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Abstract 

Background:  Plasmodium falciparum-infected erythrocytes (IE) sequester in deep vascular beds where their adhe-
sion is mediated by an array of endothelial surface receptors. Because parasite adhesion has been associated with 
disease, antibodies that block this activity may confer protective immunity. Here, levels of plasma anti-adhesion activ-
ity and surface reactivity against freshly collected IEs from malaria-infected children were measured in a Malian birth 
cohort and related to child age and malaria infection history.

Methods:  Plasma samples from children enrolled at birth in a longitudinal cohort study of mother–infant pairs in 
Ouelessebougou, Mali were collected at multiple time points during follow-up visits. Anti-adhesion antibodies (i.e., 
inhibit IE binding to any of several endothelial receptors) and reactivity with surface IE proteins were measured using 
a binding inhibition assay and by flow cytometry, respectively.

Results:  Levels of antibodies that inhibit the binding of children’s IE to the receptors ICAM-1, integrin α3β1 and 
laminin increased with age. The breadth of antibodies that inhibit ICAM-1 and laminin adhesion (defined as the 
proportion of IE isolates whose binding was reduced by ≥ 50%) also significantly increased with age. The number of 
malaria infections prior to plasma collection was associated with levels of plasma reactivity to IE surface proteins, but 
not levels of anti-adhesion activity.

Conclusions:  Age is associated with increased levels of antibodies that reduce adhesion of children’s IE to three of 
the ten endothelial receptors evaluated here. These results suggest that anti-adhesion antibodies to some but not all 
endothelial receptors are acquired during the first few years of life.
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Background
Among the five human malaria parasites, Plasmodium 
falciparum is able to sequester in deep vascular beds of 
various tissues. Infected erythrocytes (IE) have been 
demonstrated to bind a number of receptors expressed 

on the endothelial cell surface, including thrombos-
pondin (TSP), CD36, intercellular adhesion molecule-1 
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-
1), E-selectin (ELAM-1), P-selectin, PECAM-1/CD31, 
EPCR, members of integrin family, extracellular matrix 
proteins like laminin and cellular fibronectin [1–13]. 
During pregnancy malaria, IEs bind chondroitin sulfate 
A (CSA) on the surface of the syncytiotrophoblast, the 
cellular syncytium that covers the placental villi [14]. The 
variant IE surface protein called PfEMP1 has been impli-
cated in adhesion to several endothelial receptors as well 
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as in antigenic variation, and is thus believed to play a 
key role in severe disease due to P. falciparum (reviewed 
in [15, 16]). Any single parasite appears to express a sin-
gle PfEMP1 variant or more on the IE surface, begin-
ning approximately 18  h into the erythrocytic phase of 
the parasite lifecycle [17–19], but expression can switch 
at the next cycle of invasion [20, 21]. PfEMP1 variants 
are encoded by approximately 60 var genes per haploid 
genome of P. falciparum, and display extensive variation 
within and between genomes (reviewed in [22]).

In nonhuman primate studies, treatment of malaria-
infected animals with antibodies developed against the 
infecting parasite (cloned in another animal) rapidly 
reversed IE cytoadhesion, resulting in the release of the 
parasite’s mature forms into the peripheral blood circu-
lation [23]. The same antibodies also inhibited parasite 
adhesion to melanoma cells in  vitro [24]. Similarly, IgG 
purified from sera of immune west African adults effec-
tively treats West African children [25] as well as Thai 
adults suffering from symptomatic malaria [26]. Among 
pregnant women, acquisition of antibodies to IE surface 
proteins that block parasite adhesion have been associ-
ated with improved outcomes, including reduction in 
infection, parasite density, increased birthweight, ges-
tational age and maternal haemoglobin levels [27–31]. 
Previous studies from areas of stable malaria transmis-
sion reported that antibody levels to surface IE proteins 
are low in children aged 6–36 months [32, 33], and levels 
increase with age [33–35]. In children older than 6 years, 
antibody levels have been associated with protection 
from clinical malaria [35]. Similarly, age was also associ-
ated with increased IE agglutination activity [36].

Here, in the context of a longitudinal birth cohort, 
antibodies that inhibit IE adhesion to several endothe-
lial receptors (anti-adhesion antibodies), and antibod-
ies reacting with IE surface proteins of fresh parasites, 
were related with child age and prior malaria infection. 
The study was designed to evaluate plasma antibody to 
diverse surface proteins by assaying IE collected from 
children in the same cohort, described here as heterolo-
gous parasites.

Methods
Study population and clinical procedures
Evaluation of samples collected during a longitudinal 
cohort study of newborns and children aged 0–3  years 
conducted in Ouelessebougou, Mali. The study site is 
located 80  km south of Bamako, an area of intense but 
highly seasonal malaria transmission. Prior to enrollment, 
written informed consent was obtained from the parents/
guardians on behalf of their children after receiving a 
study explanation form and oral explanation from a study 

clinician in their native language. The protocol and study 
procedures were approved by the institutional review 
board of the National Institute of Allergy and Infectious 
Diseases at the US National Institutes of Health (Clini-
calTrials.gov ID NCT01168271), and the Ethics Commit-
tee of the Faculty of Medicine, Pharmacy and Dentistry 
at the University of Bamako, Mali. An intensive follow-
up included monthly scheduled clinic visits during the 
malaria transmission season, and every 2  months dur-
ing the dry season, as well as ad hoc visits when symp-
toms occurred. Clinical information was collected by 
project clinicians on standardized forms. Malaria infec-
tions were treated with artemether–lumefantrine or qui-
nine as clinically indicated. Severe malaria was defined as 
parasitaemia detected by blood smear microscopy and at 
least one of the following World Health Organization cri-
teria for severe malaria: > 2 convulsions in the past 24 h; 
prostration (inability to sit unaided or in younger infants 
inability to move/feed); haemoglobin < 5 g/dl; respiratory 
distress (hyperventilation with deep breathing, intercos-
tal recessions and/or irregular breathing); coma (Blantyre 
score < 3). The presence of severe malaria symptoms due 
to other diseases were clinically ruled out.

Parasite samples
Blood samples collected from malaria-infected children 
were used as the source of P. falciparum parasites in 
assays. Of 390 parasite-infected samples assayed, 15 sam-
ples were collected from children presenting with severe 
malaria. Parasite samples were collected from children 
aged (median (range)) 27.6  months (1.3–59.8  months), 
with parasite density of (median (range)) 72,325 para-
sites/µl (3250–566,025/µl). Each parasite sample was 
used for assays of 12–18 plasma samples, and plasma 
samples were assayed against an average (range) of 2.7 
(1–9) parasite samples.

Binding inhibition assay
Ring stage parasite samples were allowed to mature to 
the trophozoite/schizont stages during in  vitro culture 
for 16–24  h, then mature parasite forms were enriched 
by gelatin flotation. Parasite binding inhibition assay was 
performed using a parasite suspension at 2–20% para-
sitaemia and 0.5% haematocrit [29]. 20  µl of recombi-
nant endothelial receptors (CD36, ICAM-1, PECAM-1, 
P-selectin, integrin α3β1, integrin α5β1, integrin αvβ3, 
JAM-B, from R&D Systems Minneapolis, MN, cellular 
fibronectin, and laminin from placenta from Sigma, St. 
Louis, MO) at a concentration of 10 µg/ml were immo-
bilized by adsorption on Petri dishes. The parasite sus-
pension was preincubated with plasma diluted 1:5 for 
30  min at room temperature then allowed to bind to 
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the immobilized receptor for 30  min at room tempera-
ture. Plates were washed three times with PBS to remove 
unbound cells. Bound cells were fixed in 0.5% glutaral-
dehyde for 10  min, stained with 10% Giemsa for 2  min 
and quantified by counting the number of parasites in 20 
high-power fields. Level of inhibition was defined based 
on the level of IE binding in the presence of a pool of 
plasma samples collected from malaria-naïve adults in 
the USA (negative control) as follow (100 −  (Ntest/Ncon-

trol) × 100)). A minimum IE count of 20 in the presence of 
naïve plasma was required for the results to be accepted.

Flow cytometry
Mature IE were incubated with plasma samples diluted 
1:10 followed by incubation with anti-human IgG con-
jugated to PE (eBioscience) and stained with SYBR 
green. A pool of hyperimmune adult plasma was used 
as a positive control and a pool of plasma samples col-
lected from malaria-naïve adults was used as a negative 
control. Reactivity of antibodies with the IE surface is 
expressed as a ratio of the proportion of IE recognized 
by test and a pool of naïve plasma donors, as follows: 
Ratio = %IEtest/%IEcontrol.

Statistical analysis
Data were collected on standardized forms and opti-
cally scanned into the database using DataFax (version 
4.2, Clinical DataFax Systems, Inc., Hamilton, Ontario, 
Canada). Linear mixed effects models accounting for 
multiple measurements per child were fitted to relate 
anti-adhesion antibodies and reactivity with IE surface 
with age and number of previous infections. Breadth of 
anti-adhesion antibody activity and surface IE recogni-
tion were analysed using mixed effects beta binomial 
logistic regression models, accounting for the number 
of parasite isolates tested. Separate models were fitted 
for age and the number of previous malaria infections. P 
value was corrected for multiple comparisons using the 
Holm method. Analyses were carried out in R (version 
3.3.2).

Results
Study population
Anti-adhesion and IE surface-reactive antibodies were 
measured in plasma samples collected from Malian 
children participating in longitudinal cohort studies. 
Depending on the endothelial receptor under study, anti-
adhesion assays were performed with sera from 82 to 
166 children at a median age of 17.8–28.6  months, and 
surface recognition by flow cytometry with sera from 
106 children at a median age of 18.4  months. Many of 
the cohort children provided multiple plasma samples 

used in these assays, and typically had multiple P. falci-
parum infections documented before sample collection 
(Table 1). 82% of the children included here were blood 
smear-negative at the time of sample collection. The 
assays were performed using 390 parasite isolates includ-
ing 15 samples collected from children who presented 
with severe malaria.

Plasma inhibition of parasite binding increases with age
The level of anti-adhesion activity and the breadth of 
anti-adhesion activity were analysed in relation to age 
and number of prior infections. Plasma samples were 
tested for inhibiting IE adhesion to the following recep-
tors: CD36, ICAM-1, P-selectin, platelet endothelial cell 
adhesion molecule-1 (PECAM-1/CD31), integrin α3β1, 
integrin α5β1, integrin αvβ3, laminin, cellular fibronec-
tin and JAM-B. This set of receptors includes molecules 
that in earlier studies, were shown to support IE adhesion 
to the endothelium, as well as novel receptors (integrin 
α3β1, laminin, cellular fibronectin and JAM-B) identified 
in a binding phenotype survey of IE collected from chil-
dren in this study [13]. Level of binding to each receptor 
(IE counts) in the presence of plasma from naïve donors 
is shown in Additional file  1: Table  S1. In recent years, 
severe malaria was associated with IE adhesion to the 
receptor EPCR [12]. In the current study, IE adhesion to 
EPCR was rare which did not allow evaluating acquisi-
tion of antibodies that block IE adhesion to this receptor. 
The assays were performed on fresh heterologous para-
site isolates collected from malaria-infected children par-
ticipating in the same longitudinal study as the children 
who provided plasma for antibody studies.

Table 1  Study population providing plasma samples

a  For children providing multiple samples, age and number of previous 
infections at each time point were included

Receptor n Number 
of plasma 
samples/child
Mean (range)

Median age 
(months)a

Number 
of previous 
infections
Mean (SD)a

CD36 129 1.6 (1–3) 21.0 3.3 (2.6)

Cell. Fibronectin 105 1.9 (1–2) 18.3 2.9 (2.0)

ICAM-1 137 1.4 (1–3) 14.7 2.8 (2.1)

Integrin αvβ3 110 1.7 (1–4) 22.0 2.7 (2.1)

Integrin α3β1 120 1.8 (1–5) 24.2 2.6 (1.9)

Integrin α5β1 129 2.1 (1–4) 28.6 2.8 (2.2)

JAM-B 138 2.0 (1–3) 17.8 2.7 (1.9)

Laminin 112 1.9 (1–4) 18.4 2.7 (2.1)

PECAM-1 166 1.9 (1–4) 18.3 2.7 (2.0)

P-selectin 82 1.3 (1–3) 23.8 2.4 (1.8)

IE surface (flow) 106 2.0 (1–2) 18.4 2.8 (2.0)
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Mixed effect models were fitted to relate anti-adhesion 
antibodies to the child’s age and number of previous 
infections. Anti-adhesion antibodies that block IE bind-
ing to the receptors ICAM-1, integrin α3β1 and laminin 
were positively associated with age (Table  2, Fig.  1). 
Anti-adhesion antibodies that block IE binding to the 

receptors P-selectin, PECAM-1, integrin α5β1, integrin 
αvβ3, JAM-B and cellular fibronectin increased with age 
to a lesser degree and the change with age did not achieve 
significance (Table 2, Additional file 2: Figure S1).

The relationship between age and the breadth of anti-
adhesion activity was further examined. For this analysis, 
a cut-off of > 50% inhibition was used as the threshold to 
define anti-adhesion activity [37]. As shown in Table  2, 
age was associated with a significant increase of the odds 
of inhibiting an isolate binding at a level of ≥ 50% to the 
receptors ICAM-1 and laminin. For each year of life, 
the odds of inhibiting IE binding of any isolate at a level 
of ≥ 50% to ICAM-1 and laminin increased by 57% and 
51%, respectively. Number of prior infections was not 
associated with level or breadth of anti-adhesion anti-
bodies (Additional file 1).

Antibodies to the IE surface increase with the number 
of previous infections
Heterologous parasite isolates were also used to exam-
ine prospectively the association between age and num-
ber of previous infections and reactivity with IE surface 
proteins. On average, children providing plasma for this 
analysis had experienced 2.8 malaria infections from 
birth up to sample collection. Because clinical isolates 
typically contain multiple variant parasite forms [38], IE 
surface recognition was defined as the ratio of the pro-
portion of IE recognized by the child’s plasma to the pro-
portion of IE recognized by plasma from naïve donors 
(background reactivity). The number of prior malaria 
infections was positively associated with plasma reactiv-
ity to IE surface proteins (Table 3). To examine the rela-
tionship between the number of prior malaria infections 
and the breadth of IE surface recognition, a cut-off ratio 
(%IEtest/%IEcontrol) based on the median (1.4) was used 
to define positive recognition of a parasite isolate. The 

Table 2  Association between  age and  antibodies 
that inhibit IE adhesion to endothelial receptors

NS not significant

* Holm corrected P value. Models adjusted for hemoglobin type (HbAA, HbAC, 
HbAS)

Receptor Coefficient (95% CI) P value*

Level of anti-adhesion antibodies and age

 CD36 − 0.03 (− 0.32 to 0.26) NS

 Cell. Fibronectin 0.54 (0.06 to 1.02) NS

 ICAM-1 0.69 (0.37 to 1.02) 0.0003

 Integrin αvβ3 0.08 (− 0.24 to 0.40) NS

 Integrin α3β1 0.47 (0.18 to 0.76) 0.01

 Integrin α5β1 0.13 (− 0.15 to 0.40) NS

 JAM-B 0.23 (− 0.16 to 0.61) NS

 Laminin 0.68 (0.29 to 1.08) 0.007

 PECAM-1 0.32 (− 0.03 to 0.68) NS

 P-selectin 0.31 (− 0.01 to 0.64) NS

Breadth of anti-adhesion antibodies and age

 CD36 − 0.002 (− 0.04 to 0.03) NS

 Cell. Fibronectin 0.035 (0.002 to 0.07) NS

 ICAM-1 0.037 (0.02 to 0.06) 0.01

 Integrin αvβ3 − 0.0005 (− 0.02 to 0.02) NS

 Integrin α3β1 0.015 (− 0.007 to 0.04) NS

 Integrin α5β1 0.004 (− 0.01 to 0.02) NS

 JAM-B 0.017 (− 003 to 0.04) NS

 Laminin 0.035 (0.02 to 0.05) 0.004

 PECAM-1 0.025 (0.003 to 0.050 NS

 P-selectin 0.019 (− 0.005 to 0.04) NS
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Fig. 1  Binding inhibition levels stratified by age to the receptors ICAM-1 (a), integrin α3β1 (b), and laminin (c). Box plot indicates the median 
(horizontal line) and interquartile range (box), the whiskers indicate the 5th and 95th percentiles. Number of samples and statistical analysis are 
shown in Tables 1 and 2
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breadth of reactivity with IE surface proteins trended 
towards a positive association with the number of prior 
malaria infections, but the relationship did not achieve 
statistical significance (Table 3). Child age was not associ-
ated with increased levels or breadth of IE surface protein 
recognition.

Discussion
Over years of exposure, residents of endemic areas 
acquire immunity that prevents severe disease and 
limits blood stage parasite growth [39, 40]. Extensive 
antigenic variation in proteins expressed on the IE sur-
face have been implicated as a major factor for the slow 
development of immunity. Var genes have been classi-
fied into 3 major groups and 2 intermediate groups (A, 
B, C, B/A and B/C) based on homology in the flanking 
region and chromosome location [41]. Multiple studies 
reported increased transcript levels of group A and B/A 
var genes in children with severe malaria [16]. Further 
sequence analysis identified conserved tandem domains 
named domain cassettes (DCs) [42], with DC8 and DC13 
expressed at higher levels in parasites associated with 
severe disease [43–45]. Analyses of antibody responses to 
large PfEMP1 repertoires showed age dependent increase 
in antibody levels, seropositivity and breadth [46, 47], 
with a subset of group A var genes (Group 2) more read-
ily recognized by infant’s plasma than other PfEMP1s 
[46]. Antibody levels to recombinant CIDR domains of 
DC8 and DC13 of group A and B also increased with 
age more rapidly than antibody levels to recombinant 
domains associated with adhesion to the receptor CD36 
[48, 49].

Infection induces variant-specific agglutinating anti-
bodies and antibodies that recognize the IE surface 
by flow cytometry [50, 51]. Some parasite isolates are 
more readily recognized by children’s IgG, especially 
those collected from young children and children with 
severe malaria [50, 52] similar to the ordered recogni-
tion of PfEMP1 domains. As adults acquire antibodies 
that recognize surface IE, they also exhibit heterologous 
anti-adhesion activity against the majority of the para-
site isolates, but children can only block IE adhesion of 

a limited number of isolates [24, 53]. Because falciparum 
parasite sequestration has been associated with disease, 
antibodies that block parasite adhesion may be critical 
for developing protective immunity [23, 24].

In the current study, the development of anti-adhesion 
antibodies to several endothelial receptors with fresh iso-
lates collected from children participating in the same 
longitudinal cohort was examined. The two most com-
mon endothelial receptors for adhesion of IE collected 
from children in this cohort were CD36 and integrin αvβ3 
[13]. Neither age nor the number of infections was asso-
ciated with increased antibody levels that inhibit IE adhe-
sion to the most common endothelial receptors. Age was 
associated with increased levels of anti-adhesion anti-
body and breadth of inhibiting IE binding to the recep-
tors ICAM-1, integrin α3β1 and laminin. These results 
suggest that it may take longer to acquire anti-adhesion 
antibodies to common receptors like CD36 and integrin 
αvβ3, consistent with a previous report describing low 
levels of anti-adhesion antibodies to CD36 in children 
aged 3–4  years compared to children aged 10–11  years 
[33]. In the current study, children were followed up to 
the age of 5 years, thus antibody reactivity that develops 
over time (like anti-adhesion antibodies to CD36) may 
not be observed in this group of children.

Although levels or breadth of anti-adhesion antibodies 
was not significantly associated with the number of prior 
malaria infections after correcting for multiple com-
parisons, antibody levels and breadth of antibodies that 
inhibit IE binding to the receptor laminin were associated 
with an increased number of prior malaria infections 
before correction. Similarly, a trend for prior malaria 
infection to be associated with breadth of anti-adhesion 
antibodies to the receptors ICAM-1 and JAM-B was not 
statistically significant (Additional file 1: Table S2).

Infected erythrocytes surface recognition was associ-
ated with the number of prior malaria infections but not 
with child age. Plasma samples reacting with IE surface 
proteins may or may not contain antibodies with anti-
adhesion activity, suggesting that the targets of these 
antibodies may not completely overlap [37]. Differences 
in the epitopes/antigens recognized by anti-adhesion ver-
sus surface-reactive antibodies may account for the dif-
ferent host factors related to acquisition of each of these 
antibody types.

Antibodies that block IE adhesion to any of the recep-
tors tested here and antibodies reacting with IE surface 
proteins did not predict a reduction in the risk of severe 
malaria. This could be related to the age of the par-
ticipants. In this population, the rate of severe malaria 
remains stable in children from ages 12–60 months [13].

Table 3  Relationships between  antibodies to  IE surface 
and prior malaria infections

Coefficient (95% CI) P value

Level of antibodies to IE sur-
face proteins and number of 
prior infections

0.072 (0.009 to 0.134) 0.02

Breadth of antibodies to IE 
surface proteins and number 
of prior infections

0.048 (− 0.007 to 0.103) 0.09
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Conclusion
In summary, levels of antibodies that inhibit adhesion of 
freshly collected parasites to the receptors ICAM-1, inte-
grin α3β1, and laminin increased with age. Similarly, the 
breadth of antibodies that inhibit adhesion to the recep-
tors ICAM-1 and laminin increased with age. However, 
age was not associated with increased anti-adhesion 
activity to other receptors evaluated here. These results 
in an area of Mali with highly seasonal intense malaria 
transmission suggest that it may take several years to 
acquire functional antibodies that can inhibit IE adhesion 
to a wide array of endothelial receptors.

Additional files

Additional file 1: Table S1. IE counts in the presence of naïve plasma 
sample. Table S2. Relationships between anti-adhesion antibodies and 
prior malaria infections.

Additional file 2: Figure S1. Binding inhibition levels stratified by age 
to the receptors CD36, C. fibronectin, integrin α1β3, integrin α3β1, JAM-B, 
PECAM-1 and P-selectin. Box plot indicates the median (horizontal line) 
and interquartile range (box), the whiskers indicate the 5th and 95th 
percentiles.
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