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Predicting the movements, ground reaction forces and neuromuscular activity during

gait can be a valuable asset to the clinical rehabilitation community, both to understand

pathology, as well as to plan effective intervention. In this work we use an optimal

control method to generate predictive simulations of pathological gait in the sagittal

plane. We construct a patient-specific model corresponding to a 7-year old child with gait

abnormalities and identify the optimal spring characteristics of an ankle-foot orthosis that

minimizes muscle effort. Our simulations include the computation of foot-ground reaction

forces, as well as the neuromuscular dynamics using computationally efficient muscle

torque generators and excitation-activation equations. The optimal control problem

(OCP) is solved with a direct multiple shooting method. The solution of this problem

is physically consistent synthetic neural excitation commands, muscle activations and

whole body motion. Our simulations produced similar changes to the gait characteristics

as those recorded on the patient. The orthosis-equipped model was able to walk

faster with more extended knees. Notably, our approach can be easily tuned to simulate

weakenedmuscles, produces physiologically realistic ground reaction forces and smooth

muscle activations and torques, and can be implemented on a standard workstation to

produce results within a few hours. These results are an important contribution toward

bridging the gap between research methods in computational neuromechanics and

day-to-day clinical rehabilitation.

Keywords: pathological gait, neuromechanics, movement prediction, model-based optimization, parameter

identification

1. INTRODUCTION

The clinical treatment of neuromuscular gait abnormality is a complex process that demands
significant investment of time and effort from the patient (and caregivers), surgeons and orthotists.
Often there may be multiple suitable treatment regimes (surgery, orthotics, rehabilitation exercise,
etc.) without a clear indication of an optimal choice. The use of computational methods can assist in
these decisions in two ways. First, by estimating internal physiological states that cannot be directly
measured to help understand the pathology. Second, by predicting the change in such states under
manipulation of virtual patient models to help understand the effects of the possible interventions.
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There is a growing number of studies that apply the former, so
called inverse methods, to healthy and pathological movements,
e.g., (Nakamura et al., 2005; Damsgaard et al., 2006; Delp et al.,
2007; Erdemir et al., 2007; Sreenivasa et al., 2015; Choi et al.,
2016). By matching recorded kinematics and ground reaction
forces, one may solve for muscle activations under various
optimization criteria (Jonkers et al., 2003; Thelen et al., 2003;
Erdemir et al., 2007; Groote et al., 2016). Another approach is to
use the concept of modularity in neural and muscle recruitment
to generate a low dimensional manifold of control signals. Sartori
et al. (2013) used this approach to generate EMG signals and
joint moments for a lower body neuromuscular model. There
are far fewer examples that explore the possibility of predicting
the kinematics and dynamics of the body during gait. Here we
distinguish betweenmethods that can predict muscle forces given
body movements, and those that can predict both muscle forces
and bodymovements. This work focuses on the latter by applying
optimal control based methods to predict movements, ground
reaction forces and neuromuscular dynamics during walking
with and without an orthosis. The goal here is to support an
important clinical routine—fitting of an orthosis to a patient—
with the use of computational methods and patient-specific
models.

The ideal combination of model/method would be one that
is computationally efficient, includes neuromuscular dynamics,
produces realistic ground reaction forces, can be tuned to
an individual (healthy or pathological) quickly and accurately,
and can predict movements. Each of these requirements
is challenging, however, methodological and technological
advances have made some of these possible. Anderson and Pandy
(2001) famously used 10,000 h on a Cray super-computer to solve
for a metabolically efficient gait for a lower-body neuromuscular
model. More recently Wang et al. (2012) and Dorn et al. (2015)
predicted gait patterns for their models with around 1,000 CPU-
hours of processing. This level of computational infrastructure
and the long time to a solution is not feasible for routine
clinical work. In contrast, the works of Schultz and Mombaur
(2010), Ren et al. (2007), Felis et al. (2013), Felis and Mombaur
(2016), and Srinivasan et al. (2008, 2009) produce results using
desktop computers in less than an hour. While the faster solution
time is impressive, these works do not include a representation
of the muscles, which is necessary to address most clinical
questions.

Ackermann and van den Bogert (2010) and Dorn et al.
(2015) included muscles and activation dynamics, however,
their results were accompanied by ground reaction force
peaks that were twice as large as would be expected from
healthy human walking. Using an alternative reflex-
feedback approach, Geyer and Herr (2010) produced a
muscle and reflex-driven simulation of walking that produced
ground reaction force profiles that had a comparable form
and magnitude to healthy human walking. While these
results are impressive, it would be challenging to estimate
individualized reflex parameters, especially in a clinical
setting.

An alternative to the model-based approaches presented
so far is the use of methods from machine learning to

adaptively adjust assitive devices to the user. Autonomous
learningmethods have found application in clinical rehabilitation
related to functional electrical stimulation (see e.g., Abbas
and Chizeck, 1995; Chang et al., 1997; Ferrante et al., 2004).
However, these methods typically require pre-existing datasets
and/or a large number of training trials. This makes their
extension to the prediction of whole body neuromechanics
challenging, as patient data may be sparse or not available
at all.

In addition to these computational aspects, a major challenge
that must be addressed is the validation of the models and the
simulation results. This is a multi-faceted issue that needs to be
dealt with at both the technical and clinical fronts. For example,
for neuromuscular models a common hurdle is that internal
neurological states cannot be measured in vivo, and surface
EMG can only roughly approximate muscle function (Farina
et al., 2014). In addition, a prospective clinical trial is a major
undertaking that needs a close collaboration between research
and clinical teams. As an initial step, studies such as the one
presented here can at the very least compare their results to those
measures that are relatively easy to record (e.g., joint kinematics,
ground reaction forces, surface EMG). While this is not a full
validation, a model that can match these observations can at least
assure the clinician of exhibiting behavior that is physiologically
realistic.

In the following we detail a patient-specific model and
formulate an optimal control problem (OCP) to identify the
optimal individualized stiffness of an ankle foot orthosis that
minimizes muscle effort while walking. It is important to note
that the identification of the stiffness parameters occurs in
advance of the patient walking with the orthosis. We do not
identify the stiffness parameters from experimental data, but
rather predict what the parameters should be for that patient.
In general, an OCP defines a minimization problem where an
objective function is minimized while abiding the dynamics
describing a physical system (in our case the human body +

orthosis dynamics). Such methods have been used successfully
for robot and human motion generation in the past (Bobrow
et al., 1985; von Stryk and Schlemmer, 1994; Schultz and
Mombaur, 2010), and to a limited extent for the design of human-
assistive devices (Koch andMombaur, 2015; Mombaur, 2016). In
the current work, we strike a balance between model complexity
and computational efficiency by modeling the muscles as lumped
torque generators rather than anatomically equivalent line-
type actuators. The solutions combine physically consistent
neuromuscular dynamics and ground-contact dynamics, and can
be achieved in a matter of hours on a standard desktop computer.
We implement several OCPs that mimic the patient condition as
he walked barefoot as well as with an orthosis. Note that in these
OCPs we predict movements, joint torques and ground-reaction
forces. For the orthosis OCP, we evaluate two cost functions, one
that only minimizes muscle effort, and another that minimizes
muscle effort while favoring a higher walking speed. In addition
we also present a dynamic fit of the model to the recorded gait
kinematics. Our simulation results are compared to experimental
recordings from a 7-year old patient with neuromuscular
deficits.
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2. METHODS

2.1. Patient Data
Gait data of a 7-year old male (weight 24.7 kg, height 1.25 m)
are retrospectively used in this study. The patient presented with
multiple bony deformities of neuromuscular origins, which were
corrected in a single event multilevel surgery 1.5 years prior to the
recording of the gait data. At the time of recordings he presented
with a mild crouch, slow walking speed and unstable gait.
Recordings were made of the patient walking on level ground
with bare feet and with bilateral ankle-foot orthosis. The orthosis
stiffness (see Section 2.2.3 for details) was tuned manually by an
orthopedic professional overseeing the recordings. Positions of
35 reflective markers attached to the patient’s limbs and torso
were recorded at 120 Hz during level gait using a 10-camera
Vicon system (Vicon, UK). Simultaneous ground reaction forces
were recorded at 1080 Hz using Kistler force plates (Kistler
GmbH, Germany).

In total 13 barefoot left and right steps and 12 orthosis left
and right steps were recorded that contained gait kinematics
suitable for further processing. From this set, 3 barefoot left
steps and 2 barefoot right steps, as well as 5 orthosis left

steps and 4 orthosis right steps, had suitable recorded ground
reactions forces. The reduced number of trials with valid
ground reaction forces highlight the experimental difficulties
associated with getting an under-age patient with neuromuscular
deficits to step cleanly on the successive force-plates. The gait
recordings were part of a standard clinical routine. Written
informed consent was obtained from the parents and the subject.
The recordings were conducted according to the guidelines of
the Declaration of Helsinki 2013 and approved by the ethics
committee of the Medical Faculty Heidelberg of Heidelberg
University.

2.2. Model Formulation
We model the human body as an articulated multi-body system
with 8 segments, each with one rotational Degree of Freedom
(DoF) in the sagittal plane. The pelvis is modeled as a floating
base with two additional translational DoFs in the X and
Z directions (Figure 1). Segment lengths were approximated
from motion capture data, and segment mass and inertia were
calculated based on anatomical regression equations for children
as per (Jensen, 1986).

FIGURE 1 | Torque muscles fitted to the patient were used to actuate a sagittal plane rigid-body model. (A–C) Show the normalized active-torque-angle

curve, fA (θ ), and the torque-angular-velocity curve, fV (ω), of the torque muscles. (D) Illustrates the degrees of freedom of the rigid-body model along with the modeled

ankle-foot orthosis as an adjustable-stiffness torsion spring.
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2.2.1. Patient-Specific Muscle Torque Generator
The rotational DoFs at the hips, knees, ankles and the torso
were each actuated by a pair of agonist-antagonist Muscle Torque
Generators (MTG), which represent the combined torques being
generated by muscle forces in that direction (Figure 1). The
active tension developed by a muscle varies non-linearly with
the length and contraction velocity of the muscle, while the
passive tension varies non-linearly with its length (Zajac, 1988;
Millard et al., 2013) (Figure 1). In this study we only model
the active components of muscle torque generation. The active
torque developed by a MTG varies non-linearly with the angle θ

of the muscle and is represented by the normalized active-torque-
angle curve fA(θ) which peaks at a torque of τ M

o at an angle of
θo. During non-isometric contractions the torque developed by
the muscle varies non-linearly with the angular velocity ω of the
muscle, which is represented by the normalized torque-angular-
velocity curve fV(ω). Muscle torque τ M is computed using these
characteristic curves as follows:

τ M
= τ M

o (afA(θ)fV(ω)) (1)

where a is the muscle activation. The active-torque-angle and
torque-angular-velocity curves are modeled using C2 continuous
Bézier curves (Figure 1) fitted to the experimentally derived
torque curves of (Anderson et al., 2007). Anderson et al.’s
parameterized curves are not used directly because they are not
all C2 continuous, which is required by the OCP solver.

Patient-specific maximum torques in extension for the hip,
knee and ankle are estimated under the assumption that during
the recorded trials the patient was walking at 90% of his
maximum capability (i.e., maximum muscle activations were
0.9). This assumption is motivated by the clinical assessment
of this patient’s musculature, the pronounced crouch, and slow
walking speed observed in the recorded barefoot gait. First,
we use inverse dynamics analysis to compute the maximum
extension torques generated during the recorded trials. Using
a = 0.9 and the θ , ω where this maximum occurred, the
corresponding maximummuscle torque in extension is found by
solving Equation (1) for τ M

o . Maximum flexion torques are then
computed based on the extension-flexion torque ratios recorded
in the study by Anderson et al. (2007). Table 1 lists these values
for an age-matched and weight-matched healthy child, as well
as for the patient considered in this study. Torso strengths are
assumed to be the average of the right and left hip strengths. Note
that theMTGmodels developed here do not take into account the
active and passive-dynamic coupling effects of muscles that span
multiple joints.

2.2.2. Excitation-Activation Dynamics
The physiological activation of muscle is an electro-
chemical process at the motor unit end plates that converts
incoming motor unit action potentials to changes in ion-
concentration, and subsequent contraction in muscle
fibers. Lumped models provide a simplified representation
of this process by relating the overall muscle activation
a, to the rate of change of activation ȧ and neural
excitation e. Here, we use the formulation by Thelen et al.

TABLE 1 | Maximum isometric joint torques for an age and

weight-matched healthy control and the patient considered in this study.

τ
M
o (Nm)

Healthy Pathological

Left Right Left Right

Hip extension 48.82 48.82 30.35 18.64

Hip flexion 34.27 34.27 21.31 13.08

Knee extension 36.08 36.08 24.55 22.40

Knee flexion 19.26 19.26 13.10 11.95

Ankle extension 39.46 39.46 16.84 32.32

Ankle flexion 13.71 13.71 5.85 11.23

Torso extension 48.82 24.49

Torso flexion 34.27 17.19

(2003):

ȧ =











(e− a)

(

e

τA
+

1− e

τD

)

if e ≥ a

e− a

τD
otherwise

(2)

where, τA = 0.011, τD = 0.068 denote the activation
and deactivation time constants as per (Winters and Stark,
1988).

2.2.3. Parametrized Orthosis Model
The orthosis worn by the patient consisted of custom-built
carbon fiber shank and foot segments joined together by
an adjustable-stiffness spring-loaded rotational joint at the
ankle. The adjustable stiffness joint was constructed using the
Neuroswing Joint (Fior and Gentz, Germany) which needs to
be tuned to each patient. The foot segment consist of foot-plate
fitted to the patient’s foot size and inserted into a standard shoe.
The masses of the shank and foot segments are estimated to be
0.34 and 0.69 kg, respectively. Note that the foot segment mass
referred to here includes themass of the shoe. In the following, we
refer to the gait with the orthosis+shoe combination as orthosis
gait. These masses are added to the shank and foot segments of
the patient model for the simulations of orthotic gait.

The stiffness of the orthosis is modeled as torques generated at
the ankle as a function of the ankle angle. The behavior is divided
into 5 stages for the extension-flexion range of motion (Figure 2).
The parameter θ0 defines the offset between the neutral pose of
the ankle and the orthosis in a torque-free angular position. In
a small angle window θW about this neutral pose, a small pre-
load defined by τ0 acts on the joint. As the shank rotates with
respect to the foot, the torques are produced by the joint springs
(spring stiffness KD, and, KP). Upon hitting the adjustable hard
stops (θDH , and, θPH) the shank may rotate further by flexing
the carbon fiber material. This relatively stiffer material results
in large torques defined by the parameters, KDH and KPH . The
positional parameters listed in Table 2 were measured by the
medical professionals during the clinical process. The stiffness
of the orthosis-shoe combination is estimated using inverse
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FIGURE 2 | Parametrized orthosis torque-angle profile: Torques

resulting from the stiffness of the orthosis springs and frame are

plotted as a function of ankle angle. The shape of this curve changes as a

function of the free parameters KD and KP.

TABLE 2 | Orthosis parameters.

Parameter Value

KDH (Nm/radian) 200

θDH (radian) −0.12 (L)

−0.13 (R)

KD
a (Nm/radian) 55

θ0 (radian) −0.02

θW (radian) 0.01

τ0 (Nm) ±1

KP
a (Nm/radian) 5

θPH (radian) 0.09 (L)

0.1 (R)

KPH (Nm/radian) 200

aKD and KP are free parameters of the optimal control problem (OCP) that are to be

determined. Values indicated here are the initial guess provided to the OCP. The other

parameter values are fixed in the OCP.

dynamics analysis of recorded orthosis gait (further details in
Section 2.4). While the positional parameters and masses can be
measured with a high degree of certainty, the stiffness values of
the combined orthosis-shoe unit are tougher to measure and is
not part of the clinical routine. In the current approach, we place
the initial guess for the stiffness values well below the estimate
calculated from the torque-angle characteristics.

Note that during the clinical fitting/tuning process, the
orthotist would adjust the spring stiffness denoted here by the
parameters KD, and, KP. While it is possible to adjust the other
orthosis characteristics, these springs are the easiest to access
and one can quickly test their effects on gait during a fitting

procedure. Consequently, we make these two parameters KD,
and, KP, free parameters of the OCP that are to be determined.
The other parameters in Table 2 are fixed, however, future
extensions of this approach could include a more extensive
parameter set to be identified. Finally, the overall orthosis torque-
angle profile is approximated using C2 continuous Bézier curves
that are generated on-the-fly as a function of the changing
parameters while running the OCP.

2.3. Gait as an Optimal Control Problem
Gait is formulated as a multi-phase OCP, with each phase defined
by the attachment and breaking off of sets of contact constraints
between the feet and the ground. Due to left-right asymmetry in
the patient’s gait we model a consecutive left and right stride with
np = 8 phases as follows (see insets in Figures 4A,B): Right
Flat—Left Toe Off, Right Toe On—Right Heel Off, Right Toe
On—Left Heel On, Right Toe On—Left Flat, Left Flat—Right Toe
Off, Left Toe On—Left Heel Off, Left Toe On—Right Heel On,
Left Toe Off—Right Flat. Here, “Flat" indicates that both heel and
toe contacts are active. In addition to the position constraints
at foot contacts, contact velocities are also constrained to be
zero at the start of phases, to ensure continuity in velocities and
ground forces. Forces at the load bearing points of the feet are
constrained to ensure strictly positive vertical ground reaction
forces during the step. Forces in the anterior-posterior direction
are constrained to lie within the limiting friction, assuming a
coefficient of friction of 0.8 (Chang and Matz, 2001). Forward
dynamics computations for the multi-body system subject to
the stepping constraint sets are computed using the method
described by Kokkevis (2004), implemented in the open-source
dynamics library RBDL1 by Felis (2017). The OCP then has the
general form:

min
x(·),u(·),p,ν

np
∑

0

(

∫ νj

νj − 1

φj(x(t), u(t), p)dt

)

(3)

s.t. ẋ(t) = fj(t, x(t), u(t), p) for t ∈ [νj − 1, νj],

j = 1, ..., np, ν0 = 0, νnp = T (4)

0 = req(x(0), .., x(T), p) (5)

0 ≤ rineq(x(0), .., x(T), p) (6)

0 ≤ gj(t, x(t), u(t), p) for t ∈ [νj − 1, νj] (7)

where, Equation (3) describes a general objective function to
be minimized. Equation (4) is a place-holder that denotes
the dynamics of the multi-body system. Note that the actual
neuromuscular and multi-body dynamics are described by
differential algebraic equations (detailed formulation available in
Felis et al., 2015; Felis and Mombaur, 2016; Mombaur, 2016).
x(t) denotes a vector of state variables (generalized coordinates
q, generalized velocities q̇, and muscle activations a). u(t) is a

vector of control variables (neural excitations e). p denotes a

vector of free model parameters (if any), and, ν is a vector of
variable phase switching times with T = tnp = overall time for

1https://rbdl.bitbucket.io
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themotion. Equation (5) denotes coupled and decoupled equality
constraints (e.g., switching foot contacts at phase changes),
and Equation (6) the inequality constraints (e.g., maintain
positive ground reaction force during stepping). Equation (7)
denotes all continuous inequality constraints (e.g., bounds of
the state variables). Controls u(t) are subject to constraints
formulated in Equation (5) to ensure continuity at phase
changes. This is done to ensure 2nd order continuity in muscle
activations.

To solve the OCP we use a direct multiple-shooting
method (Bock and Pitt, 1984) implemented in the software
package MUSCOD-II (Leineweber et al., 2003). The direct
multiple-shooting approach transforms the infinite dimensional
OCP, Equations (4–7), into a finite dimensional non-linear
programming problem by first discretizing the continuous
controls u(t) on a grid and then solving the resulting boundary
value problem using a multiple-shooting method. Note that with
this method the system dynamics are also satisfied between
the multiple shooting intervals, leading to physically consistent
results throughout the simulated motion. The multi-phase
problem described above is discretized into 64 shooting nodes.
The controls u(t) are modeled as piecewise linear functions
between discretization points. The works by Felis et al. (2015);
Felis and Mombaur (2016) and Mombaur (2016) provide
further detail on the constraint formulation, the solution of
the multi-body mechanics, and numerical treatment of the
OCP. The models and constraints formulation are available as
supplementary software code to this article. In our current study
we implement four OCPs:

1. LS-Barefoot: Dynamic least-squares fit to recorded barefoot
gait

2. MAPD-Barefoot: Minimal activation per distance walked for
barefoot gait

3. MAPD-Orthosis: Minimal activation per distance walked for
orthosis gait

4. MAPD-WS-Orthosis: Variation ofMAPD-Orthosis favoring a
higher walking speed

The LS-Barefoot OCP is used to show that our model is capable
of tracking the patient’s gait in a dynamically consistent manner.
Note that we only apply this fitting-type objective function
to the recorded barefoot gait, as in a real-world application
the gait with orthosis would not be available in advance. The
MAPD-Barefoot OCP is used to test how close the chosen cost
function can reproduce recorded barefoot gait of the patient. The
MAPD-Orthosis OCP is used to predict the patient gait with an
orthosis, and simultaneously identify the orthosis spring stiffness
parameters. In initial trials we noticed that the predicted walking
speed of the MAPD-Orthosis OCP was slower than that of the
patient. To further investigate whether our model could be made
to walk as fast as the patient, we implemented the OCP MAPD-
WS-Orthosis, that contains an additional objective function term
favoring a higher walking speed. Note that the OCPs MAPD-
Barefoot, MAPD-Orthosis and MAPD-WS-Orthosis are purely
synthetic results and no experimental data is used to compute the
solutions.

2.3.1. Dynamic Least-Squares Fit to Recorded Gait
We formulate a fitting-type objective function for the LS-
Barefoot OCP that provides a dynamically consistent gait as close
as possible to the recorded patient joint kinematics. The objective
function is formulated as:

min
x(·),u(·)

np
∑

j = 1

[

∑nM,j

m = 1(q(tjm)− qM(tjm))
TW(q(tjm)

− qM(tjm))+ δ
∫ νj
νj−1

u(t) · u(t)dt

]

(8)

Here, the phase times ν are fixed to those obtained from the
recorded gait. Note that the generalized coordinates qM are

computed using inverse kinematics at discrete measurement
points. W is a diagonal scaling matrix that may be used to give
preference to a closer fit to a subset of the generalized coordinates.
Here, we use an identity matrix which provides an overall good
fit to all the coordinates. The second term, δ

∫ νj
νj−1

u(t) · u(t),

introduces a small cost that regularizes the control inputs, i.e., it
smoothens the control input (neural excitation) and avoids that
the solution follows noise in the experimentally recorded data. δ
was set to 1e − 4 for our computations. For this regularization
term all controls are weighted equally relative to each other.

2.3.2. Gait Prediction with MAPD-Type Objective

Functions
We formulate two objective functions for predicting gait: the first
minimizes total muscle activations squared per distance walked,
and the second contains an additional term that favors a higher
walking speed. The first objective function is formulated as:

min
x(·),u(·),ν,p

∑np
1

∫ νj
νj−1

a(t) · a(t)dt

r(T)
(9)

Note that dividing by the total distance traveled, r(T), provides
the impetus for moving forward, as without this term the
model has no reason to move. Objective functions similar to
the one above are commonly used in literature (Thelen et al.,
2003; Damsgaard et al., 2006; Ackermann and van den Bogert,
2010) and are associated with the minimization of muscle effort
(Ackermann and van den Bogert, 2010). We introduce additional
periodicity constraints on all the state variables and the controls,
such that the initial states at the start of the first phase matched
the final states at the end of the last phase.

The second objective function includes a term favoring a
higher walking speed and is formulated as:

min
x(·),u(·),ν,p

∑np
1

∫ νj
νj−1

a(t) · a(t)dt

r(T)
− λ

r(T)

T
(10)

where, λ is a scaling term. The objective function (Equation 9)
is used in the OCPs MAPD-Barefoot and MAPD-Orthosis. The
objective function (Equation 10) is used in the OCP MAPD-
WS-Orthosis. For the OCPs MAPD-Orthosis and MAPD-WS-
Orthosis, there are 4 free parameters to be determined during
the optimization. These corresponded to the left and right pairs
of orthosis spring stiffness parameters (KD,KP). The orthosis
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dynamics in these OCPs are simulated using the values listed in
Table 2.

2.4. Evaluation Procedure
We evaluate the model and the predicted results in the following
ways:

1. We report the residuals from inverse dynamics analysis
of the recorded data. Inverse dynamics analysis computes
generalized forces that are consistent with the kinematics
of the patient and the measured ground forces. Since our
kinematic model has a floating pelvis frame the inverse
dynamics results will include residual forces: the generalized
forces between the ground frame and the pelvis frame. If these
residual forces are small in magnitude then we can conclude
that the geometry and mass distribution of the model fits the
subject well.

2. We use the LS-Barefoot formulation to assess the quality of
the foot-ground contact model. This is because, although the
objective function is trying to drive the model to walk with the
same kinematics as were used in the inverse dynamics analysis,
the foot-ground constraints must be satisfied. Any differences
that show up between the LS-Barefoot results and the recorded
gait can be ascribed to how well the model of foot-ground
contact fits the patient.

3. We compare the solution of MAPD-Barefoot to the
kinematics and kinetics of patient to assess how well our
chosen cost function fits the movement of subject.

4. We evaluate the predicted orthosis parameters and subject
gait by comparing the solution of MAPD-Orthosis to the
corresponding experimental data. Any new differences that
appear between the OCP results and the experimental data
are either due to differences between our orthosis model and
the real orthosis, or because the patient no longer walks in a
manner that is consistent with our chosen cost function.

To separate these differences, we compare the net
torque-angle profile of the MAPD-Orthosis results to the
corresponding experimental data. If the net ankle torque-
angle profiles are similar it is likely that the remaining
differences we observe are happening because the patient is
no longer walking in a manner that is consistent with our
chosen cost function. It is necessary to use the net ankle torque
(the sum of the torque contribution of the ankle MTGs and
the orthosis) in this comparison because the kinematics and
kinetics of the patient’s ankle were not recorded separately
from the orthosis.

5. We perturb the free orthosis parameters by −5% in the
vicinity of the identified optimal values to compute how the
cost function value, knee flexion angle (and thus severity of
crouch), step lengths and walking speed vary with the stiffness
of the orthosis.

3. RESULTS

The residual forces from the inverse dynamics analysis for
barefoot and orthosis gait are under 3.3 N in the anterior-
posterior and vertical directions while the sagittal plane moments
are under 0.12 Nm (Table 3). The kinematics of the LS-Barefoot

TABLE 3 | Residuals from inverse dynamics analysis.

Mean Min Max

Barefoot A-P (N) −0.02 −0.27 0.16

Vert. (N) 1.36 −0.04 2.8

Mom. (Nm) −0.02 −0.11 0.09

Orthosis A-P (N) −0.05 −0.16 0.01

Vert. (N) 1.6 0.0 3.28

Mom. (Nm) −0.05 −0.15 0.11

A-P denotes the forces in the anterior-posterior direction, Vert. denotes the forces in the

vertical direction, Mom. denotes the moments about the free flier joint.

solution closely matches the patient’s barefoot gait kinematics
(dashed lines in Figures 3D–F), with RMS differences of 0.83◦

at the pelvis, 1.52◦ at the hips, 2.43◦ at the knees, and 2.64◦ at the
ankles. The ground reaction forces of the LS-Barefoot solution
deviate from the patient’s recorded ground reaction forces with
RMS differences of 68.24 N in the vertical direction. Note that
all RMS differences are computed with respect to the average
corresponding recorded gait kinematics and ground reaction
forces.

TheMAPD-Barefoot gait step lengths and walking speed were
within the range recorded on the patient (Table 4). The kinematic
differences were larger when compared to LS-Barefoot, with RMS
differences of 7.57◦, 12.95◦, 13.67◦, 12.22◦, for the pelvis, hip,
knee and ankle angles respectively. To put these kinematic
differences in perspective, note that the patient walks with a
high degree of variability, exhibiting maximum variances in the
barefoot trials of between 5.5◦ and 13.34◦. The RMS values of the
MAPD-Barefoot ground forces are 81.1 N. The MAPD-Barefoot
problem took 4 h to solve as a single-thread execution on a 3.6
GHz processor.

The MAPD-Orthosis model walked with a lower cost, less
of a crouch, a longer right step, and a higher walking speed
than the MAPD-Barefoot trial (Table 4). Compared to the
MAPD-Barefoot gait the MAPD-orthosis gait extends its right
and left knees 9.26◦ and 8.3◦ more during stance, respectively
(indicated as filled circles in Figures 3B,E). This improvement
in knee extension angles matched the trend seen in the patient
recordings. The RMS differences for MAPD-Orthosis gait are
8.48◦ at the pelvis, 14.48◦ at the hips, 16.11◦ at the knees, and
8.28◦ at the ankles (Figures 3A–C). The RMS differences for
ground-reaction forces are 128.04 N for MAPD-Orthosis, which
is higher than that for MAPD-Barefoot gait. Even though the
orthosis pushed the model to walk faster, the left step length and
the walking speed are below the corresponding recorded ranges
(Table 4). The OCP MAPD-WS-Orthosis with the modified
objective function, Equation (10) and a λ = 2, results in a
walking speed of 0.77 m/s which is within the recorded range.
TheMAPD-Orthosis problem took 7 h to solve as a single-thread
execution on a 3.6 GHz processor.

Ankle muscle extension torques are substantially reduced for
the MAPD-Orthosis gait compared to those for MAPD-Barefoot
(Figures 5A,B). Despite the faster walking speed for orthosis
gait, the corresponding activations and excitations are generally
smaller or equivalent to those for MAPD-Barefoot (Figure 6).
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FIGURE 3 | Gait kinematics: Top panels plots the joint angles for orthosis gait for the (A) hip, (B) knee, and (C) ankle joints. Solid lines plot the solution of the

MAPD-Orthosis. Shaded areas indicate the range of the recorded patient joint angles. (D–F) plot the corresponding results for MAPD-Barefoot (solid lines), and the

results from the LS-Barefoot dynamic fit (dashed lines). Note that the LS-Barefoot results have a discontinuity as indicated by asterisks on (D–F). This is due to the

difference between the setup of the optimal control problem (starting at left toe off), and the plots (starting at left heel strike), as well as an asymmetry in the patient’s

gait over one complete left-right stride. We denote 100% along x-axis as the full left and right stride. Insets in panels (A,D) indicate the starting pose of the right and

left foot. Filled circles in panels (B,E) indicate the minimum knee angle during stance.

TABLE 4 | Comparison of recorded gait characteristics and results from

the corresponding optimal control problems.

Step length (m) Walking speed (m/s)

Left Right

Recorded range barefoot 0.30– 0.43 0.22–0.37 0.51–0.73

MAPD-Barefoot 0.37 0.29 0.60

Recorded Range 0.40–0.47 0.34–0.46 0.70–0.98

MAPD-orthosis 0.32 0.41 0.62

Overall the objective function cost for the MAPD-Orthosis is
smaller than that forMAPD-Barefoot (0.61 and 2.2, respectively).
The computed optimal orthosis spring stiffness are KD = 45.9
Nm/rad and KP = 13.2 Nm/rad for the right ankle orthosis, and
KD = 62.8 Nm/rad and KP = 19.7 Nm/rad for the left ankle
orthosis.

The net torque-angle profiles of the MAPD-Orthosis gait have
a similar angular offset and slope to the mean torque-angle
profiles of the patient (Figure 7). Though the peak torques of
the MAPD-Orthosis gait are larger than those of the patient,
the profiles overlap with the ± 1 standard deviation regions
of the patient data (shaded regions). The average slope of the
torque-angle profiles from the patient data range from 95.7 to

135.5 Nm/rad, while the slope of the MAPD-Orthosis torque-
angle profiles range from 122.3 to 150.1 Nm/rad.

The perturbation analysis reveals a maximum difference of
1.75% in cost function value, min. knee angles, step lengths
and walking speeds for −5% changes in the orthosis stiffness
parameters (Table 5).

4. DISCUSSION

Wehave presented an optimal control approach to generate novel
movements with physically consistent dynamics and applied it to
the simulation of patient gait. Our simulations result in smooth
ground reaction forces (Figure 4) as well as muscle torques
(Figure 5), and can be computed with modest computational
resources. The ground reaction forces are continuous and have
similar shape and magnitude as the patient observations. This
is an improvement from published literature in this field, where
large transients as well as deviations upto 150 to 200% of body
weight have been reported (Ackermann and van den Bogert,
2010; Dorn et al., 2015). Physiologically realistic ground reaction
forces are important, because a discrepancy here propagates
through the model resulting in unrealistic joint torques and
muscle forces. These characteristics, along with the possibility of
tuning the model parameters to reflect weakened muscles, are
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FIGURE 4 | Ground reaction forces (GRF): (A) Solid lines plot the simulated GRFs for MAPD-Orthosis gait. (B) GRFs for MAPD-Barefoot gait. Dashed lines indicate

results for the LS-Barefoot gait. Shaded areas indicate the range recorded. Vertical dashed lines indicate the phase changes (foot contact events as shown in the

figure insets). We denote 100% along x-axis as the full left and right stride. Note that the LS-Barefoot results have a discontinuity as indicated by the asterisk. This is

due to the difference between the setup of the optimal control problem (starting at left toe off), and the plots (starting at left heel strike), as well as an asymmetry in the

patient’s gait over one complete left-right stride.

important first steps toward applying such methods in clinical
settings.

The low residual forces from the inverse dynamics analysis
(Table 3) indicates that the geometry andmass distribution of the
model fit the patient well2. For comparison these residual values
are 1.0% of the peak ground reaction forces during walking. The
LS-Barefoot results reveal that the model is able to follow the
recorded patient kinematics with the RMS differences smaller
than the stride-to-stride variation in the patient. However, the
ground reaction forces are markedly less smooth (dashed lines
in Figure 4B) when compared to those recorded from the
patient. In contrast the model kinematics for MAPD-Barefoot
show larger RMS errors than LS-Barefoot, however, the ground
reaction forces are smoother. We also note that the duty factor
(ratio stance vs. swing time) in our simulated gait is different
from that recorded, with shorter double stance durations for
MAPD-Orthosis (Figure 4A).

Taking these results together, we conclude that the most likely
reasons for these differences are the shape of the foot and the
enforced sequential nature of the contact phases. Modeling the
foot as a flat surface simplifies the resolution of the contact
dynamics, however, it overlooks the natural curvature of the foot

2http://simtk-confluence.stanford.edu:8080/display/OpenSim/Simulation+with+

OpenSim+-+Best+Practices

and the associated influence this can have on the behavior of the
rest of the body (Dorn et al., 2012). Foot contact dynamics has
been recognized as an issue of significant importance in model
based estimation and prediction of gait as the foot forces affect
those at the hip, knee and ankle (Dorn et al., 2012; Millard and
Kecskeméthy, 2015). The use of a suitable curved foot model
would therefore help improve the contact dynamics as well as
avoid the strict phases that we have imposed in our current
formulation. We expect that a curved foot model would also
improve the simulated kinematics of the knee and ankle, which
currently show large deviations from recorded behavior.

The orthosis provides additional ankle torque especially
during push-off, and the resulting orthosis-equipped model
could walk faster, with more extended knees than the barefoot
model. The slope of the torque-angle profile of the MAPD-
Orthosis is close to that of the patient (Figure 7). This indicates
that the identified orthosis stiffness values are likely close to those
of the patient’s orthosis. We recall that the patient’s orthosis was
manually tuned by the orthopedic professional during the clinical
procedure. We remark that while the slopes and angular offsets
of the orthosis-equipped model lie within the experimentally
recorded variation, the magnitude of the torques were higher
in the model. This indicates that either the foot-shape (lever
arm during toe-off) or the cost-function need to be updated
to better match the patient. Our perturbation analysis reveals a
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FIGURE 5 | Effect of orthosis on MTG torques (extension + flexion) at

the ankle: Vertical dashed lines indicate the phase changes (A)

MAPD-Orthosis gait. Dashed lines indicate torques generated by the orthosis.

(B) MAPD-Barefoot gait.

systematic increase in the cost function value (which is consistent
as the perturbation was applied about the optimal solution)
and relatively small influence of parameter changes on the gait
characteristics (Table 5).

Despite the higher walking speed of the orthosis gait, the
overall distance-normalized muscle activations based cost is
smaller than that for barefoot gait. We observe a strong reduction
in the muscle activations for orthosis walking (Figure 6).
Although this is a desirable effect as it points toward a less
fatiguing gait, it is presently unclear whether these changes
actually occurred in the patient’s real muscular efforts. As we
are missing the experimental EMG recordings for this gait,
our simulated reduction in muscle activations must be viewed
as plausible but unverified. As noted in our Introduction, this
is a general open problem with neuromuscular models, which
require further experimental efforts as well as technological
advances in EMG technology.

4.1. Choosing an Optimality Criterion for
Gait
Our simulations are driven by an optimization criteria that
minimizes the square of muscle activations per distance walked.
Higher powers of activations have been suggested to be associated
with muscle effort (Ackermann and van den Bogert, 2010), and
our results from MAPD-Barefoot show that this formulation
provides a reasonable match to the recorded gait characteristics
(Table 4). For orthosis-equipped gait, we observe that the same
formulation (MAPD-Orthosis), resulted in gait that is slower

and has smaller steps. With an additional term in MAPD-WS-
Orthosis we could drive the simulation toward more desirable
characteristics, in this case faster walking. We speculate that
there are subtle differences in the patient’s walking behavior
with orthosis, that are not entirely covered by the MAPD-only
formulation.

Note that an alternative explanation for the slow walking
speed in MAPD-Orthosis could lie in an underestimation of
the maximum isometric torques of the patient’s muscles, as well
as the missing torques provided by the passive musculotendon
components. We explored this avenue by simulating gait of a
healthy age-matched, weight-matched child (torque values listed
in Table 4). The detailed plots are provided in the supplementary
section to this article. With healthy muscle strengths, we
observed that the model was capable of longer steps and faster
walking speed, matching the recorded gait of typically developing
children (Schwartz et al., 2008). This leads us to believe that
the major reason for the slower gait in MAPD-Orthosis lies in
the cost function formulation, and that this deserves further
investigation. For example with the use of inverse optimal
control methods to identify the particular cost function that best
describes experimentally recorded behavior (Mombaur, 2016),
and especially the specification of cost functions that are better
suited for pathological gait.

From our current work, we show that the specification of
muscle strength in our models and the MAPD-type objective
function is capable of reproducing, at least in our case study, a
range of walking behaviors from healthy to pathological. Overall,
it is foreseeable that a generic class of such objective function
terms may be made available to the medical specialist, that
would correspond to the clinical goals for the patient (e.g., faster
walking, less crouch, reduced movement of the center of pressure
etc.). The ultimate decision on which of these characteristics
are suitable for the patient, would be the responsibility of the
orthotist and other medical professionals. Our methods could
provide a virtual window into the expected behavior under these
conditions without inconveniencing the patient.

4.2. Limitations and Perspectives
In addition to the shape of the foot, we believe that another
improvement to the model would be to decouple the orthosis and
body models. This would allow for a more realistic simulation
of the body-orthosis interaction as well take into account the
inertial effects of the orthosis independently from the body.
Specifically, this decoupled formulation would enable us to
calculate a comfort-like cost function term based on the contact
forces being generated, and as well simulate the effects of non-
aligned rotations between the foot and the orthosis. Together, we
believe that these changes will contribute toward more natural
looking behaviors in our synthesized gait.

The simulated activations and active muscle forces of our
model may be further improved. We estimated the patient
muscle strengths based on inverse dynamics analysis and a
qualitative clinical assessement of how close the patient was to
his maximum strength during the recorded gait. The muscle
curves used in our MTG model come from (Anderson et al.,
2007), that are based on adult subjects. These curves may look
different from children, especially for those with a pathology
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FIGURE 6 | Comparison of neural excitations e and muscle activations a for MAPD-Orthosis and MAPD-Barefoot gait. Note that the two simulations

resulted in different overall durations and are presented here with respect to % left-right stride. (A–F) Plot the results for the muscles of the left lower limbs, and (G–L)

those for the right lower limbs.

FIGURE 7 | The MAPD-Orthosis net torque-angle profiles (solid red and blue lines) are plotted against the mean torque-angle profile of the patient

(solid black line) and the area that encompass ± 1 standard deviation (shaded regions). Note that the torque that is plotted is the sum of the net MTG

torques (extension + flexion) and the orthosis torque. This torque is equivalent to the torque computed by the inverse dynamics analysis of the patient when he is

wearing the orthosis.

that affects the muscle and overall strength. To the best of
our knowledge, no such quantative muscle studies exist for
children, and it would be of interest to bridge this gap in
experimental data in the future. In a general context, the accurate
specification of the model to a person is still an open problem.
There may be various approaches to solve this, for example by

using direct dynamometry information when available, and/or
by making the maximum isometric torque as parameters of an
OCP. Future iterations of this approach would include passive
musculotendon forces in the simulations. To this end we are
evaluating methods to estimate passive forces and muscle model
coefficients from experimental data. Additionally, modeling the
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TABLE 5 | Results from the parameter perturbation analysis.

Perturbed

parameter

Perturbation

size

8 Min. knee

angle

Step

length

Walking

speed

Left Right Left Right

Left KD −5% 1.75 −0.32 −1.14 0.30 0.35 −0.002

Left KP −5% 1.10 −0.65 −0.11 −0.26 0.68 0.39

Right KD −5% 0.11 0.08 −1.39 0.03 0.27 −0.06

Right KP −5% 0.67 −1.02 0.87 0.09 0.89 0.56

A −5% perturbation was applied to each of the optimal identified spring stiffness values.

Rows indicate the % change in MAPD-Orthosis results for a change in the corresponding

orthosis spring parameter. Φ Denotes the cost function value (Equation 9). A negative %

change in the min. knee angle indicates a straightening of the knee during stance.

effects of muscles that span multiple joints is an important next
step. This may be implemented as a combination of the MTGs
used in this work, and some of the major anatomical muscles
as line-type models. For the study of pathological gait this may
be especially important, as it would then allow the freedom to
include the more complicated line-type muscle models based
on the specific question/pathology at hand. In this initial work
we do not model the feedback dynamics of muscle reflexes
like for example those in the work by Geyer and Herr (2010).
Including these closed-loop dynamics makes the OCP harder
to solve, and we are currently exploring formulations that work
well with our framework. While reflexes are typically subdued
during normal locomotion (Brooke et al., 1991), they play
an important role in making gait robust against perturbation
rejection. In addition, neuromuscular pathology can adversely
affect the ability to modulate reflexes (Hodapp et al., 2007;
Pearson and Gordon, 2013), and any implementation of reflex
feedback for pathological gait would necessarily require more
detail and study than currently available in the state of the art.

Finally, we have focused so far on movements in the sagittal
plane and used a case study to provide an important proof-of-
concept of our methods. Our comparison to experimental data
provides a first evaluation of our model and technical platform,
that needs to be further validated with a prospective clinical trial
and extended to include movements in the transverse plane. We
acknowledge that for application in a clinical setting our methods
would also need to allow an easy setup and tuning to individual
patients. Note that although the setup of the OCPs in this work
took a significant amount of time, these efforts do not need to
be replicated for each patient. In a future clinical application, we

envision that a standardized gait simulationmay be solved within
a few hours with an individualized patient model (which requires
relatively little time). This scenario provides a realistic means to
apply our methods in a true clinical setting, and would be the
ultimate goal of our future efforts related to this work.
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