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Abstract

Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions
and the edges their functional connectivity. These networks present a robust small world topological structure,
characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other
topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not
robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence
of these complex network structures we present an adaptive complex network model for human brain functional networks.
The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives
rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that
establishes connections between dynamical elements with similar internal states. We show that the model is able to
describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging
studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-
free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict
the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical
structure, with a truncated power law degree distribution.
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Introduction

Understanding the human brain is one of the greatest challenges

in science. A vast diversity of methods have been applied to

analyze and study its organization, development and function.

Recently, a complex network approach, where the brain is

described as a set of vertices and edges, has received much

attention [1–10]. This interest is due to the fact that the same

general principles seem to govern the structural and functional

organization of complex networks across a vast diversity of

systems, including social, biological and technological networks

[11–15].

Anatomical studies of the cerebral cortex of mammals such as

rat, cat and monkey have shown the presence of highly integrated

modules (as one would observe in a regular network) connected

sparsely by long range links (giving a short mean distance between

nodes across the whole network, as in a random network). This

small world structure has been argued to provide an optimal

structural substrate which allows for a balance between specialized

brain regions and global functional integration [1,3,4,6,9,10].

Patterns of functional connectivity have also been observed to

present a small-world topology, that seems to be robust across

different conditions and measuring techniques [8,16–20]. Recent

studies showed that other topological characteristics such as the

degree distribution do not seem to be robust, and their functional

shape has been a subject of debate. On the one hand, Eguı́luz et al.

[21] used functional magnetic resonance imaging (fMRI) to extract

functional networks connecting correlated human brain sites in

subjects performing tasks. In these experiments the activity of the

brain was measured, in time steps that are spaced 2:5 seconds, in a

number of ‘‘voxels’’ of dimension 3|3:475|3:475mm3. The

activity of each voxel V x,tð Þ presents a fluctuating oscillatory

behavior. By using a correlation measure between any pair of

voxels they built a correlation matrix, that was thresholded to

construct large-scale brain networks with sizes up to N~31503
nodes. They found that these are small-world networks with power

law degree distributions P kð Þ*k{c, c&2. Their results are robust

across different subjects, threshold values and task conditions [21].

On the other hand, Achard et al. [22] analyzed fMRI time series

acquired from healthy subjects in the resting state. Using discrete

wavelet transform they obtained frequency-dependent correlation

matrices that were thresholded to create undirected graphs with

N~90 nodes. They found that these networks present a small-

world topology in the low-frequency interval 0:03{0:06 Hz. For

the degree distribution they found that the best fit is given by an

exponentially truncated power law P kð Þ*ka{1 exp {k=kcð Þ with

exponent a~1:8 and cutoff degree kc~5, in contrast to the results

of Eguı́luz et al. [21] where no cutoff was observed. Achard et al.

noted these differences, and suggested that properties of brain

functional networks could be conditioned by anatomical resolution

of analysis and/or experimental stimulation of the subjects [22].

Finally, we also bring to attention a recent work by Park et al. [19],

that used diffusion tensor imaging (DTI) and fMRI to analyze

functional human brain networks with N~73 nodes. They
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obtained a degree distribution that differs from the results of

Achard et al. [22] and Eguı́luz et al. [21], presenting a slow decay

for small degrees and then a marked crossover to an exponential

decay.

The characterization of community structure in functional brain

networks also presents different intriguing behaviors. On the one

hand, Eguı́luz et al. [21] obtained networks characterized by a

positive correlation between the degrees (indicating the presence of

communities) and also with a relative independence of clustering

from degree (indicating absence of a hierarchical structure). On

the other hand, Ferrarini et al. [23] analyzed fMRI images of 53
subjects at rest, and using a methodology based on partial

correlation analysis [24] extracted brain functional connectivity

maps with N~90 nodes. In contrast to the results of Eguı́luz et al.

[21], they detected overlapping communities, and showed how

different regions cluster into larger communities, which then

cluster again through a hierarchical organization.

The introduction of theoretical models can shed light into the

subject. One possible approach is through realistic models, that

include as much detail as possible. On the other extreme, simple

models with a minimum number of parameters allow for the

determination of the basic ingredients necessary for the emergence

of complex structures. In fact, understanding structure function

relationships from such a general point of view is an open subject

in modern network theory. In particular, much effort is being

devoted to the study of synchronization phenomena in populations

of elements that are constrained to interact in a complex network

topology [25–31].

In this work we follow this complex systems approach and

present an adaptive complex network model for human brain

functional networks. We show that the model is able to describe

the topological characteristics of human brain networks obtained

from functional magnetic resonance imaging (fMRI) studies

[19,21–24], and thus provides a theoretical framework in which

to interpret the results. In particular, when the dynamical rules of

the model allow for integrated processing over the entire network a

scale-free non-hierarchical network with well defined communities

emerges. On the other hand, when the dynamical rules restrict the

information to a local neighborhood, communities cluster together

into larger ones, giving rise to a hierarchical structure, with a

truncated power law degree distribution.

In the following section we define the model. Then, in the

Results section we present the results of the numerical simulations

of the model and compare them with experimental fMRI studies

[19,21–24].

Methods

We modeled a growing adaptive network, where the micro-

scopic units are dynamical nodes that represent different

anatomical regions of the brain with their corresponding activity.

Starting from a small random network the system grows by the

addition of new nodes with a fixed number of connections. These

new connections are first established at random, then, an adaptive

algorithm allows for rewiring according to the coherence. This

algorithm is based on the work of Gong, Van den Berg and van

Leeuwen [32–34]. They showed that small world networks emerge

by adaptively rewiring chaotic units according to their dynamic

coherence [33,34]. A similar form of adaptive evolution was

considered in a network of coupled non-linear phase oscillators by

Gleiser and Zanette [35], that also found that starting from a

random network the system reaches a small-world structure. The

fact that an initial random structure is able to spontaneously evolve

to a small world network, either when the microscopic units

present chaotic or oscillatory dynamics, shows that the algorithm is

robust, thus presenting a plausible mechanism for the emergence

of complex network structures.

Gong and van Leeuwen showed that scale-free networks emerge

when network growth is incorporated to the model with chaotic

units [32]. They also found that when the dynamical units are in a

1-period state the degree distribution does not have a scale-free

structure, and highlighted the unique importance of chaotic

activity for the emergence of scale-free networks. In this work we

show that the algorithm is quite robust, and also allows for the

emergence of wide degree distributions when the units have a

continuous oscillatory dynamics.

The rewiring rules proposed by Gong, Van den Berg and van

Leeuwen allow for a global integration of the information of the

system, since the state of all the other nodes in the system is

available to each new node in order to rewire its links [32–34].

This global rewiring dynamics is in some sense optimal, since it

allows information on the state of the whole system to be available

to each new node. As a consequence, new nodes can always make

the best rewiring possible in order to achieve synchronization. We

also propose a restricted rewiring dynamics, that only allows for

local information to be available to each new node. This allows us

to present a theoretical analysis of the effects of a restricted

dynamics in the structure-function relationship in the model. In

particular, we show that only with this new local rewiring

dynamics hierarchical networks emerge.

Let us describe the model in detail. The evolution of the nodes is

given by non-linear phase oscillators

dwi

dt
~viz

r

Mi

XN

j~1

Wij sin wj{wi

� �
, ð1Þ

i~1, . . . ,N, where vi is the natural frequency of oscillator i and r
is the coupling strength [28]. The weights Wij define the adjacency

matrix of the interaction network: Wij~1 if oscillator i interacts

with oscillator j, and 0 otherwise. The number of neighbours of

oscillator i is Mi~
P

j Wij . Interactions are symmetric, so that

Wij~Wji and the network is a non-directed graph.

The model allows for a precise definition of coherence, that

reflects the dynamic functional interrelation between spatially

separated brain regions, quantified by

dij~ Vi{Vj

�� �� ð2Þ

where Vi is the average oscillation frequency of oscillator i
calculated over a time interval of length T ,

Vi~
1

T

ðtzT

t

_wwi t’ð Þdt’ ð3Þ

The algorithm for the evolution of the network is as follows.

Begin with a small random network with Nini nodes linked by L0

connections per node.

1. Add a new node in with kin connections to kin different nodes

randomly chosen in the current network.

2. Calculate the state of the system according to Eq. (1) over a

time interval of length T . Along this interval calculate Vi

according to Eq. (3).

3. a) Global rewiring dynamics: Calculate the value of dij for

all j=i. Detect the oscillator j1 for which dij1 is minimum

A Model for Brain Networks
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amongst all the dij . Also detect, amongst the neighbours of i,
the oscillator j2 for which dij2 is maximal.

4. If j1 is one of the neighbours of oscillator i, then make no

changes to the connections. Otherwise, replace the link

between i and j2 by the link between i an j1.

5. Go to step 2) and repeat the algorithm for K0 times

6. Go to step 1)

The Global rewiring dynamics allows for a global integration of

the information of the system. We also propose a restricted

rewiring dynamics, that only allows for local information to be

available:

3. b) Local rewiring dynamics: Calculate the value of dij for

first and second neighbors of i. Detect the oscillator j1 for

which dij1 is minimum amongst all the second neighbors of i.
Also detect, amongst the neighbours of i, the oscillator j2 for

which dij2 is maximal.

In the following section we show that for global rewiring

dynamics scale-free non-hierarchical networks with well defined

communities emerges. On the other hand, when the local rewiring

dynamics governs the evolution of the system, communities cluster

together into larger communities, giving rise to a hierarchical

structure, with a truncated power law degree distribution.

Results and Discussion

The model is quite robust, allowing for a wide range of

parameters where the system presents similar characteristics. In

order to present a detailed analysis, and a comprehensive

comparison with the fMRI studies most parameters will remain

fixed and only those ingredients necessary for the formation and

evolution of the different network structures will be highlighted.

Unless noted, all the results presented in this section correspond to

systems with an initial random network with Nini~20 nodes and

L0~8 connection per node. The natural frequencies vi were

chosen at random from a Gaussian distribution with zero mean

and unitary variance, g vð Þ~exp {v2
�

2
� �� ffiffiffiffiffiffi

2p
p

. The integration

time used to calculate the average oscillation frequency Vi was

T~10, and the coupling strength between the phase oscillators

was [~1:0. Similar qualitative results were obtained in the

numerical simulations for 0:5v [v4:0.

Degree Distribution
The algorithm allows for the emergence of wide degree

distributions both for global (GRD) and local (LRD) rewiring

dynamics. However, the distributions present different functional

forms. Figure 1A shows the degree distribution P kð Þ as a function

of the degree k for ten different realizations of GRD and four

different system sizes, N~100, 400, 800 and 1600 when kin~8.

P kð Þ presents a slow decay for small k and then a crossover to an

exponential decay for large values of k. As the system size increases

the slower decay extends further and can eventually be fitted by a

power law P kð Þ*k{a with an exponent a&2:1 (the straight line

in Figure 1A serves as a guide to the eye). This finite size behavior

suggests that for large system sizes the crossover will become

difficult to observe and the power law behavior will become

robust. It is interesting to compare this result with the

experimental data of Eguı́luz et al. [21], where a similar behavior

is observed. Using different threshold values they built functional

brain networks with large system sizes, ranging from N*104 to

N*105, and mean degrees SkT ranging from 4 to 13 (note that in

Figure 1A, SkT~kin~8). In accordance with the results of the

GRD they found power law degree distributions with no cutoff

and observed only slight changes in the degree distribution

exponents (a&2:0) as a function of system size.

For small system sizes the model shows that finite size effects

play an important role. Park et al. [19] built functional brain

networks with only N~73 nodes and SkT&4, and obtained a

degree distribution with a qualitative shape that strongly resembles

the results presented in Figure 1A for small system sizes. They

observed a slow decay for small k followed by a crossover to an

exponential decay (see Figure 1 in [19]). The results of the model

suggest that further experimental work including a larger number

of functional regions could determine if the crossover observed in

[19] is a finite size effect.

Figure 1B shows the behavior of P kð Þ vs. k averaged over ten

realizations of LRD and four different system sizes, N~100, 400,

Figure 1. Degree distributions P kð Þ for global (A) and local (B) rewiring dynamics. Degree distribution P kð Þ vs. degree k for global (A) and
local (B) rewiring dynamics. Four different system sizes N~100 Dð Þ, 400(%), 800(e) and N~1600 pð Þ averaged over ten different realizations of the
dynamics are shown, when incoming nodes have degree kin~8 and the coupling strength is [~1:0. The continuous lines are a guide to the eye and
show (A) a power law P kð Þ*k{2:1 and (B) an exponentially truncated power law P kð Þ*k{1:1 exp {k=23ð Þ.
doi:10.1371/journal.pone.0006863.g001
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800 and 1600 when kin~8. Note that for N~100 the qualitative

shape of P kð Þ in Figures 1A and B is very similar. This is an

expected result, since for small system sizes the LRD and GRD

rules will be almost indistinguishable, due to the small mean

distance between nodes (since we begin with a random network).

However, as N grows the behaviors are different, and the degree

distribution for LRD can be fitted by an exponentially truncated

power law P kð Þ*k{a exp {k=kcð Þ in almost all its k range (the

continuous curve in Figure 1B shows the best fit obtained for

N~1600). Achard et al. [22] observed the same functional form in

small networks (N&100 nodes) built from fMRI data of subjects in

resting state. They noted that the difference in the functional form

of their results (power law with exponential cutoff) and the results

of Eguı́luz et al [21] (power law with no cutoff) could be a

consequence of anatomical resolution of analysis and/or experi-

mental stimulation of the subjects [22]. The model highlights the

role of anatomical resolution as one of the key ingredients

necessary to define the functional shape of the degree distributions.

Clustering and Hierarchical Structure
In order to advance further in the quantitative characterization

of the emerging networks we analyzed the clustering coefficient C,

that measures the average number of neighbours of a given node

which are in turn mutual neighbors [36]. Ravasz et al. [37,38] have

noted that hierarchical networks present a clustering coefficient

that is independent of system size. On the other hand, networks

that do not present a hierarchical structure (such as the Barabási-

Albert model for scale-free networks [38]) present a decaying

behavior of C with N. Since the model allows for such a finite size

study, we present in Figure 2 the behavior of C as a function of N
for GRD (%) and LRD (p), when kin~4. The curves correspond

to averages over five different networks. Note that C presents a

non-monotonic behavior, and, as expected, the behavior for small

N is similar for both dynamics. As N grows the curves depart, and

for GRD the clustering coefficient decays following approximately

a power law C kð Þ*k{0:45 (the straight line in figure 2 is a guide to

the eye), while for LRD the clustering coefficient seems to

converge to an asymptotic constant value C&0:36. This striking

difference between the two dynamics shows that the characteristics

of a hierarchical network are present for LRD, while they are

clearly absent for GRD.

In Figure 3 we compare the behavior of C as a function of k for

both rewiring dynamics when N~3200 and kin~4. The curves

were averaged over five different networks. For GRD (%) the

behavior of C is almost constant for degrees up to k&20, and then

presents a slow decay for larger values of k. A qualitatively similar

behavior was obtained by Eguı́luz et al. (see Figure 5 in [21]), and

was interpreted as an absence of hierarchical organization, where

a power law decay C kð Þ*k{1 was expected [38] (this behavior is

presented as a guide to the eye in Figure 3). For LRD (p) the

behavior of C kð Þ is qualitatively similar, however we should stress

that the clustering coefficient presents larger values in the whole k
range, and deviations between the two dynamics are noticeable for

nodes with small degree. In the following section we will comment

on the origin of these differences.

Ferrarini et al. [23] obtained functional brain networks that

present hierarchical structure. They highlight that their method

allows them to detect overlapping communities, showing how

different regions cluster into larger ones, which then cluster again

through a hierarchical organization [23]. In the following section

we will analyze the synchronization properties of the system. In

particular, we will establish a relation between the formation and

organization of synchronized clusters and the underlying network

structure. This will allow us to understand the mechanisms that

lead to the formation (absence) of a hierarchical structure when

LRD (GRD) is considered.

Synchronization
In order to establish the interplay between the collective

dynamics of the oscillators and the underlying network structure

we analyzed first the formation and evolution of synchronized

clusters. Figure 4 shows the behavior of average frequencies Vi as

a function of natural frequencies vi for GRD for four different

system sizes, N~200, 400, 800 and 1600. Already for N~200 the

presence of a number of horizontal arrays of dots can be clearly

seen. They indicate that oscillators with different natural

Figure 2. Clustering C as a function of system size N for global
and local rewiring dynamics. Clustering C vs. system size N for
global (%) and local (p) rewiring dynamics, averaged over five
samples, when incoming nodes have degree kin~4 and the coupling
strength is [~1:0. The continuous lines are a guide to the eye and
show the power law decay C(k)*N{0:45 for the global rewiring
dynamics and the convergence to the constant value C&0:36 for the
local rewiring dynamics.
doi:10.1371/journal.pone.0006863.g002

Figure 3. Clustering C as a function of degree k for global and
local rewiring dynamics. Clustering C vs. degree k for global (%)
and local (p) rewiring dynamics, averaged over five samples, when
incoming nodes have degree kin~4, the coupling strength is [~1:0
and N~1600. The straight line is a guide to the eye and shows the
power law behavior of a hierarchical network, C kð Þ*k{1.
doi:10.1371/journal.pone.0006863.g003
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frequencies have attained the same average frequency, showing

that they form a synchronized cluster. Note that for increasing N
the number of clusters remains almost constant, and thus only

their size grows. This behavior reflects the global character of the

dynamics: once the synchronized clusters are formed, the

connections of the new nodes can rewire to any of the

synchronized clusters, and thus choose the one with average

frequency closer to its natural frequency.

The formation and evolution of groups of synchronized

oscillators reveal a non-trivial underlying network structure. In

fact, it allows for an explanation of the non-monotonic behavior of

C vs N observed in Figure 2. Initially the system is a small random

network with a small clustering. As the system size grows

synchronized clusters formed by oscillators that are connected

between themselves emerge, and as a consequence the clustering

grows. Eventually, since the number of synchronized clusters

remains constant, only their size grows, as a consequence the

connections between the nodes in a given cluster become sparse,

and the clustering decays.

We also analyzed the evolution of the network structure. In

Figure 5A we present the adjacency matrix Wij for a system with

N~400 using GRD. Each dot in the matrix corresponds to a

connection (Wij~1) between nodes i and j. The axes have been

ordered according to the time in which the nodes entered the

system. Note that for small values of N (short times) the matrix is

dense, becoming sparser as N grows. The adjacency matrix also

allowed us to establish the interplay between the synchronized

groups and the topological structure of the network. In Figure 5B

the same matrix has been reordered according to the average

frequency of the nodes in increasing order. Note the presence of

well defined communities around the diagonal, that have a direct

relation to the synchronized clusters observed in Figure 4. Also

note the presence of few connections far from the diagonal line,

outside the modules. These correspond to oscillators that have

long-range connections linking different synchronized modules

and reflect the small-world character of the network. Again the

results obtained with GRD present a strong resemblance with the

experimental work of Eguı́luz et al. [21], that observed an

assortative mixing in their functional brain networks, a clear

indication of the presence of communities [39].

For LRD the formation and evolution of synchronized clusters

presented a different behavior. Figure 6 shows the behavior of Vi

as a function of vi for LRD for four different system sizes,

N~200, 400, 800 and 1600. As expected, for small system sizes

the local and global rewiring dynamics present similar results, and

a number of synchronized clusters can already be seen for

N~200. Note however, that the clusters are not clearly separated

as in figure 4. As the system size grows new horizontal arrays of

dots appear between the clusters, indicating the formation of new

groups of synchronized oscillators. Eventually, it is very difficult to

separate the different horizontal arrays that are distributed along

the whole frequency range.

In order to establish the interplay between this new synchro-

nization behavior and the underlying network structure, we also

analyzed the evolution of the network topology through the

adjacency matrix. In Figure 7A we show the adjacency matrix Wij

for a system grown with LRD with N~400 nodes, where the axes

label the nodes according to the time in which they entered the

system. Note that, as with GRD (Figure 7A) for small values of N
the matrix appears dense, becoming sparser for larger N. In

Figure 7B, the matrix was reordered according to the average

frequency Vi in increasing order. In this case, the identification of

Figure 4. Evolution of synchronized clusters for global rewiring dynamics. Average frequency Vi vs. natural frequency vi for global
rewiring dynamics for four different system sizes N~200, 400, 800 and 1600 of a single sample. Horizontal arrays of dots indicate synchronized
clusters.
doi:10.1371/journal.pone.0006863.g004
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synchronized clusters with the topological structure of the network

revealed the presence of overlapping communities, that cluster

into larger ones through a hierarchical organization, presenting a

strong resemblance to the results of Ferrarini et al. [23] and also to

the adjacency matrices obtained by Achard et al. (see Figure 1 in

[22]).

In this section we have analyzed the synchronization properties of

the model, and also its relation with the underlying network structure.

We showed that the global rewiring dynamics allows for the

formation of clusters of synchronization that have a direct relation

with the formation and evolution of network communities. This

dynamics is an optimal rewiring dynamics, in the sense that it allows

each new node that enters the system to make the best rewiring

possible given the state of the system. That is, to rewire all its

connections to the synchronized cluster that has an average frequency

closer to its natural frequency. This mechanisms limits the formation

of new synchronized clusters, since once they are formed they only

grow in size. The same behavior is reflected in the underlying

Figure 5. Adjacency matrix for global rewiring dynamics. Adjacency matrix for global rewiring dynamics when the nodes are ordered
according to: (A) the time in which they were incorporated into the system, (B) the value of their average frequency Vi .
doi:10.1371/journal.pone.0006863.g005

Figure 6. Evolution of synchronized clusters for local rewiring dynamics. Average frequency Vi vs. natural frequency vi for local rewiring
dynamics for four different system sizes N~200, 400, 800 and 1600 of a single sample. Horizontal arrays of dots indicate synchronized clusters.
doi:10.1371/journal.pone.0006863.g006
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network structure, where a limited number of communities are

formed that become sparser as the system size grows.

On the other hand, when the rewiring rules are restricted to a

local neighborhood, each new node cannot always choose the best

rewiring to synchronize with a given cluster, and thus may end up

with an average frequency different from the synchronized clusters

that were present. This allows for the formation of new clusters

with new average frequencies. As the system grows new

synchronized clusters emerge and grow at different average

frequencies. The underlying network structure reflects this

behavior by the emergence of communities that cluster together

into larger ones, giving rise to a hierarchical structure.

Summarizing, in order to understand the basic ingredients

necessary for the emergence of the complex network structures

observed in human brain functional networks, we presented an

adaptive complex network model. The microscopic units of the

model are dynamical nodes, and the links between the nodes are

chosen following an adaptive algorithm that allows for rewiring

between dynamical elements with similar internal states. We have

shown that the model is able to describe topological characteristics

of human brain networks obtained from functional magnetic

resonance imaging studies. In particular, when the dynamical rules

of the model allow for integrated processing over the entire network

scale-free non-hierarchical networks with well defined communities

emerge, resembling the experimental results of Eguı́luz et al. [21].

On the other hand, when the dynamical rules restrict the

information to a local neighborhood, communities cluster together

into larger ones, giving rise to a hierarchical structure, with a

truncated power law degree distribution, resembling the experi-

mental results of Achard et al. [22] and Ferrarini et al. [23].
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