan et al. [18] investigated the effects of strain rate and mass
fraction of lithium on the mechanical properties of silicon crystals. The results revealed
two potential factors affecting the mechanical properties of silicon anode. Kim et al. [19]
successfully suppressed the volume expansion by pre-lithiation. Some researchers focused
on the structure design of anode, proposing multiple optimization methods to improve the
mechanical properties of silicon anode. For example, Han et al. [20] showed a mechanical
buffer enhancement strategy to stabilize the carbon/silicon surface through controllable
shrinkage combined with a carbon cage network in the construction of the silicon anode.
The volume expansion of lithiation was effectively eliminated. Xie et al. [21] encapsulated
the micro/nano-sized silicon particles into a nitrogen-enriched porous carbon matrix, using
CaCO3 as the structural template and polyacrylonitrile (PAN) as the carbon and nitrogen
source. The resultant honeycomb shaped porous composites exhibited a dramatically
enhanced cycling stability and excellent rate performance, which could well adapt the
volume expansion of the lithiation/delithiation process. However, researchers have not
discussed the variation of mechanical properties in monocrystalline silicon under the effects
of defect cluster by the molecular dynamics method from the micro perspective.

In the present paper, a molecular dynamics method, combined with a typical potential
function of silicon, was used to simulate the tensile fracture process of monocrystalline
silicon under a constant strain rate. By generating point defects with different atomic
sizes in the crystals, the size effects of point defects on the mechanical properties of
monocrystalline silicon were discovered. Further discussions and analysis suggested that
the stress concentration caused by point defects decreased the yield strength, which is the
mechanism of strength reduction. The Mises theory was verified by stress computation,
which proved to be the best theory of strength to describe the mechanical properties of
monocrystalline silicon. The dislocation analysis suggested that the dynamic dislocation
behaviors also existed in the crack extension process during the crystal fracture. It proved
that the dislocation behaviors are also a major reason for the fracture. In the yield stage of
monocrystalline silicon, the microstructures formed by the fractured planes were similar
to a kind of two-dimensional grid. This phenomenon indicated that the microstructures
and conditions of fracture had certain regularity. Finally, in the monocrystalline silicon
production of the photovoltaic industry, the existence of defects with different sizes form in
crystals [22] and decrease the yield strength, which may cause edge collapse, hidden cracks
and debris while cutting silicon wafers. Such strength decays are more serious for defects
with larger sizes. Therefore, the authors expected to provide a reference for further research
studies about crystal defects on the mechanical properties of monocrystalline silicon and
the quality improvement of the silicon wafer cutting process.
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2. Model and Methods

The lattice constant of silicon is 0.543 nm. An ideal, diamond structure monocrystalline
silicon crystal was generated by LAMMPS (Large-scale Atomic/Molecular Massive Parallel
Simulator). The simulation box had a size of 21.7 × 21.7 × 21.7 nm3 along the X, Y,
and Z directions, respectively, containing about 512,000 silicon atoms. The X, Y and
Z axes respectively corresponded to the [100], [010] and [001] crystal directions of the
monocrystalline silicon. The periodic conditions were used in all directions of the system
boundary during the simulation, for the periodic boundary condition greatly eliminated
the surface effects [23]. Figure 1 shows the ideal crystal and 6 specimens with point defects.
Spherical regions with different radius were divided in the geometric center of the ideal
crystals. The atoms in these regions were deleted to generate the point defects. The size
of the point defect was measured by the amount of deleted silicon atoms. Table 1 shows
detailed information about the size of the point defect in each specimen.
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Figure 1. Cell model of monocrystalline silicon and 6 specimens with point defects.

Table 1. The size of point defect in different specimens.

Specimen Identifier Number of Deleted Atoms Radius of Point Defect/nm

1 0 0.000
2 1 0.0543
3 123 0.0815
4 281 1.086
5 2149 2.172
6 4229 2.715

Then, the crystals were thermally equilibrated to 300 K for 300 picoseconds, using iso-
baric/isothermal constant number of particles, constant pressure and constant temperature
(NPT) ensemble, so the total stress became zero. The timestep was set to 1 femtosecond.
During dynamic loading, the crystals were subjected to uniaxial tensile load with a con-
stant strain rate, 1 × 108/s−1, along the X direction, whereas the pressure in both Y and
Z directions was kept at zero by using a Berendsen [24] barostat. The temperature was
controlled every timestep by using a Berendsen thermostat. The Verlet algorithm was used
to calculate the trajectory of the atoms. Visualization of all molecular dynamics simulation
snapshots were made via the open source software Ovito (2.6.1) [25].

The interaction of silicon atoms is described by Tersoff potentials. The parameters of
the potential were developed by fitting to the experiment data of the silicon systems. The
Tersoff potential is a kind of bond potential, first reported in 1986, revised twice in 1988 and
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1989. It had three versions: T1 [26], T2 [27] and T3 [28]. The T2 version of Tersoff potential
(Tersoff.mod) was used in this simulation, for it describes not only the structure of diamond,
but also the non-tetrahedral structures of silicon, such as cluster, crystal orientation and
liquid silicon. The defect formation energy of silicon is 7.3 eV under the Tersoff potential
(T2), which shows a superiority in describing the properties of diamond silicon, compared
with other potential functions [29]. For example, Zhou et al. [30] simulated the melting
characteristics of silicon crystal under the effects of Tersoff, SW and MEAM potentials.
The results suggest that the Tersoff potential is better for describing the melting process
of silicon.

3. Results
3.1. The Size Effects of Point Defect on Mechanical Performance

Crystal easily forms defects, which critically reduce its mechanical properties [31], due
to the thermal stress and other factors in its formation. To analyze the size effects of point
defects on the mechanical properties of monocrystalline silicon, the stress–strain curves of
all specimens during the deformation are plotted in Figure 2a. The stress–strain curve of
ideal crystal shows the tensile process of monocrystalline silicon, including the elastic stage
and yield stage. In the elastic stage, the stress level ascends linearly as the strain increases;
the deformation in this stage is elastic and restorable. All specimens show the same
deformation behaviors in the elastic stage, which may be due to the potential. The fracture
appears when the stress exceeds the yield strength. Then, the stress decreases rapidly to
the lower yield point and turns to the yield stage. Comparing different stress–strain curves,
it is found that both the yield strength and the maximum strain of monocrystalline silicon
are significantly reduced by point defects.

Materials 2021, 14, x FOR PEER REVIEW 4 of 13 

used to calculate the trajectory of the atoms. Visualization of all molecular dynamics sim-
ulation snapshots were made via the open source software Ovito (2.6.1) [25]. 

The interaction of silicon atoms is described by Tersoff potentials. The parameters of 
the potential were developed by fitting to the experiment data of the silicon systems. The 
Tersoff potential is a kind of bond potential, first reported in 1986, revised twice in 1988 
and 1989. It had three versions: T1 [26], T2 [27] and T3 [28]. The T2 version of Tersoff 
potential (Tersoff.mod) was used in this simulation, for it describes not only the structure 
of diamond, but also the non-tetrahedral structures of silicon, such as cluster, crystal ori-
entation and liquid silicon. The defect formation energy of silicon is 7.3 eV under the Ter-
soff potential (T2), which shows a superiority in describing the properties of diamond 
silicon, compared with other potential functions [29]. For example, Zhou et al. [30] simu-
lated the melting characteristics of silicon crystal under the effects of Tersoff, SW and 
MEAM potentials. The results suggest that the Tersoff potential is better for describing 
the melting process of silicon. 

3. Results
3.1. The Size Effects of Point Defect on Mechanical Performance

Crystal easily forms defects, which critically reduce its mechanical properties [31], 
due to the thermal stress and other factors in its formation. To analyze the size effects of 
point defects on the mechanical properties of monocrystalline silicon, the stress–strain 
curves of all specimens during the deformation are plotted in Figure 2a. The stress–strain 
curve of ideal crystal shows the tensile process of monocrystalline silicon, including the 
elastic stage and yield stage. In the elastic stage, the stress level ascends linearly as the 
strain increases; the deformation in this stage is elastic and restorable. All specimens show 
the same deformation behaviors in the elastic stage, which may be due to the potential. 
The fracture appears when the stress exceeds the yield strength. Then, the stress decreases 
rapidly to the lower yield point and turns to the yield stage. Comparing different stress–
strain curves, it is found that both the yield strength and the maximum strain of mono-
crystalline silicon are significantly reduced by point defects. 

Figure 2. (a) Stress-strain curves of all specimens. (b) Exponential fitting curve of yield strength 
and defect size. 

As shown in Figure 2b, while doing some statistical work about the effects of point 
defects on mechanical properties, it is found that the size of point defects and the yield 
strength sσ  follow an exponential function: 

s 0( ) ( )× ×σ c =σ +A Exp R c  (1)

where c is the size of point defect, σ0 is the minimum yield strength, which is approxi-
mately equal to 12.0504 ± 0.4568 GPa, A = 5.4136 ± 0.6398 GPa, R = −0.0051 ± 0.0015. The 
correlation coefficient of this exponential fitting is equal to 0.9998 and the residual sum of 
squares is equal to 0.4253. Among all kinds of exponential fitting functions, the presented 

Figure 2. (a) Stress-strain curves of all specimens. (b) Exponential fitting curve of yield strength and defect size.

As shown in Figure 2b, while doing some statistical work about the effects of point
defects on mechanical properties, it is found that the size of point defects and the yield
strength σs follow an exponential function:

σs(c) = σ0 + A × Exp(R × c) (1)

where c is the size of point defect, σ0 is the minimum yield strength, which is approximately
equal to 12.0504 ± 0.4568 GPa, A = 5.4136 ± 0.6398 GPa, R = −0.0051 ± 0.0015. The
correlation coefficient of this exponential fitting is equal to 0.9998 and the residual sum of
squares is equal to 0.4253. Among all kinds of exponential fitting functions, the presented
function is the best and clearest with the lowest error range of parameter R. Both A and
R are parameters related to the defect properties. Further research is required for the
investigation of factors which may affect A and R parameters.
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3.2. Discussing the Mechanism of Strength Reduction from Stress Variation

Bullegas et al. [32] studied the effects of stress concentration on the fracture process of
composites and concluded that the concentration and the release of internal stress were the
main causes of fracture. To discuss the fracture mechanism of monocrystalline silicon, the
stress tensors at a period of 500 timesteps of each atom were used to plot the distribution
of stress in X direction (σx) as shown in Figures 3–5.
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The σx in specimen 1 shows a random distribution in Figure 3a, while the cracks may
appear in random places due to the uniformity of ideal crystal. Figures 4a and 5a indicate
that the distributions of σx in the specimens with single defect and larger defect clusters
are roughly the same. The stress is concentrated on dangerous sections perpendicular to
the strain loading direction. The snapshots in Figures 4b–d and 5b–d show that the fracture
directions of different specimens are all along the (111) crystal plane. So, the <111> crystal
family is the major concern in the next subsection.

Figure 6 quantitatively shows the relationship between the maximum stress level and
the size of point defect. The variation of σx suggests that the maximum tensile stress inside
the crystal is always greater than the yield strength shown in Figure 2b. They both have
the same trend of variation. Despite the upward trend of tensile stress in the Y direction
(σy) and tensile stress in the Z direction (σz), the curve of σx in Figure 6a suggests that
the fracture may depend on the value of σx. However, the increasing trend of other stress
tensors (shear stress in the XY plane: τxy; shear stress in the YZ plane: τyz; shear stress
in the XZ plane: τxz) in Figure 6a,b shows that the combined result of all stress tensors
should be considered as the reason of fracture. To verify the existence of such a complex
stress condition above in the fracture process of silicon crystal under uniaxial tension, the
equivalent stress on each atom was calculated by using atomic stress tensors [33] according
to the formulas [34] of four theories of strength.
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Researchers have already developed many theories of strength to reveal the frac-
ture mechanics of multiple material types [35,36] according to their engineering require-
ments [37]. Amongst all the theories, the most famous theories are four theories of strength
mentioned by the textbooks about engineering mechanics. Figure 7 gives the yield strength
of specimens and theoretical strength of the four theories. Average relative error (δ) and
theoretical strength under larger defect sizes show that the second theory of strength (in this
theory, the fracture is caused by maximum tensile strain) and the third theory of strength
(in this theory, the fracture is caused by maximum shear stress) do not match the variation
of yield strength precisely. The theoretical strength given by the first theory of strength
(in this theory, the fracture is caused by maximum tensile stress) and the fourth theory of
strength (Mises theory) are well consistent with the actual strength variation. However,
the first theory of strength does not take the variation of other stress tensors, shown in
Figure 6, into consideration. So, the fourth theory of strength was regarded as the best
theory of strength to describe the yield strength of monocrystalline silicon. Considering
the combination effects of tensile stress and shear stress, the fourth theory of strength was
proposed by Von Mises based on elastic strain energy. It is also a distortion energy density
theory, which is used to calculate the yield strength of materials. The equivalent stress
according to the Mises theory is called Mises stress. The formula of yield strength in the
Mises theory is as follows:

σs =

√
1
2
((σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2 − 6(τ2
xy + τ2

yz + τ2
xz)) (2)

where σs is the Mises stress given by the stress tensors of an atom. When the Mises stress
exceed a critical value, the atoms will start to the plastic state or fracture.

The fracture directions showed in Figures 4 and 5 are along the <111> cleavage plane
family. The fracture phenomenon of this plane family is more representative for revealing
the reasons of fracture. Figure 8 shows the distribution and variation of Mises stress on (111)
crystal plane according to Equation (2) with the images of crack extension. Black arrows
are used to indicate the directions of crack extension and Mises stress variation. Different
from the distribution of σx, Mises stress shows an obvious non-uniform distribution, which
gives a better explanation for the formation and the extension of cracks. Figure 8(b1,c1,d1)
suggests that the variation of the fracture regions are always accompanied by the regional
extension of Mises stress concentration. Fractures will not appear in regions where the
Mises stress level does not reach the Mises theoretical strength. It results in the directed
crack extension in Figure 8.
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Figure 8. Crack variation and Mises stress variation of crystal plane in specimen 3 during the process of fracture: (a) Crack
snapshot at timestep 2,042,500; (b) crack snapshot at timestep 2,044,500; (c) crack snapshot at timestep 2,046,000; (d) crack
snapshot at timestep 2,047,500; (a1) Mises stress snapshot at timestep 2,042,500; (b1) Mises stress snapshot at timestep
2,044,500; (c1) Mises stress snapshot at timestep 2,046,000; (d1) Mises stress snapshot at timestep 2,047,500.

After the recognition of the phenomenon that the point defect caused on the mechani-
cal performance of monocrystalline silicon, the mechanism of strength reduction is now
concluded as follows: the point defect will change the stress distribution in the crystal
by concentrating the stress in its surrounding. The fracture condition will conform to the
Mises theory under the effects of the point defect. Therefore, the variation of the actual
yield strength matches the predicted trend of the Mises theory. This mechanism suggests
that the shear stress also participates in the fracture, which also provides a theoretical
reference for evaluating the mechanical properties of monocrystalline silicon.

3.3. Dynamic Evolutions of Dislocations in Fracture Process

Yonenaga et al. [38,39] investigated the dislocation dynamics in the deformation of
silicon crystals via theoretical analysis and experiments. They concluded that the stress–
strain characteristics during yielding are controlled by the dislocation processes occurring
during such a transient period. Until now, computer modeling and the experimental
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analysis [40] of silicon dislocations have proved such points as those mentioned above.
Thus, from the dislocation dynamics view, the dynamic evolutions of dislocations in the
fracture process of silicon were completed by using the dislocation analysis (DXA) function
of Ovito.

In the elastic stages, there was no dislocation existing in the specimens, but as the crack
appeared, dislocations formed too. Figure 9 shows the dislocation evolution in the fracture
process of monocrystalline silicon. The dislocation was distributed along the boundaries of
the fractured regions. These results indicate that the crystal crack will form dislocations
while under tensile stress loading. As the cracks are extended, the dynamic behaviors of
dislocations perform the same trend with the crack boundaries. This provides another
explanation for the fracture phenomena in monocrystalline silicon.
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However, the dislocations of specimen 5 showed in Figure 10 are more discontinuous
and shorter, compared with specimen 2. This indicates that the yield strength reduction
depends on the dislocation extension or slip. Specimens with larger defect sizes are close
to the minimum yield strength of silicon, for they have fewer dislocations. As for the
ideal crystal, dislocations may be generated at the slip planes inside the crystal due to the
uniformity. The dislocation dynamics analysis of monocrystalline silicon provides a new
aspect to reveal the mechanism of yield strength reduction.
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Figure 10. Dynamic behaviors of dislocation in specimen 5 during the process of fracture: (a) Dislocation snapshot at timestep
1,738,000; (b) dislocation snapshot at timestep 1,739,500; (c) dislocation snapshot at timestep 1,741,000; (d) dislocation
snapshot at timestep 1,742,500.

3.4. Fractured Microstructures of Monocrystalline Silicon

As mentioned in Section 3.2, the fractured microstructures of the specimens in
Figure 11 show a certain regularity in <111> crystal plane family by removing the
silicon atoms. Figure 11a,c shows periodic structural repetition at (100) and (010)
planes. The fractured structures in Figure 11b are similar to a non-orthogonal and
two-dimensional grid. The hexagonal diamond atoms are mainly distributed on the
(111) and (111) cleavage planes of the two-dimensional grid, while the amorphous
silicon atoms are mainly distributed on the edge of [110] direction where the two
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crystal planes intersect. Figure 11d shows that only two crystal planes appear in a
single specimen.
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Figure 11. Fractured microstructures caused by tensile stress from (100) crystal direction in monocrys-
talline silicon: (a) Camera view of (100) direction; (b) camera view of (110) direction; (c) camera view
of (010) direction; (d) grid structure in single cell model.

Table 2 shows the distribution of fractured planes in different specimens. There are
four possible fracture planes in <111> crystal family, which are (111), (111), (111) and
(111) planes. The angle between these planes and the initial tensile direction is 54.74◦.
However, only two crystal planes with an angle of 70.53◦ will appear randomly in each
specimen. Because it is found that the stress tensors on two of the four fracture planes with
an angle of 70.53◦ match the fracture condition in formula (2), the fracture will appear on
the two planes.

Table 2. Distribution of crystal planes in the fractured microstructures.

Specimen Identifier Crystal Plane 1 Crystal Plane 2 Angle between Two Planes

1 (111) (111) 70.53◦

2 (111) (111) 70.53◦

3 (111) (111) 70.53◦

4 (111) (111) 70.53◦

5 (111) (111) 70.53◦

6 (111) (111) 70.53◦

4. Conclusions

The size effects and the mechanism of the point defect on the mechanical properties of
monocrystalline silicon were investigated by molecular dynamics simulation. The main
preliminary results are summarized as follows:

The variation of yield strength shows that the point defect reduced the yield strength
of monocrystalline silicon. The relationship between the yield strength and the size of
the defect are in accordance with the exponential function shown in Formula (1). The
mechanism of the yield strength reduction caused by the point defect is that the point
defect will change the stress state of the crystal by inducing stress concentration in its
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surroundings. By giving the theoretical yield strength of four theories of strength, the Mises
theory is proved to be the best theory of strength to calculate the mechanical performance
of monocrystalline silicon. The evolution of Mises stress also matches the crack extension
in the crystal. Dislocation analysis was used to reveal the dynamic evolution process of
silicon dislocations, which proved to be another reason for the crack extension and one of
the possible explanations for the yield strength reduction. Then, the microstructures of
fracture were visualized by Ovito, and it was found that the fractured silicon structures
were similar to a kind of two-dimensional grid along the cleavage planes of silicon. The
visualization results indicate there are four possible fracture planes in monocrystalline
silicon; once the stress tensors on two planes with an angle of 70.53◦ reach their limit, a
fracture will appear in the two planes.
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