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This minireview is a brief overview examining the roles of insulin-like growth factors

(IGFs) and the PI3K/Akt pathway in two apparently unconnected diseases: Alzheimer’s

dementia and cancer. For both, increased age is a major risk factor, and, in accord with

the global rise in average life expectancy, their prevalence is also increasing. Cancer,

however, involves excessive cell proliferation and metastasis, whereas Alzheimer’s

disease (AD) involves cell death and tissue destruction. The apparent “inverse” nature

of these disease states is examined here, but also some important commonalities in

terms of the PI3K/Akt pathway, glucose utilization and cell deregulation/death. The

focus here is on four key molecules associated with this pathway; notably, the insulin

receptor substrate 1 (IRS-1), cellular tumor antigen p53 (p53), peptidyl-prolyl cis-trans

isomerase NIMA-interacting 1 (PIN1) and low-density lipoprotein receptor–related

protein-1 (LRP1), all previously identified as potential therapeutic targets for both

diseases. The insulin-resistant state, commonly reported in AD brain, results in

neuronal glucose deprivation, due to a dampening down of the PI3K/Akt pathway,

including overactivity of the mammalian target of rapamycin 1 (mTORC1) complex,

hyperphosphorylation of p53 and neuronal death. This contrasts with cancer, where there

is overstimulation of the PI3K/Akt pathway and the suppression of mTORC1 and p53,

enabling abundant energy and unrestrained cell proliferation. Although these disease

states appear to be diametrically opposed, the same key molecules are controlling

pathology and, with differential targeting of therapeutics, may yet provide a beneficial

outcome for both.
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BACKGROUND

In 2018 there were 17 million new cases of cancer and 9.6 million deaths worldwide (1). One of
its most common forms is breast cancer, a leading cause of cancer mortality worldwide (2), with
over two million new cases in 2018. Dementia is also a major cause of suffering and death globally,
with 9.9 million new cases estimated each year (3); 60–70% of these are diagnosed as Alzheimer’s
disease (AD) (4). AD and breast cancer, as examples of each disease spectrum, are contrasted here
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with respect to differences in the PI3K/Akt pathway. By
comparing four specific key molecules, we hope to provide
some insight into potential, differential therapeutic targeting.
Although, due to the limitations of a mini-review we needed to
narrow our selection, we acknowledge that additional molecules
contributing to the inverse nature of these pathologies have also
been reviewed previously (5).

Every normal cell in the body will acquire mutations over a
lifetime, which may result in cancer. It has been clear for many
years that the initiating mutations and neoplastic transformation
may occur decades before symptoms become present and the
cancer is diagnosed. Most breast cancers are epithelial tumors
that develop from cells lining ducts or lobules: carcinoma in
situ, and are located exclusively in the breast, tending to be
detected by routine physical examination or mammography.
Invasive breast cancer can spread however, to most organs, with
the main sites being the lungs, liver, bone and brain. There are
five main subtypes of breast cancer, depending on the expression
of the estrogen, progesterone and human epidermal growth
factor receptor 2 (HER2) receptors which dictate treatment
strategies (6). One mutational profile often observed in many
cancers is hyperactivity of the PI3K/Akt signaling pathway
leading to deregulated control of cell proliferation (7). Another
common feature associated with cancer risk and progression is
chronic inflammation, which can be initiated by triggers, such
as infections, obesity and autoimmune diseases, the effects of
which can bemediated by cytokines, such as tissue necrosis factor
(TNF) and interleukins (IL-1 and 6) (8).

As for cancer, the diagnosis of AD usually occurs long
after the onset of neuropathology, often 10–20 years later,
mainly because symptoms do not generally become evident
until the brain has been severely compromised. Loss of short-
term memory is usually the first symptom; later, cognitive
failure and confusion, and finally an inability to carry out
tasks required for successful daily living. Its two defining brain
pathologies are the presence of amyloid plaques, comprised
mainly of the toxic peptide Aβ42 (processed from the amyloid
precursor protein (APP), which quickly fibrillises and deposits
in the parenchyma of the brain, and hyperphosphorylated tau,
which accumulates within neurones into neurofibrillary tangles
(NFT). The parallel spread of these two pathologies across
the brain, occurs over a long period before clinical symptoms
become evident. Until recently, this has made early diagnosis
and assessment of treatment effectiveness difficult. Positron
emission tomography (PET) scans with ligands which register
amyloid and NFT, as well as markers of neuroinflammation,
are now available, helping diagnosis, clinical trial investigation
and basic scientific discovery (9). Recent investigations with PET
ligands in living patients suggest that symptoms are noticeable
when amyloid and NFT both reach sufficiently high levels
(10). The brain, separated from the peripheral immune system
by the blood-brain-barrier (BBB), relies on its innate immune
system for defense, this includes production of Aβ42 peptide
(11) and activation of the resident macrophages, microglia,
resulting in neuroinflammation, neuronal loss and ultimately
death (12). Unless constantly cleared, Aβ42 forms plaques, whilst
toxic, soluble oligomeric forms also contribute to neuronal

death. Familial forms of AD with mutations with increased
Aβ42 formation, led to the “amyloid cascade hypothesis” (13)
where amyloid precipitates the full spectrum of pathology and
symptoms. Although clearly still very useful, this is undergoing
re-appraisal in terms of the non-familial or common sporadic
form (14, 15).

Whilst most cancers, including breast cancer, involve
apparently unrestrained cell proliferation, AD involves cell loss.
Neurones in the brain, are terminally differentiated post-mitotic
cells, which if forced into cycle re-entry usually die (16).
Cancer is associated with an increased glucose uptake by tumor
cells, that is preferentially converted to lactate fermentation: a
phenomenon known as the Warburg effect (17). The Warburg
effect co-ordinates a number of cellular processes however, in
addition to lactate fermentation, including preventing damage
from reactive oxygen species (ROS), ensuring that cancer cells
have a supportive microenvironment for cell proliferation (18).
By contrast, AD is associated with an early reduction of glucose
uptake and utilization in certain areas of the brain (19, 20).
Due to its commonly seen insulin-resistance brain profile, AD
is sometimes referred to as Type3 diabetes mellitus (T3DM)
(19–22).

Despite the apparently different pathologies, we investigate
here aspects of insulin/IGF signaling and the PI3K/Akt pathway
that may determine these differences and briefly explore
underlying commonalities between the mechanisms which play
a role in the two disease states. Glucose intolerance increases
generally with age (16, 17) and this is thought to be due to insulin-
resistance, commonly observed in older adults (18, 19). Despite
the opposing pathologies, cancer and AD have common risk
factors such as aging, diabetes, obesity, smoking (23) and lack of
exercise, each of which is also associated with insulin-resistance
(24–27). Yet, as noted, although the AD brain often develops
insulin-resistance, tumor cells generally do not. Here, we discuss
normal cellular energy homeostasis and how this differs in cancer
and AD.

REGULATION AND FUNCTION OF INSULIN
AND IGF-1 IN HEALTH, CANCER AND AD

The main source of insulin is that secreted from the beta-cells
of the pancreas in response to food; this normalizes the levels of
blood glucose, by inducing its target tissues, liver, muscle, and
fat cells to increase glucose uptake. IGF-I is secreted by the liver
in response to growth hormone, and its circulating levels remain
constant via its unique interaction with its IGF binding proteins
(IGFBPs) (28). Unlike insulin, IGF-I (and IGF-II) are also made
in most cells of the body, where they play key roles in growth,
survival and metabolism. During an insulin-resistant state the
usual normalizing processes are inhibited, leading to increased
levels of circulating insulin and glucose. This also leads to a
stimulation of hepatic IGF-I synthesis (29), and downregulation
of IGFBPs-1 and−2, resulting in an increased bioavailability of
IGF (30).

The phosphoinositide-3-kinase-(PI3K/Akt) signaling
pathway, as depicted in Figure 1A, has been evolutionarily
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FIGURE 1 | PI3K/Akt pathway in health (A), cancer (B) and AD brain (C) cells. This is a schematic of the PI3K/Akt cellular pathway which regulates cell proliferation,

metabolism and death. These figures attempt to highlight possible differences in cancer and AD compared with health. These indicated differences, as described in

human and animal tissues and in cell culture, are meant to represent general concepts not specific cases. (A) shows normal regulation (B) indicates a cancer

phenotype (C) illustrates AD as an insulin-resistant state i.e., T3DM. Green lines represent activation and purple lines represent feedback from the activation pathway.

Activation of the IGF-1/insulin receptors leads to tyrosine phosphorylation of IRS-1 and activation of mTORC2 and Akt, resulting in glucose uptake. Homeostasis is

maintained partly by mTORC1 sensing of metabolic conditions, which, as appropriate, leads to phosphorylation of p53 and S6K1 serine phosphorylation of IRS-1.

p53 is a negative regulator of IGF/insulin receptors, IGF-II and glucose transporters. [A] Normal cellular homeostasis as described above [B] In cancer, negative

feedback pathways are switched off leading to upregulation of proliferation, metabolism and cell survival. A modified genetic landscape (e.g., p53, PTEN) enables

tumor cells to benefit from a glucose-rich, IGF/insulin-rich environment (insulin-resistance such as in T2DM).In cancer, Akt can phosphorylate and inactivate GSK-3β,

which results in increased protein synthesis that supports cell growth. [C] In AD brain with insulin-resistance, or if, due to decreased blood flow there is no glucose

accessible, the PI3K/Akt pathway is effectively switched off or downregulated. This leads to upregulation of GSK-β that culminates in tau phosphorylation and

aggregation and increased amyloid beta production. Lack of intraneuronal glucose would trigger AMPK to activate mTORC1, p53, S6K1 serine phosphorylation of

IRS-1. This could be a self-perpetuating cycle.

conserved to regulate and maintain appropriate cell growth,
survival and metabolism. This schematic presents an overview of
glucose utilization management within normal cells. Two major
activators of this pathway are insulin and IGFs (31) which act
via specific receptor tyrosine kinases, IGF-IR and the insulin
(IR) receptors. The IR can be spliced to produce two isoforms,
IR-A and IR-B. Upon ligand binding, the receptors can dimerize
forming IR/IGF-IR hybrids which have different biological
consequences depending upon the IR isoform present (32, 33).
Generally, insulin acts via the IR, and IGF-I and IGF-II act via
the IGF-IR and hybrid receptors. IR-A binds IGF-II and insulin,
whereas IR-B has a higher affinity for insulin (34, 35). Emerging
data have expanded our understanding of the complexity of these
receptors and how they signal, in terms of their localization,
trafficking and their ability to interact with other molecules
(36). To ensure adequate fuel, insulin/IGF-I bind and activate
IR/IGF-IR, causing tyrosine phosphorylation of insulin receptor
substrate-1 (IRS-1), leading to Akt activation. This results in
translocation of glucose transporter isoforms (GLUTs) (37) to
the cell membrane enabling glucose uptake. Phosphorylation of
mTORC1 initiates subsequent negative feedback mechanisms,
such as serine/threonine phosphorylation of IRS-1, which are
lost in a cancer phenotype (Figure 1B). mTORC1 (as opposed to

mTORC2) is also considered a main regulator of autophagy, that
maintains tissue homeostasis by degrading “abnormal” cellular
contents (38). Aberrant autophagy occurs in and contributes to
both cancer and AD, however, the impact of this is dependent on
the stage of disease for both pathologies (39, 40).

Epidemiologic studies have shown that “higher” normal levels
of circulating IGF-I are associated with a 25% increased risk
of breast cancer, compared with “lower” normal levels (41).
Overexpression of the IGF ligands and their receptors, IGF-IR,
IR (particularly IR-A) and IGF-IR/IR hybrid receptors leads to
increased activity of the PI3K/Akt pathway (36, 42–44). The IGF-
IIR is a single, non-signaling, transmembrane receptor, enabling
homeostasis by clearing excess IGF-II (45); thus loss of function
mutations in the IGF-II receptor (46, 47) and/or loss of IGF-II
gene imprinting (48) can lead to excess IGF-II available to activate
the PI3K/Akt pathway. IGFBPs are often deregulated in cancer;
IGFBP-2, for example, is often upregulated which intrinsically
downregulates phosphatase and tensin homolog (PTEN) (49, 50)
removing the inhibitory brake on the PI3K/Akt pathway. The
cells compensate by upregulating glucose transporters, notably
GLUT1, which substantially increases glucose importation into
the cytoplasm (51, 52) and the cells switch to lactate fermentation
(Warburg effect).
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AD as an insulin-resistant state, by contrast is exemplified in
Figure 1C. The brain has a high energy dependence, using about
20% of the body’s resting energy requirement (∼60% of glucose
use) (53). Insulin crosses the BBB using a saturable transporter.
Although GLUT1 and GLUT3 glucose transporters in the brain
are insulin independent, the insulin dependent GLUT4 and
GLUT8 are present in regions particularly affected in AD (54–
56). IR (particularly IR-A) and IGF receptors are also strongly
expressed in brain areas, such as the hippocampus, olfactory bulb,
hypothalamus and cerebral cortex in neurones and glia and are
important in memory formation in the hippocampus (55, 57, 58).
Brain insulin and IGF levels are reduced in the aged brain with
decreased insulin signaling and receptor activity (19, 59, 60),
coinciding with decline in cognitive abilities. An early reduction
of glucose uptake/metabolism is seen in pathology-related brain
areas in AD and preclinical, pre-symptomatic subjects (61–63).
Brain insulin-resistance is associated with impaired cognitive
function (54) and is an important feature of AD in patients and
in post-mortem tissue (64–69). Reduced insulin or IGF signaling
leads to deficient uptake of glucose into neurones in those with
mild cognitive impairment (MCI) who subsequently convert to
AD, as well as being a major contributor to neuronal dysfunction
and death in AD (70, 71). Reduced levels of insulin, IGF-I,
II and their receptors associate with severity of pathology (19,
72). Furthermore, binding ability of these proteins is decreased,
relative to increasing pathology (59, 73). In experimental studies,
reduced IGF-I signaling was linked to increased deposition of
Aβ (74, 75), phosphorylation of tau (76, 77), increased oxidative
stress, neuro-inflammation and neuronal death (78). Of interest
also, is the finding that the (non-toxic) monomeric form of Aβ

can activate insulin/IGF-1 receptor signaling, and since these
monomers aggregate in early AD, it is suggested that this may
form a prelude to the disease process (79). Notably, systemic
administration of IGF-I was able to lower the toxicity of Aβ in
normal mice (80) and restore cognitive function in AD mouse
models (81).

There are studies which are not in line with the hypothesis that
IGF-I downregulation in AD is causative in the disease process
but rather may be protective. The mixed results may partly
lie in the fact that total IGF-I poorly reflects its bioactivity as
most circulating IGF-I is bound to IGFBPs and will therefore be
biologically inactive (82). There are also several variables between
studies, for instance age of onset, stage of disease progression,
presence of diabetes, or IGF-I gene polymorphisms.

Therefore, overall, in cancer and AD, the control of
these pathways is compromised, allowing feed-forward
and feed-backward cycles which lead either to cell over
proliferation/deregulation or conversely death.

COMPARING REGULATORY MOLECULES
AND THEIR ROLE IN AD AND CANCER

The PI3K/Akt pathway is kept in equilibrium by key regulators,
some of these are briefly discussed here in terms of their effects
on glucose metabolism in cancer and AD and are depicted in
Figures 1A–C.

IRS-1
IRS-1 plays a critical regulatory role in transmitting signals
from IGF-IR/IR receptors via the PI3K/AKT pathway. It
is commonly overexpressed in cancer and this has been
associated with poor outcome for breast cancer patients (83),
particularly if the tumor is positive for the estrogen receptor
(84). Tyrosine phosphorylation activates and serine/threonine
phosphorylation inhibits IRS-1 activity. Ribosomal protein
S6 kinase beta-1 (S6K1) is one kinase responsible for
inhibitory phosphorylation of IRS-1(85) and this negative
feedback inhibition is lost in many cancers, including breast
cancer (86).

In AD, insulin and IGF signaling is adversely affected in
important brain areas. Phosphorylation of IRS-1 at serine 616
(pS616) and p-serine 636/639 are early markers of brain insulin-
resistance, commonly present inMCI and AD (67). Aβ oligomers
are thought to initiate IGF-I resistance and IRS-1 inactivation
and to be associated with increased oligomeric Aβ plaques
and memory impairment. Neurones in the temporal cortex in
AD have been reported to show reduced levels of active IRS-
1 and−2, but increased inactivated IRS-1, particularly at p-
serine 312 and 616, and this was associated with NFT (73).
Apart from indicating insulin-resistance and decreased glucose
uptake, it suggests a relationship between IRS-1, tau (NFT) and
Aβ pathology.

p53 Tumor Suppressor Gene
Wild-type p53 regulates many cell functions including cell
cycle arrest, apoptosis and metabolism (87). P53 negatively
regulates IGF-IR, IGF-II, GLUTs 1 and 4 and positively stimulates
IGFBP-3 (pro-apoptotic factor) (88–91). In cancer, including
breast cancer, p53 is often mutated, resulting in a loss of
its tumor suppressor activity (92–94). This disrupts regulation
of IGF-IR, IGF-II, GLUTs 1, 4, and IGFBP-3, leading to
enhanced activation of the PI3K/Akt pathway and glucose
uptake. Increased Aβ positively correlates with p53 levels
(91, 92). AD brain levels of p53 are thus increased, which
promotes tau hyperphosphorylation and ultimately neuronal
death (90).

Peptidyl-Prolyl Cis-Trans Isomerase
NIMA-Interacting-1 (PIN1)
Pin1 is a peptidyl-prolyl cis–trans isomerase (PPIase) able to
isomerise p-serine/p-threonine-proline sequences thus effecting
conformational change which alters the activity of its target
proteins (95). It is highly expressed in many cancers (96,
97) and facilitates activation of the PI3K/Akt pathway. One
way it does this is by increasing Akt stability through serine
473 phosphorylation (98). In breast cancer, high levels of
both Akt-p-S473 and PIN1 predict a poorer prognosis than
either alone (99). PIN1 can also induce a conformational
change to the tumor suppressor gene p53 (100) and its
overexpression in the presence of p53 mutations are prognostic
for poor clinical outcome in breast cancer (101). SUMO
protease-1 (SENP1) binds to, and deSUMOylates PIN1, and
its levels correlate with those of PIN1 in breast cancer (102,
103). PIN1 is inhibited by BRCA-1, the tumor suppressor

Frontiers in Endocrinology | www.frontiersin.org 4 June 2020 | Volume 11 | Article 403

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Barker et al. PI3K/Akt in Cancer and Alzheimer’s

gene (104) suggesting that PIN1 would play an important
role in the development of tumors in which BRCA1 is
mutated. PIN1 also supports increased cell proliferation by
promoting glycolysis in tumor cells. This is achieved by
stimulation of pyruvate kinase translocation (that catalyses
the rate-limiting step during glycolysis) to the nucleus (95,
105). As a consequence of these functions, PIN1 inhibitors
have been developed and shown to slow the progression of
cancer (96).

In brain, PIN1 is located in neuronal dendrites and
postsynaptic densities and its activity and expression are
reduced in MCI and AD (106, 107), likely to make neurons
more vulnerable to Aβ and increasing synaptic degeneration
(108). Notably, PIN1 enables tau dephosphorylation via protein
phosphatase PP2A and co-localizes with hyperphosphorylated
tau in AD brain (109).

Low-Density Lipoprotein Receptor–Related
Protein 1 (LRP1)
The LRP1 receptor is a multifunctional receptor involved in
many cellular functions including endocytosis and cell signaling.
Notable is its intrinsic link with energy homeostasis; through its
binding to the IGF-IR (110) and the IR (111), LRP1 plays a central
role in insulin/IGF signaling affecting cell proliferation, survival,
glucose and lipoprotein metabolism (112, 113).

The role that LRP1 plays in cancer is dependent upon the
type of tumor and the cellular environment. In breast cancer,
early reports indicated that a low expression of LRP1 correlated
with more aggressive tumors (114). More recent work, however,
consistently indicates a role for LRP1 in supporting breast cancer
cell invasion and metastasis (115, 116) by increasing expression
of matrix metalloproteinases (MMPs), MMP-2, and 9 (117).

In the brain, LRP1 is important for cell survival, lipoprotein
metabolism and synaptic plasticity, and is highly expressed
in neurones. It binds leptin, enabling leptin receptor
phosphorylation and Stat3 activation. Deletion of the Lrp1
gene in the mouse hypothalamus results in increased body
weight (obesity) (118); conditional Lrp1 brain knock-out
produces glucose intolerance (111). LRP1 interacts with the
insulin receptor, regulating insulin signaling and glucose
uptake, and influencing GLUT3 and−4 glucose transporter
levels (111). Insulin resistance in peripheral tissues in rodents
involves loss of GLUT4 function (119, 120). Centrally, in
the rat hippocampus, GLUT4 is vital to memory acquisition,
inhibition causing memory impairment (56). Amyloid requires
constant clearance pathways, LRP1 is known for its function
as a clearance receptor able to remove amyloid across the BBB
(121), but also to endocytose Aβ for elimination by lysosomes.
LRP1 expression is reduced with age in mouse (122) and
human brain (123), and to a greater degree in AD (122, 123).
Notably, hyperglycaemia and increased insulin resistance, as in
type-2 diabetes mellitus (T2DM), suppress LRP1 expression and
exacerbate AD pathology in mice (111). Reduced LRP1 levels
are associated with increased neuronal death (124) signifying
that LRP1 is required for the neuroprotective effects of insulin
signaling (125).

SUMMARY

The PI3K/Akt pathway is central to the sensing of metabolic
and nutritional changes in our environment and is clearly
deregulated in both cancer and AD. Considering that most
of the risk factors for both, such as obesity, T2DM and
smoking are modifiable through lifestyle changes, an effective
strategy could be a preventive approach; for instance re-
establishing physiological glucose levels by diet. This minireview,
however, attempts to briefly explore some of the underlying
mechanisms to identify possible therapeutic targets for these
conditions, already ongoing. By addressing the apparent
inverse relationship between cancer and AD we hope to
identify regulatory molecules in the PI3K/Akt pathway
important in cell proliferation and glucose utilization. In
cancer this leads to upregulation of glucose uptake and cell
proliferation, which contrasts with AD where there is lack
of glucose availability, increased pathology, and consequent
neuronal death. For both breast cancer and AD there has
been a drive for the identification of biomarkers for early
detection, ultimately to improve long-term survival. Notably,
pre-clinical studies have identified IRS-1, p53, PIN1 and
LRP1 as individual potential therapeutic targets (126–133) for
both disease states, and changes in these are in themselves
putative biomarkers.

These may provide alternative targets for future trials, but
the possibility of inverse effects of altering these proteins, as
we outline here, suggests that a delicate balance is required
within the PI3K/Akt pathway. It is notable therefore that
Metformin, an antihyperglycemic agent for diabetes, appears to
promise some beneficial therapeutic outcome in both cancer
and AD (134, 135). In cancer the mechanism is likely to be via
mTOR inhibition and activation of p53 (136); in T2DM and
T3DM-AD, it is probably the reduction of insulin-resistance
(137). Whilst it is challenging to develop specific drugs for
the clinical setting, understanding the regulatory aspects of
this pathway may enable a co-targeting approach to reduce
non-specific toxicity and increase specificity, thus achieving a
better outcome.
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