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Abstract: Germ-line mutations in breast cancer susceptibility gene 1 (BRCA1) predominantly predispose
women to breast and ovarian cancers. BRCA1 is best known for its functions in maintenance of
genomic integrity including repairing DNA double-strand breaks through homologous recombination
and suppressing DNA replication stress. However, whether these universally important BRCA1
functions in maintenance of genomic stability are sufficient to account for its tissue-specific
tumor-suppressing function remains unclear. Accumulating evidence indicates that there are
previously underappreciated roles of BRCA1 in transcriptional regulation and chromatin remodeling.
In this review, we discuss the functional significance of interactions between BRCA1 and various
transcription factors, its role in epigenetic regulation and chromatin dynamics, and BRCA1-dependent
crosstalk between the machineries of transcription and genome integrity. Furthermore, we propose a
model of how transcriptional regulation could contribute to tissue-dependent tumor-suppressing
function of BRCA1.
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1. Introduction

Approximately 0.2% to 0.3% of the general population in the United States carries germ-line
mutations in the tumor suppressor gene BRCA1 (BRCA1mut/+) [1,2]. Unlike tumor suppressors such as
p53 that are implicated in a broad spectrum of cancers, BRCA1 functions in a gender- and tissue-specific
manner. BRCA1 mutation-carrying women have significantly higher risk of developing breast and
ovarian cancers compared to the general population, with an estimated cumulative risk of 65% and 39%
by the age of 70, respectively [3–5]. By comparison, BRCA1 mutation-carrying men have an estimated
cumulative risk of 1.2% of developing breast carcinoma at the same age [6]. BRCA1-mutated breast
cancers are typically more aggressive and higher grade with an increased rate of TP53 mutations [7–10].
In addition, these BRCA1-associated breast tumors tend to be triple-negative for estrogen receptor
α (ER-), progesterone receptor (PR-), and HER2 (HER2-), making it more challenging to develop
targeted therapies [11–14]. PARP inhibitor olaparib has recently been approved by the US Food and
Drug Administration (FDA) to treat BRCA-mutated metastatic breast cancer; and several other PARP
inhibitors are currently under clinical development [15,16]. Despite these exciting developments,
chemotherapy is still the first-line therapy for BRCA1-related breast cancers [17,18].

Breast epithelia consist of two layers of epithelial cells (Figure 1a): the inner layer with luminal
progenitors and ductal/alveolar cells, and the outer layer with mammary stem cells and myoepithelial
cells [19]. The luminal and basal cell lineages express distinct sets of fate-determining genes that
fulfill lineage-specific functions. For example, mature luminal cells express ERα and PR, which,
together with a number of additional luminal lineage-specific transcription factors, regulate side
branching and alveologenesis in the breast epithelia [20,21]. BRCA1 mutation leads to aberrant luminal
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lineage development. Of note, luminal progenitor cells from disease-free BRCA1 mutation carriers
(BRCA1mut/+) exhibit deficiency to differentiate into mature luminal cells [22,23]. Besides, luminal
differentiation-associated gene expression is significantly reduced in BRCA1mut/+ breast epithelium
versus their non-carrier controls [22,23]. Furthermore, in vitro proliferation of BRCA1mut/+ luminal
progenitors is less growth factor-dependent than their BRCA1+/+ counterparts [22], consistent with
the notion that these mutant progenitors are aberrantly proliferative yet defective in differentiation.
The deficiencies observed in BRCA1 mutated clinical samples were corroborated by work using
genetically engineered mouse models with lineage-specific deletion of mouse Brca1 [22,24]. More
recent studies indicate that the RANK-RANKL axis, a key player that mediates paracrine actions
in luminal homeostasis, is abnormally activated in breast epithelia of BRCA1 mutation carriers [25].
Ostensibly normal BRCA1mut/+ breast tissue has a higher percentage of RANK+ luminal progenitors,
cells highly proliferative and prone to DNA damage [25]. Inhibition of RANKL, the ligand of
RANK, attenuates mammary tumorigenesis in Brca1-deficient mice [25]. Thus, despite the fact that
BRCA1-associated breast tumors tend to be basal-like and triple-negative, both clinical and preclinical
studies strongly suggest that luminal progenitor cells are the cell-of-origin of BRCA1-mutated breast
cancers [22,23,26] (Figure 1b). While it is abundantly clear that germ-line BRCA1 mutations confer
tissue- and cell lineage-specific cancer, the mechanism underlying the context-dependent dysfunction
of cancer-predisposing BRCA1 mutations remains largely unknown.
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BRCA1 is best known for maintenance of genomic integrity through its functions in homologous
recombination (HR)-dependent repair of double-strand DNA breaks [27–29], regulation of cell cycle
checkpoints [30,31], and suppression of DNA replication stress [32]. While these BRCA1-dependent
processes most likely contribute to its tumor suppressor function, they may not be sufficient to explain
the aforementioned longstanding conundrum in BRCA1-related cancer biology, namely, the sex/tissue
selectivity and luminal-to-basal lineage conversion during tumorigenesis. Besides its well-documented
functions in maintenance of genome stability, BRCA1 is also implicated in transcriptional regulation
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and chromatin reorganization [30,33–38], processes that primarily dictate normal tissue development
and lineage-specific cell differentiation. Here, we summarize recent findings concerning the roles
of BRCA1 in transcriptional regulation and discuss their potential contributions to the tissue- and
lineage-specific tumor suppressor functions of BRCA1.

2. Functional Interaction between BRCA1 and Transcription Factors

A potential role of BRCA1 in transcriptional regulation was first described two decades ago [39].
When fused to a heterologous DNA binding domain, the carboxyl-terminus of BRCA1 was shown
to activate transcription in both budding yeast and mammalian cells [39–41]. Interestingly, cancer-
predisposing BRCA1 mutations abolished BRCA1-mediated transcriptional activation, suggesting a
possible role of transcriptional regulation in mediating tumor suppressing function of BRCA1 [39].
It was later found that BRCA1 was co-purified with the RNA polymerase II (Pol II) holoenzyme
complex [35]. This interaction was through a direction interaction between the C-terminus of BRCA1
and RNA helicase A, a component of the Pol II holoenzyme [35,42]. In addition to its interaction with
basal transcription machinery, BRCA1 has also been shown to bind to several known transcription
factors, including p53 [37,43], estrogen receptor alpha (ERα) [44], cofactor of BRCA1 (COBRA1) [34],
c-Myc [45], ZBRK1 [46], GATA3 [47] and STAT1 [48] (Figure 2). Excellent reviews on this topic can be
found elsewhere [30,49,50]. In this review, we discuss the functional significance of the interactions
between BRCA1 and some of these transcription factors.
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2.1. BRCA1 with p53

Two groups independently discovered the interaction between BRCA1 and p53 [37,43]. BRCA1
was shown to physically interact with p53 in vitro and in vivo and stimulate p53-dependent gene
expression [37,43]. The p53/BRCA1 interaction is mediated by both the amino-terminal domain
(aa 224–500) and the second BRCT domain (aa 1760–1863) of BRCA1 [37,51]. Interestingly, the p53
coactivator function of BRCA1 only manifests in activation of growth arrest-, but not apoptosis-related
transcriptional targets of p53 [52,53]. Besides assisting p53 as a transcriptional coactivator, BRCA1
was also reported to stabilize p53 protein through transcriptional activation of p14ARF, another tumor
suppressor [54]. Conversely, p53 has been shown to transcriptionally repress BRCA1 expression,
therefore forming a possible feedback loop [55,56].

A functional interaction between BRCA1 and p53 was observed from studies of several
genetically modified mouse models. Homozygous Brca1 null leads to embryonic lethality [57–60].
However, survival of Brca1∆5-6/∆5-6 and Brca1∆2/∆2 embryos are prolonged by homozygous Trp53
deletion [57,58,60]. In a different Brca1 mouse model, elimination of one Trp53 allele (Trp53+/−) is
sufficient to completely rescue Brca1∆11/∆11 embryonic lethality [59]. The p53-associated rescue is
most likely due to the loss of p53-dependent apoptosis and G1/S checkpoint, allowing Brca1-null
cells to proliferate in the presence of DNA damage [59]. Interestingly, Brca1∆11/∆11; Trp53+/− mice,
although able to survive to adulthood, exhibit premature aging phenotype [61]. Mouse mammary
luminal epithelium-specific knockout of Brca1 (Wap-cre; Brca111f/11f and MMTV-cre; Brca111f/11f) results
in mammary gland developmental defect and an increased rate of apoptosis [62]. Tissue-specific BRCA1
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knockout mice develop spontaneous mammary tumors at a long latency, and the tumor formation
is significantly accelerated with Trp53 inactivation [62,63]. Importantly, most Brca1 knockout tumors
have spontaneous Trp53 mutation, suggesting that loss of p53 is required for tumorigenesis [62]. This
is consistent with the aforementioned phenomenon that BRCA1-associated human breast tumors
have significantly increased chance of carrying TP53 mutations, compared to BRCA1-unrelated
breast tumors [7,64]. Despite the genetic interactions between BRCA1 and p53 during normal tissue
development and tumorigenesis, it remains unclear whether these functional interplays are dependent
on their physical interaction.

2.2. BRCA1 with ERα

BRCA1 has an intertwined relationship with ERα signaling. BRCA1 stimulates transcription of
ESR1, the gene that encodes ERα [65]. This transactivation ability of BRCA1 is mediated by OCT1,
a site-specific transcription factor that binds to the ESR1 promoter and recruits BRCA1 through
the OCT1/BRCA1 interaction [65]. On the other hand, BRCA1 inhibits both ligand-dependent and
ligand-independent transcriptional activity of ERα [66,67]. Notably, tumor-associated BRCA1 mutants
are defective in suppressing ERα transcriptional activity [66,67]. The BRCA1-associated suppression of
ERα transcriptional activity can be explained by several mechanisms. First, BRCA1 directly interacts
with ERα in vitro and in vivo and inhibits its activity [66]. The BRCA1/ERα interacting domains
have been mapped to the N-terminal of BRCA1 (aa 1–300) and the C-terminal activation function
2 (AF-2) domain of ERα, respectively [44]. Second, BRCA1 down-regulates p300, a well-known
ERα coactivator [68,69]. Indeed, ectopic expression of p300 rescues the BRCA1 inhibition of ERα
activity [70]. Third, mono-ubiquitination of ERα by BRCA1 suppresses ERα activity [71]. In support,
a BRCA1 mutant that disrupts its ubiquitin ligase activity abolishes the ability of BRCA1 to inhibit
ERα [71]. These mechanisms are not mutually exclusive, and a combination of more than one could
contribute to the reported BRCA1-mediated repression of the vast majority of estrogen-responsive
genes [72]. Adding to this complexity, BRCA1 itself is an estrogen-responsive gene [73,74]. Whether
ERα directly binds to BRCA1 promoter is still under debate, but 17-β-estradiol (E2) treatment can
stimulate BRCA1 expression in mammary gland of ovariectomized mice [73]. In summary, the current
data suggest an interrelated mutual regulation between BRCA1 and ERα signaling.

The physical and functional interactions between BRCA1 and ERα provide a plausible molecular
explanation for the preferential association of BRCA1 mutations with cancer risk in estrogen-responsive
tissues/organs. BRCA1 deficiency leads to an expanded luminal progenitor population and deficiency
in luminal cell differentiation [22,24]. This could be explained, at least partially, by compromised
BRCA1 ability in stimulating ERα expression [65]. In further support, Liu et al. reported that BRCA1
plays an important role in differentiation of ER-negative stem/progenitor cells to ER-positive luminal
cells [75]. Using mouse models and/or human breast tissues, it was shown that BRCA1-associated
basal-like breast tumors originate from luminal progenitor cells [22,23,26]. These findings raise two
outstanding questions. First, luminal progenitor cells in the post-pubertal mammary glands are slow
replicating, largely ERα-negative cells [19,76,77]. Therefore, the functional interaction between BRCA1
and ERα during tumorigenesis, if any, could work in a paracrine manner instead of being mediated
by a direct protein-protein interaction in the same epithelial cell type. In support of this possibility,
Nolan et al. identified a subset of luminal progenitor cells that express RANK, an important paracrine
mediator of hormonal signaling [25]. RANK+ luminal progenitors in BRCA1 mutation carriers are
highly proliferative, and inhibition of its ligand RANKL attenuates mammary tumor formation in
Brca1 knockout mice [25]. Another related question concerns how BRCA1-deficient luminal progenitor
cells develop into basal tumors. In this regard, recent work by the Kuperwasser’s group suggests that
Slug, a transcription factor involved in mammary development and lineage commitment, is aberrantly
expressed in BRCA1-deficient breast tissues [23,78].
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2.3. BRCA1 with COBRA1/NELF-B

Our group first demonstrated that BRCA1 interacts with cofactor of BRCA1 (COBRA1) through
its BRCT domain [34]. Interestingly, cancer-predisposing BRCA1 mutants A1708E and M1775R exhibit
increased affinity for COBRA1 [34]. In an independent study, COBRA1 was identified as the B subunit
of the negative elongation complex (NELF), which pauses Pol II at the promoter-proximal region
and attenuates transcription elongation [79]. NELF-mediated Pol II pausing is a crucial regulatory
step of transcription in metazoans, lack of which is detrimental to early embryogenesis and tissue
homeostasis [24,80–83]. BRCA1 and COBRA1 are shown to concertedly regulate transcription [24,84].
The functional interaction between these two proteins is best demonstrated in a mammary epithelium-
specific knockout mouse model [24,81]. Homozygous Cobra1 knockout in mouse mammary gland
(MMTV-cre; Cobra1f/f) leads to severe developmental defect accompanied by alveologenic and
lactogenic deficiencies [24]. Consistent with its role in Pol II pausing, the gene expression profiles
in Cobra1 knockout mammary glands are significantly different from their wild-type littermates,
especially for those genes previously identified as puberty-related [24]. Neither co-deletion of the
Ink4a/Arf locus or Trp53 rescues these deficiencies, suggesting that the developmental defects in Cobra1
knockout mostly likely are not caused by senescence, cell cycle arrest or apoptosis [24]. In stark contrast,
all developmental defects associated with loss of COBRA1 are largely rescued by co-deletion of Brca1
exon 11 (MMTV-cre; Cobra1f/f; Brca111f/11f) [24]. Concordantly, aberrant pubertal gene expression in
Cobra1 knockout mammary gland is partially restored by co-deletion of Brca1 exon 11, indicating that
BRCA1 antagonizes COBRA1-dependent transcription program in mammary epithelia [24]. Notably,
Brca1 point mutants that abrogate either its E3 ligase activity or the phospho-recognition property fail
to rescue the mammary developmental defects in Cobra1 knockout mice [81]. Therefore, it is reasonable
to speculate that BRCA1 exon 11 encodes the region important to antagonize COBRA1-mediated
transcriptional regulation.

Further functional characterization of the above-mentioned mouse genetic models reveals that
Cobra1 deletion reduces Brca1-associated mammary tumorigenesis [85], thus clearly demonstrating
mutual functional antagonism between these two genes in both normal tissue development and
mammary tumor formation. Cell line-based studies showed that BRCA1 is responsible for elimination
of R-loops, RNA-DNA hybrids and by-products of transcription [86,87]. Importantly, persistent
R-loops are known to threaten genome integrity and change gene expression profiles [88]. Using
cancer-free human breast tissues from BRCA1 mutation carriers and non-carriers, we conducted a
genome-wide survey of BRCA1-associated R-loop signals. We found that BRCA1 mutation-associated
R-loop accumulation only occurs in luminal epithelial cells, which is reminiscent of the lineage-specific
cell-of-origin for BRCA1-associated breast tumors [85]. In addition, these BRCA1 deficiency-associated
R-loops preferentially accumulate at transcription start sites with paused Pol II, the transcriptional
event controlled by COBRA1/NELF-B [85]. Functional antagonism between BRCA1 and COBRA1 in
R-loop regulation can be recapitulated in human breast cancer cells in vitro [85]. Furthermore, genetic
ablation of Cobra1 mitigates R-loop accumulation in Brca1-ablated mouse mammary epithelium,
suggesting that Brca1 deletion-associated R-loop accumulation is largely caused by the action of
COBRA1 [85]. It is worth noting that neither the double-strand break repair defect nor DNA
replication stress associated with BRCA1 deficiency was rescued in Cobra1/Brca1 double knockout [85].
Together with the finding that co-deletion of the two genes significantly reduces Brca1-associated
mammary tumorigenesis, these results indicate that attenuation of Pol II pausing-induced R-loops
likely contributes to the tumor suppressor function of BRCA1 [85].

3. The Roles of BRCA1 in Epigenetic Regulation

Epigenetics, including DNA methylation and histone modifications, is a critical transcriptional
regulatory mechanism [89,90]. BRCA1 alters epigenetics through its physical interaction with, and
transcriptional regulation of known epigenetic modifiers. In addition, as a ubiquitin E3 ligase, BRCA1
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directly ubiquitylates histones. Here we summarize several recent studies that elucidate the roles of
BRCA1 in epigenetic control.

3.1. BRCA1 in DNA Methylation

DNA methylation, covalent addition of a methyl group to the fifth position of the cytosine
ring of DNA, is a stable repressive epigenetic mark that silences transcription [91,92]. It is an
evolutionary conserved phenomenon that promoter methylation negatively correlates with gene
expression [93]. Global DNA hypomethylation and promoter hypermethylation are common features
in most cancer types including breast cancer [94–96]. BRCA1-associated breast tumors, in particular,
exhibit less DNA methylation compared with sporadic breast tumors [97–99]. There are two groups
of DNA methyltransferases (DNMTs): (1) de novo methyltransferases DNMT3A and DNMT3B that
put the initial methyl groups onto DNA, and (2) methylation maintenance enzyme DNMT1 that
copies the methylation pattern from the template strand to the newly synthesized strand after DNA
replication [100–102]. As detailed below, BRCA1 is reported to associate with both groups [99,103].

BRCA1 physically interacts with de novo methyltransferase DNMT3B and modulates
heterochromatin methylation [103]. This interaction was demonstrated in a Wip1 deletion model [103].
Wip1 is a p53-induced serine/threonine phosphatase, and its overexpression is observed in various
cancers [104,105]. Loss of Wip1 in mouse germ cells and human cancer cells leads to dramatically
increased global 5-methylcytosine level, especially at L1 LINE retrotransposons [103]. It is worth
noting that L1 LINE comprises 17% of the human genome [106]. The marked enrichment of DNA
methylation at L1 LINE is associated with decreased level of L1 LINE transcripts [103]. Surprisingly,
the increased global level of 5-methylcytosine, elevated DNA methylation at L1 LINE, and reduced L1
LINE mRNA expression in Wip1-depleted cells are all rescued by either a single allele deletion of ATM
or depletion of BRCA1 [103]. This result puts the actions of ATM and BRCA1 between the Wip1 loss and
elevated DNA methylation on retroelements. Further investigation confirms previous reports that Wip1
deletion constitutively activates ATM-dependent DNA damage response, which subsequently turns
on the downstream effector BRCA1 [103,107,108]. Activated BRCA1 forms a complex with DNMT3B
and heterochromatin protein 1 (HP1) that methylate L1 LINE sequences [103,109]. Importantly,
the involvement of BRCA1 in facilitating DNA methylation is ATM-dependent, since mutation
of the ATM phosphorylation sites on BRCA1 significantly attenuates the BRCA1-DNMT3B-HP1
complex assembly [103]. In further support, overexpression of Wip1 decreases DNA methylation of
L1 LINE, accompanied by significantly increased L1 LINE mRNA level. Unmethylated DNA serves
as substrate of cytidine deaminases [110]. If not properly repaired, cytidine deamination generates
C-to-T mutations [110]. Indeed, the copy number of PPM1D, the gene that encodes Wip1, positively
correlates with C-to-T mutation load in primary human breast tumors [103]. Thus, a potential role of
ATM/BRCA1 signaling in regulating global DNA methylation could contribute to genome integrity.

In addition to its physical interaction with de novo methyltransferase DNMT3B, BRCA1 also
regulates transcription of methylation maintenance enzyme DNMT1 and prevents global DNA
hypomethylation [99]. BRCA1 is associated with a putative OCT1-binding motif on the DNMT1
promoter in both human and mouse cells, and its binding leads to a transcriptionally active
configuration of the promoter [99]. Brca1∆11/∆11 mice exhibit dramatically decreased level of DNMT1,
which causes global DNA hypomethylation, loss of genomic imprinting, and an open chromatin
configuration globally. Importantly, BRCA1 deficiency in mouse mammary gland leads to marked
reduction of promoter methylation and mRNA overexpression of several proto-oncogenes including
c-Myc, Ha-Ras, and c-Fos [99]. In primary human breast tumors, there is a positive correlation
between protein levels of BRCA1 and DNMT1 [99]. Furthermore, BRCA1-mutated breast cancer is
associated with reduced DNMT1 transcription when compared with non-mutated breast cancer [111].
The transcriptional link between BRCA1 and DNMT1 strongly indicates a function of BRCA1 in global
DNA methylation, thus providing another plausible mechanism for BRCA1 mutation-associated DNA
hypomethylation and breast cancer formation.
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Although BRCA1 positively regulates DNA methylation at a global level, it suppresses
gene-specific promoter methylation through its interaction with EZH2 [112,113]. EZH2, a subunit
of the Polycomb repressive complex 2 (PRC2), interacts with DNMTs and directly controls DNA
methylation [114]. BRCA1 functions as an inhibitor for EZH2 recruitment and activity [115]. In breast
cancer cell lines, BRCA1 is shown to positively regulate FOXA1 and FOXO3 expression by interfering
with EZH2-mediated promoter methylation [112,113].

3.2. BRCA1 in Histone Acetylation

Acetylated histones destabilize nucleosomes, increases chromatin accessibility for transcription
factor binding, and ultimately results in increased transcriptional activity [116,117]. Histone acetylation
is a reversible, dynamic event regulated by histone acetyltransferases (HAT) and histone deacetylase
complex (HDAC), which adds and removes acetyl groups from histone tails, respectively. BRCA1
interacts with CBP and p300, two structurally related HATs [33]. The interactions are through both
the N- and C-termini of BRCA1, and are shown to be independent of its phosphorylation status [33].
BRCA1 and p300 co-localize in the nucleus, and the transcriptional activation ability of BRCA1 is
further stimulated by p300 [33].

BRCA1 interacts with HDAC1 and HDAC2, the catalytic subunits of the histone deacetylase
complex, through its C-terminal BRCT domain [36]. One example of the functional outcomes of
the BRCA1/HDAC interaction was demonstrated by Zheng et al [67]. Wild-type BRCA1, but not
clinically validated mutants, mediates ligand-independent transcriptional repression of ERα [67]. The
BRCA1-dependent ERα repression is largely restored by HDAC inhibitor trichostatin A, implicating
HDAC in the process [67]. In an independent study, the interaction between BRCA1 and HDAC2
was also shown to epigenetically repress a bona fide oncomir, miR-155 [118]. BRCA1 represses
miR-155 expression in human breast cancer cell lines, and treatment with HDAC inhibitors rescues
miR-155 level in wild-type, but not BRCA1-deficient cells [118]. Further investigation showed that
BRCA1 binds to miR-155 promoter and recruits HDAC2 to deacetylate histones H2A and H3, which
in turn represses miR-155 expression [118]. R1699Q, a BRCA1 mutant carrying a mutation in its
BRCT domain, loses its interaction with HDAC2 [118]. R1699Q is associated with the miR-155
promoter at a similar level as wild-type BRCA1, yet fails to recruit HDAC2 to the promoter [118].
R1699Q-expressing cells show increased acetylation of H2A and H3 at the miR-155 promoter and
upregulation of miR-155 [118]. It is worth noting that the R1699Q mutant leads to moderate risk of
breast cancer, while showing no substantial defects in sensitivity to DNA damaging agents, cell growth
or overall genomic stability [118,119]. In addition, knockdown of oncomir miR-155 in BRCA1-deficient
cells significantly inhibits in vivo tumor growth [118]. Taken together, these findings suggest a role for
BRCA1 in the epigenetic control of an oncogenic microRNA through histone deacetylation [118].

3.3. BRCA1 in Histone Ubiquitination

The 76-amino acid protein ubiquitin can be conjugated to all subunits of the histone octamer [120].
The most common types of histone ubiquitination are the monoubiquitination of histone H2A and
H2B, which comprise about 5–15% of total H2A and 1–2% of total H2B in the nucleus [120]. Histone
ubiquitination plays critical roles in transcription, maintenance of chromatin structure, and DNA
damage response [120]. The N-terminal RING domain of BRCA1 is responsible for its E3 ubiquitin
ligase activity [121]. BRCA1, along with its heterodimeric partner BARD1, transfers ubiquitin from
its interacting E2 ubiquitin-conjugating enzymes to its targets [121,122]. Although BRCA1/BARD1
ubiquitylates both H2A and H2B in vitro without any apparent preference, it has been shown that in
a nucleosomal context the BRCA1/BARD1 complex specifically ubiquitylates chromatin-associated
H2A at lysine 127 and 129 in vitro and in vivo [122–124]. The ability to distinguish nucleosome
substrates from free histones resides in the BRCA1/BARD1 heterodimeric RING domains [123]. In a
more recent study, BRCA1/BARD1-mediated H2A ubiquitination was shown to promote 53BP1
repositioning and DNA resection [125]. Lysine 123 of the histone variant macroH2A1 is also a
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BRCA1/BARD1 ubiquitination substrate in vitro and in vivo [126]. Primary human fibroblasts
expressing ubiquitination-deficient macroH2A1 mutant are defective in cellular senescence, indicating
that macroH2A1 ubiquitination plays an important role in replicative senescence [126]. It is worth
noting that the transcriptional preinitiation complex (PIC) is also a target of BRCA1-mediated
ubiquitination. Ubiquitylated PIC prevents the assembly of basal transcription factors at the promoter,
and thus represses transcription initiation [127].

The role of BRCA1 in histone ubiquitination could contribute to its tumor suppressor
function [128]. BRCA1 deficient cells exhibit reduced H2A ubiquitination at major and minor satellite
repeats and dramatically induced normally silenced satellite transcripts [128]. A polymorphic BRCA1
variant V11A, but not ubiquitin ligase-defective mutant T37R, represses the satellite transcripts to a
similar extent as wild-type BRCA1, indicating that the ubiquitination function of BRCA1 is essential
for satellite DNA repression [128]. Importantly, ubiquitin-fused H2A (H2A-Ub) that mimics natural
monoubiquitylated H2A restores satellite DNA silencing in BRCA1-deficient cells [128]. H2A-Ub fusion
also rescues BRCA1 deletion-induced proliferation defect and apoptosis induction, and at least partly
restores impaired homologous recombination associated with loss of BRCA1. Furthermore, ectopically
expressed satellite RNA partially phenocopies BRCA1 loss, including centrosome amplification,
cell-cycle checkpoint defects, and γH2AX foci formation [128]. Collectively, these findings suggest
that impaired H2A ubiquitination-mediated satellite DNA suppression is associated of BRCA1-related
defects, providing a potential new function of BRCA1 in tumor suppression.

4. BRCA1 in Chromatin Reorganization

Eukaryotic chromatin is organized into euchromatin and heterochromatin regions. In general,
euchromatin regions are more accessible and transcriptionally active, while heterochromatin regions are
more condensed and transcriptionally silent [90]. Heterochromatic regions are enriched for repetitive
DNA sequences that are normally silenced, including satellite repeats and transposable elements [90].
Histone hypoacetylation, histone H3 lysine 9 hypermethylation, DNA methylation and HP1 binding
are all characteristics of heterochromatin [90]. Chromatin organization in eukaryotic cells is under
tight regulation to ensure proper transcription and other chromatin-associated events. Chromatin
remodeling complexes and epigenetics-modifying enzymes control nucleosome packaging and
chromatin structures [129]. A number of studies have linked BRCA1 with chromatin regulation through
its interaction with chromatin remodelers, epigenetic modifiers, and its action in histone ubiquitination.

When artificially tethered to chromatin in budding yeast, the C-terminal transcriptional activation
domain of BRCA1 is shown to alter local chromatin structure [130,131]. Wild-type BRCA1, but not
cancer-predisposing mutants, possesses the chromatin remodeling ability [130]. BRCA1 is also found
to be associated with the SWI/SNF chromatin remodeling complex through a direct interaction
with BRG1, the essential ATPase subunit of the SWI/SNF complex [132]. The ability of BRCA1 to
stimulate p53-dependent transcription is completely abrogated by either a BRCA1 exon 11 deletion
mutant or a dominant-negative ATPase mutate of BRG1, indicating that the p53-mediated coactivation
function of BRCA1 is through SWI/SNF complex, possibly by chromatin remodeling [132]. Of note,
the BRCA1-SWI/SNF complex represents the predominant BRCA1-containing complex in the HeLa
nuclear extract [132]. Using a unique lac-based chromatin-tethering system, Ye et al. demonstrated
that BRCA1 induces large-scale chromatin decondensation when targeted into the mammalian
genome [34]. The chromatin-decondensing activity is mapped to the C-terminal domains of BRCA1 [34].
Somewhat paradoxically, cancer-predisposing mutations in BRCT domains significantly enhance the
chromatin-unfolding activity of BRCA1 [34]. Taken together, these reports support a role of BRCA1 in
influencing chromatin organization.

Disrupted heterochromatin silencing is reported in BRCA1-deficient mouse brains, fibroblasts,
mammary glands, and human cancer cells [103,128,133]. These BRCA1-deficient cells exhibit reduced
heterochromatin foci number, decreased HP1-positive foci number, and loss of transcriptional
silencing of tandemly repeated DNA [103,128,133]. Zhu et al. attributes ubiquitin ligase function
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of BRCA1 to heterochromatin silencing [128]. In particular, depletion of BARD1, the heterodimeric
E3 partner of BRCA1, alleviates suppression of satellite DNA transcription similar to the effect of
BRCA1 depletion [128]. Furthermore, wild-type BRCA1, but not a pathogenic ubiquitin ligase dead
mutant, represses repetitive DNA transcripts [128]. Lastly, H2A-ubiquitin fusion restores satellite
DNA silencing in BRCA1-deficient cells [128]. These observations indicate that BRCA1 controls
heterochromatin silencing through its ubiquitin E3 ligase-mediated histone H2A ubiquitination.

5. Conclusions and Future Perspectives

A role of BRCA1 in transcription regulation, combined with that in maintenance of genome
integrity, could provide a better molecular explanation for its tissue- and lineage-specific tumor
suppressor function. Here we propose a model that seeks to integrate multiple activities of BRCA1
in these molecular processes (Figure 3). First, we propose that BRCA1 promotes luminal-fate gene
transcription (Figure 3a), which results in differentiation from luminal progenitors to mature luminal
cells. Second, BRCA1 prevents R-loop accumulation, preferentially at the luminal-fate genes, through
its functional interplay with a transcriptional pausing factor (Figure 3b) [85]. The R loop-attenuating
function of BRCA1 could serve two purposes: (1) mitigating putative inhibition of luminal gene
transcription by R-loops (Figure 3b) [88], and (2) reducing a potential source of DNA lesions
including double strand breaks (DSB) [134]. In the event of DSB, the well-documented BRCA1
activity in HR repair provides yet another layer of protection against genomic instability during breast
tissue development.
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Our proposed model raises several important questions. First, is there more compelling evidence
for a direct role of BRCA1 in regulation of luminal gene transcription? If such a role can be
demonstrated, what is the underlying mechanism(s)? Currently there lacks convincing data for
a stand-alone transcriptional activity of BRCA1 in normal breast epithelial cells. In this regard,
separation-of-function BRCA1 mutants that abolish one but not all BRCA1 functions would be useful.
Second important question concerns the cause for preferential accumulation of R-loops in the luminal
cells of BRCA1 mutation carriers. Could this be due to higher global transcription level in luminal cells
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compared to basal cells [135], or more promoter-paused Pol II in luminal versus basal cells? Of note,
the recently reported role of BRCA1 in repairing estrogen-associated DNA damage at ERα-regulated
transcriptional promoters could provide an alternative mechanism for luminal lineage-specific BRCA1
function [136]. Lastly, the fact that BRCA1 mutations preferentially increase the risk of both breast and
ovarian cancers begs the question of whether a common mechanism(s) is used by BRCA1 to regulate
tissue-specific transcription in breast and ovaries. Future studies combining more sophisticated in vitro
and in vivo model systems with clinical specimens are likely to provide more mechanistic insight into
the multifactorial functions of BRCA1 in the physiologically relevant cell and tissue contexts.
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