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Background: While a cochlear implant (CI) can restore access to audibility in deaf
children, implanted children may still have difficulty in concentrating. Previous studies
have revealed a close relationship between sensory gating and attention. However,
whether CI children have deficient auditory sensory gating remains unclear.

Methods: To address this issue, we measured the event-related potentials (ERPs),
including P50, N100, and P200, evoked by paired tone bursts (S1 and S2) in CI children
and normal-hearing (NH) controls. Suppressed amplitudes for S2 compared with S1 in
these three ERPs reflected sensory gating during early and later phases, respectively.
A Swanson, Nolan, and Pelham IV (SNAP-IV) scale was performed to assess the
attentional performance.

Results: Significant amplitude differences between S1 and S2 in N100 and P200 were
observed in both NH and CI children, indicating the presence of sensory gating in the
two groups. However, the P50 suppression was only found in NH children and not in
CI children. Furthermore, the duration of deafness was significantly positively correlated
with the score of inattention in CI children.

Conclusion: Auditory sensory gating can develop but is deficient during the early phase
in CI children. Long-term auditory deprivation has a negative effect on sensory gating
and attentional performance.

Keywords: auditory sensory gating, cochlear implant, P50, N100, P200, attentional dysfunction

INTRODUCTION

There is a close link between cognitive decline and hearing loss (Dye and Hauser, 2014; Heinrichs-
Graham et al., 2021). Patients with hearing loss face the risk of delays in multiple cognitive
functions, such as working memory and executive function (Lieu et al., 2020). Specifically,
attention-deficit disorders are more commonly reported in deaf children compared with normal-
hearing (NH) peers (Hall et al., 2018). As one of the most successful neural prostheses developed to
date, cochlear implants (CIs) help not only to restore hearing of deaf children, thereby supporting
speech communication, but also to enhance their cognitive abilities (Kral et al., 2019). For example,
CI children showed an improvement in non-verbal cognitive functions and working memory at
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6 months after CI surgery (Shin et al., 2007). However, CIs still
cannot ensure optimal cognitive outcomes (Kral et al., 2019).
There is a great variation in the attentional performances of
CI children (Surowiecki et al., 2002). Both preschoolers and
school-aged children with CIs were found to face a greater
risk of deficits in the attention domain compared with NH
children (Kronenberger et al., 2014). Nearly 40% of CI children
attending mainstream classes could not pass the test of attention
(Mukari et al., 2007), which may result in poor educational
performance. However, the related neural mechanism underlying
poor attentional performance in CI children remains unclear.

Previous evidence has shown that sensory gating is involved
in early information processing of auditory attention (Wan et al.,
2008). Sensory gating refers to the brain’s ability to filter repetitive
irrelevant stimuli (Chien et al., 2019), which is mainly assessed by
P50 suppression. As a “pre-attentive” process, P50 sensory gating
manifests in the central nervous system modulating its sensitivity
to incoming stimuli (Braff and Geyer, 1990), protecting the
brain from information overload (Adler et al., 1982). The P50
is a positive component of auditory event-related potentials
(ERPs) and usually occurs at about 50 ms after stimuli onset.
It has been supposed to be generated from the thalamo-cortical
projection to the auditory cortex (Sharma et al., 2009). In a
paired-click paradigm, two successive P50 responses are usually
evoked by an initial stimulus (S1) and a shortly following
identical stimulus (S2). (Fruhstorfer et al., 1970). Normal P50
suppression is characterized by a reduction in P50 amplitude
for S2 compared with S1. A higher ratio (S2/S1) or smaller
difference in these two P50 amplitudes suggests weaker sensory
gating associated with diminished cognitive functioning, such as
attention (Lijffijt et al., 2009).

Given that sensory gating is regarded as a multistage process
(Boutros et al., 1999), previous studies have also paid attention
to the later phases of auditory processing reflected by the N100
and P200 (Rosburg, 2018). The N100 is a negative component
appearing about 100 ms after the onset of the auditory stimulus,
and the P200 is a positive component appearing about 200 ms.
The N100 and P200 components are mainly generated in the
primary auditory cortex (Hegerl and Juckel, 1993). These two
components have been proposed to involve distinct neural
activities (Boutros et al., 2004; Chien et al., 2019) and thus be
related to different functions (Lijffijt et al., 2009). Unlike the P50
involving the early phase of information processing, the N100
and P200 are considered to reflect triggering and allocation of
attention, respectively (Shen et al., 2020). Thus, different phases
of auditory information filtering should be investigated by the
P50-N100-P200 complex.

There is a maturational course of sensory gating in typically
developing children (Davies et al., 2009). Compared with adults,
children always show immature sensory gating ability as revealed
by longer P50 latencies (Hunter et al., 2012). With increasing age,
young children (1–8 years of age) demonstrate a rapid decrease in
latency (Freedman et al., 1987). The latency may stabilize at the
pre-adolescent stage (9–12 years of age) and remain stable into
adulthood. Brinkman and Stauder (2007) also found a negative
correlation between age and the P50 amplitude ratio, indicating
age-related sensory gating abilities. However, further analysis

revealed that a significant difference in gating ratios was only
found between the youngest children group (5–7 years of age)
and the other three groups (8–9, 10–12, and 18–30 years of age)
and not among the latter three groups. These findings imply that
sensory gating may mature around the age of 8 years.

Sensory gating has been reported to be deficient in many
neurological diseases (Gjini et al., 2011; Micoulaud-Franchi
et al., 2015). Patients with schizophrenia (Smucny et al.,
2013) or autism spectrum disorders (Crasta et al., 2021)
showed reduced gating abilities reflected by abnormal P50,
N100, and/or P200 amplitude ratios. This ineffective inhibitory
modulation of sensory information may imply an imbalance
of neuronal excitation/inhibition in this population (Culotta
and Penzes, 2020). The inhibitory system is thought to be the
underlying mechanism in modulating sensory gating (Adler
et al., 1982). Evidence has also demonstrated that peripheral
auditory deafferentation or sensorineural hearing loss negatively
affects inhibitory mechanisms, reflected by a reduction of
inhibitory inputs and subsequent imbalance between excitatory
and inhibitory systems (Campbell et al., 2020a). The properties
of the inhibitory synapses in the central auditory system are
changed by auditory deprivation (Takesian et al., 2012). The
inhibitory activity decreases, followed by an increase in the
excitability of both midbrain and cortical neurons. Synaptic
changes induced by early hearing loss contribute to auditory
processing deficits and may be persistent even after auditory
intervention (Takesian et al., 2009). Therefore, for deaf children
who experience early auditory deprivation, it is unclear whether
auditory sensory gating is deficient (no or reduced inhibition of
repetitive irrelevant stimuli) after cochlear implantation.

In this study, we assessed auditory sensory gating in CI
children by measuring the amplitude (gating) ratios of P50, N100,
and P200 responses to paired tone bursts (S1 and S2). The
attentional performance was also evaluated using the Swanson,
Nolan, and Pelham IV (SNAP-IV) scale. We hypothesized
that the sensory gating ability could develop after cochlear
implantation but still be deficient because of long-term auditory
deprivation. Therefore, we predicted that P50, N100, and/or P200
suppression would be poorer in CI children than in NH peers.

MATERIALS AND METHODS

Participants
Twenty-four native Chinese children, including 12 prelingually
deafened children with unilateral Med-El CI devices [6 females,
age range: 4–8 years; mean age ± standard deviation (SD):
6.01 ± 1.33 years] and 12 NH children (4 females, age
range: 3.5–8.5 years; mean age ± SD: 6.59 ± 1.54 years),
participated in this study. Eleven CI children did not pass the
neonatal evoked otoacoustic emission test and were diagnosed
with congenital sensorineural hearing loss. The other child
was found to have profound sensorineural hearing loss before
the age of 15 months. Two CI children had worn hearing
aids before cochlear implantation. The auditory and speech
abilities of CI children were evaluated by Categories of Auditory
Performance (CAP), Speech Intelligibility Rate (SIR), and

Frontiers in Neuroscience | www.frontiersin.org 2 December 2021 | Volume 15 | Article 768427

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-768427 November 30, 2021 Time: 16:22 # 3

Chen et al. Sensory Gating in CI Children

TABLE 1 | Demographic information of the cochlear implant users.

Subject Gender Age at test (years) CI use (years) ABR threshold (dB nHL) CI processor Implant type Age at CI (years) MAIS SIR CAP

left right left right

1 M 5.33 4.08 95 >95 Opus 1 CONCERTO / 1.25 33 3 8

2 M 7.92 2.42 >95 >95 Opus 1 SONATA / 5.50 31 3 6

3 M 4.00 2.00 >95 >95 Opus 2xs SONATA / 2.00 21 2 6

4 F 6.42 2.84 >95 >95 Opus 2xs SONATA 3.58 / 37 5 8

5 M 4.58 2.00 >95 >95 Opus 2xs SONATA 2.58 / 34 4 6

6 F 6.67 4.34 >95 >95 Opus 2xs SONATA / 2.33 38 5 7

7 M 4.83 3.83 >95 >95 Opus 2xs SONATA / 1.00 35 4 7

8 F 5.17 3.42 >95 >95 Opus 2xs SONATA / 1.75 40 5 8

9 F 7.83 6.41 >95 >95 Opus 1 SONATA / 1.42 37 5 8

10 M 7.42 0.50 95 >95 Opus 2xs CONCERTO 6.92 / 36 4 8

11 F 5.25 2.17 >95 >95 Opus 1 SONATA / 3.08 34 3 6

12 F 6.75 5.25 >95 >95 Opus 2xs SONATA / 1.50 38 3 8

ABR, auditory brainstem response; CAP, categories of auditory performance; CI, cochlear implant; F, female; M, male; MAIS, meaningful auditory integration scale; nHL,
normal hearing level; and SIR, speech intelligibility rate.

Meaningful Auditory Integration Scale (MAIS; Peixoto et al.,
2013). The scores of these three scales and more detailed
information for CI children are listed in Table 1. The NH
children did not have a history of hearing loss. The two groups
were matched in terms of years of education, family incomes
and levels of parental education. They had normal vision and
no history of neurological or psychiatric illness. The protocols
and experimental procedures in this study were reviewed and
approved by Anhui Provincial Hospital Ethics Committee. Each
participant’s guardians had filled out an informed consent
carefully before the experiment.

Sensory Gating Paradigm
In the electroencephalography (EEG) experiment, the tone burst
(1,000 Hz, 30 ms duration, 4 ms linear rise/fall time) was used
as the auditory stimulus to evoke the P50, N100, and P200
components. Tone bursts were presented in pairs: a conditioning
stimulus (S1) and a testing stimulus (S2) with an interstimulus
interval of 500 ms and an interpair interval of 8 s through two
loudspeakers placed at ± 45◦ azimuth, at a distance of 100 cm
in front of the participants. The stimuli were delivered at an
intensity of 80 dB SPL. For each participant, the experiment
consisted of two blocks with 200 pairs of tone bursts in total
and lasted for 30 min. The sound stimuli were generated by
Adobe Audition 3.0 software (Adobe Systems Incorporated, San
Jose, CA, United States) and presented by E-Prime 3.0 software
(Psychological Software Tools, Pittsburgh, PA, United States).

Attention Assessment
A Swanson, Nolan, and Pelham IV (SNAP-IV) scale was used
to assess the attentional performances of NH and CI subjects.
This rating scale was usually used to evaluate attentional deficits
in patients with ADHD (Swanson et al., 2001). The SNAP-IV
includes 26 items divided into three subscales: inattention (9
items), hyperactivity/impulsivity (9 items), and oppositional (8
items) (Swanson et al., 2001). Parents were asked to rate the items
according to the daily performance of their children by selecting

one of four grades (not at all, just a little, quite a bit, very much).
A Higher score indicated more severe symptoms.

Electroencephalography Recording
The EEG was recorded from a cap with 64 Ag/AgCl electrodes
(SynAmps RT, Curry, United States) that were placed at the
scalp according to the international 10–20 system. Another
two electrodes were located at the left and right mastoids. The
reference and ground electrodes were placed on the tip of the
nose and the forehead, respectively. Vertical and horizontal
electrooculography (EOG) signals were obtained by bipolar
electrodes above and below the left eye and lateral to the outer
canthi of both eyes, respectively. The EEG data were sampled at
500 Hz and filtered online between 0.05 and 100 Hz. Electrode
resistances were kept under 5 k�. Each child was asked to
watch a silent cartoon sitting on a soft couch and ignore the
auditory stimuli.

Data Analysis
Offline analysis of EEG data was conducted by EEGLAB 13.0.0b
in Matlab R2013b (The Mathworks, Natick, MA, United States).
Data were filtered with a bandpass setting of 10–100 Hz
for the P50 component and with a bandpass setting of 4–
30 Hz for the N100 and P200 components. The epochs
were set at 400 ms, starting at 100 ms before the onset of
the stimulus. Baseline correction was performed relative to
a baseline of −100 to 0 ms. The independent component
analysis was used to remove the eye movement, heartbeat, and
CI artifacts from the EEG signals (Hongmei and Nan, 2017).
Independent components reflecting these artifacts were identified
and removed by visual inspection of the component’s properties,
including the waveform, 2-D voltage map, and spectrum (Gilley
et al., 2006). After artifact removal, segments containing voltage
deviations exceeding ± 100 µV on any channels except for EOG
channels were rejected.

The ERPs evoked by S1 and S2 were calculated by averaging
individual trials. The P50 component was defined as the most
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FIGURE 1 | Grand average event-related potentials in response to S1 (blue solid line) and S2 (red dashed line) at site Cz. Both (A) children with normal hearing (NH)
and (B) those with cochlear implants (CIs) showed robust P50, N100, and P200 components.

positive peak between 40 and 100 ms after stimulus onset.
The N100 and P200 components were determined as the most
negative and positive peaks after P50 between 80 and 150 ms
and between 120 and 250 ms, respectively (Crasta et al., 2021).
The amplitude of P50, N100, or P200 was determined by the
peak-to-peak amplitude between the peak of P50, N100, or
P200 and its preceding peak with reversal polarity. The gating
ratio between P50, N100, or P200 amplitude for S2 and that
for S1 (S2/S1) was used to evaluate the sensory gating ability:
A lower gating ratio indicated robust gating, and a higher
ratio indicated attenuated gating. The electrode Cz was selected
for illustration.

Statistical Methods
One NH child and one CI child who had no robust N100
and P200 components were removed from further N100-P200
analysis. To assess whether auditory sensory gating existed in
both groups, we compared the amplitude differences of P50,
N100, and P200 in response to S1 with those to S2 using
repeated measures analysis of variance (ANOVA) with stimulus
(S1 and S2) as the within-subject factor. The differences in gating
ratios, amplitudes, peak latencies, and SNAP-IV scores between
two groups were further evaluated by a one-way ANOVA with
group (NH and CI) as the between-subject factor. The Pearson’s
correlation was performed to assess the relationship among the
gating ratios, scores of inattention, and onset or duration of
deafness or CI use.

RESULTS

Absence of P50 Suppression in Cochlear
Implant Children
The grand average ERPs in response to S1 and S2 for two
groups at the representative electrode Cz are shown in Figure 1.
NH children showed significantly smaller amplitudes of P50
[F(1,11) = 39.251, p < 0.001], N100 [F(1,10) = 8.391, p = 0.016],
and P200 [F(1,10) = 9.196, p = 0.013] in response to S2 than
those to S1, indicating the presence of robust P50, N100, and
P200 suppression. CI children showed similar amplitudes of P50
[F(1,11) = 0.348, p = 0.567] but significantly smaller amplitudes
of N100 [F(1,10) = 8.126, p = 0.017] and P200 [F(1,10) = 8.019,
p = 0.018] for S1 compared with S2 (Figures 2A–C, left).

Higher P50 Ratio but Similar N100 and
P200 Ratios in Cochlear Implant Children
Compared With Normal Hearing Children
We further assessed whether the gating ratios, amplitudes, and
peak latencies of P50, N100, and P200 differed between NH
and CI children. CI children showed a significantly higher P50
gating ratio than NH children did [F(1,22) = 13.450, p = 0.001]
(Figure 2A, middle). However, no significant difference in
N100 [F(1,20) = 0.855, p = 0.366] or P200 [F(1,20) = 0.047,
p = 0.831] gating ratios was found between these two groups
(Figures 2B,C, middle).
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FIGURE 2 | Auditory sensory gating at the (A) P50, (B) N100, and (C) P200 for children with NH and those with CIs. (Left) The amplitudes of N100 and P200 in
response to S2 were significantly smaller than those to S1, indicating the presence of the auditory sensory gating in both NH and CI children. However, P50
suppression only existed in NH and not in CI children. (Middle) CI children showed similar N100 and P200 suppression ratios (S2/S1) but a higher P50 ratio
compared with NH children. (Right) The P200 latencies in CI children were significantly shorter than those in NH children. Vertical bars represent the standard error.
∗∗∗p < 0.001, ∗∗p < 0.01, and ∗p < 0.05.

There was no significant difference in P50 [S1: F(1,22) = 0.026,
p = 0.873; S2: F(1,22) = 3.704, p = 0.067], N100 [S1: F(1,20) = 0.138,
p = 0.714; S2: F(1,20) = 0.131, p = 0.721], or P200 amplitudes [S1:
F(1,20) < 0.001, p = 0.979; S2: F(1,20) = 0.367, p = 0.551] between
NH and CI children. Peak latencies of P50 [S1: F(1,22) = 0.037,
p = 0.848; S2: F(1,22) = 0.016, p = 0.899] and N100 [S1:
F(1,20) = 1.917, p = 0.181; S2: F(1,20) = 1.657, p = 0.213]
were similar between the two groups (Figures 2A,B, right).
However, CI children showed shorter P200 peak latencies [S1:
F(1,20) = 6.155, p = 0.022; S2: F(1,20) = 4.448, p = 0.048] than NH
children did (Figure 2C, right).

Relationships Among Gating Ratios,
Attentional Performance, and Onset or
Duration of Deafness or Cochlear
Implant Use
No significant difference in scores of inattention [F(1,22) = 0.004,
p = 0.949], hyperactivity/impulsivity [F(1,22) = 0.037, p = 0.849],

or opposition [F(1,22) = 0.692, p = 0.414] was found between
NH and CI groups (Figure 3A). In CI children, the score
of inattention was significantly positively correlated with the
duration of deafness [R = 0.588, p = 0.044] (Figure 3B). No other
significant correlations were found (all p > 0.05).

DISCUSSION

In this study, we assessed auditory sensory gating in CI children.
CI children showed robust N100 and P200 suppression but no
P50 suppression. Furthermore, the duration of deafness was
positively correlated with the score of inattention. Our results
demonstrate that auditory sensory gating can develop in CI
children but is deficient during the early phase. Long-term
auditory deprivation negatively affects the restoration of auditory
sensory gating and attentional performance.

Cochlear implant children showed auditory gating as revealed
by the N100 and P200 suppression, indicating that the CI
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FIGURE 3 | The negative effect of long-term auditory deprivation on the attentional performance. (A) There was no significant difference in subscale scores of
inattention, hyperactivity/impulsivity and oppositional between NH and CI children. (B) The score of inattention was significantly positively correlated with the duration
of deafness in CI children. Vertical bars represent the standard error.

helps to rehabilitate the auditory sensory gating abilities of deaf
children. The precise organization of neuronal circuits in the
mature brain is established by developmental processes that
involve reorganization and fine tuning of immature synaptic
networks (Kandler, 2004). The maturation of the auditory
system requires stimulation. Auditory deprivation may keep
the synapses immature until the cochlear implantation helps
to restore hearing and get rid of this frozen state (Sharma
et al., 2002a). These activity-dependent processes may include
improvement in synaptic efficacy and increased myelination
(Gordon et al., 2003). The auditory system may rapidly develop
within a critical period of 3–6 months after cochlear implantation
and enter a maturation period after 12 months (Ni et al., 2021).
Most CI children in our study received implantation before
3.5 years old and still had high plasticity of the auditory cortex
(Manrique et al., 1999). Therefore, sensory gating can develop
and be functional in CI children, though its developmental
trajectory may be delayed. Considered as an automatic and
involuntary first part in the attentional processes, sensory gating
may prevent limited attentional resources from being disturbed
by repetitive irrelevant stimuli and protect CI children from later
attentional dysfunction (Hutchison et al., 2017).

Interestingly, compared with NH children, CI children
showed similar gating ratios at the N100 and P200 but no robust
P50 suppression, indicating deficient sensory gating during the
early phase. There are two functionally distinct generators that
are related to the P50 suppression, the temporal lobe and
the frontal lobe (Weisser et al., 2001; Korzyukov et al., 2007;
Campbell et al., 2020b). A considerable body of invasive and non-
invasive research on sensory gating suggests that the auditory
P50 response may be explained by contributions from the
bilateral temporal lobes, including the left and right superior
temporal gyri (STG; Lee et al., 1984; Liegeois-Chauvel et al.,
1994; Knott et al., 2009; Mayer et al., 2009). In addition to
the bilateral temporal lobes, the prefrontal source is usually
attributed to the reduction of amplitudes to repeated stimuli

(Grunwald et al., 2003; Korzyukov et al., 2007). In an MEG study
on M50, the neuromagnetic counterpart of the P50 component,
the prefrontal region was found to suppress the activity of the
bilateral STG within the auditory M50 network (Josef Golubic
et al., 2014). Similar to the P50 component, the N100 and P200
gating responses involve the activation of inhibitory frontal and
temporo-prefrontal networks (Campbell et al., 2020b). However,
functions of strong suppression regions may be differential. The
P50 gating may work as a bottom-up process, while the N100 and
P200 are mainly concerned with top-down processes (Boutros
et al., 2013). Incoming sensory inputs first activate automatic
central inhibitory mechanisms prior to top-down cognitive
involvement (Javitt and Freedman, 2015). Evidence suggests that
the N100 and P200 gating may be more susceptible to attention
compared with early P50 gating (Rosburg et al., 2009). For the
absence of P50 suppression and the presence of robust N100
and P200 suppression in CI children, we infer that the multi-
stage inhibitory networks are damaged by auditory deprivation
at the early stage but can be compensated for at the later stage
by top-down modulation. We also found a positive correlation
between the score of inattention and the duration of deafness.
These findings suggest that long-term auditory deprivation has
a negative effect on both early sensory gating and attentional
functions. We did not find significant correlations between the
gating ratio and the attention performance. The possible reason
is that the Swanson, Nolan, and Pelham IV (SNAP-IV) scale for
assessment of the attentional performance depending on parents’
daily observation is relatively subjective. However, an objective
and more accurate method for young children with hearing
disability is indeed lacking.

Our previous study found that when dealing with complex
speech sounds, CI children showed smaller and slower mismatch
negativity (MMN) and even an absence of the late discriminative
negativity (LDN) compared with NH children (Hu et al., 2021).
Contrary to these late-latency ERPs, the robust P50-N100-P200
responses could be evoked by simple tone bursts, reflecting
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early processes of acoustic analysis. Compared with NH
children, CI children showed similar P50 amplitudes but
significantly different P50 amplitude ratios, suggesting that the
brain can encode the acoustic features of novel sounds but
has difficulty in inhibiting the neural response to repetitive
irrelevant sounds (S2). The inhibitory system is thought to
be the underlying mechanism in modulating sensory gating
(Adler et al., 1982). Therefore, auditory deprivation may reduce
the inhibitory activity, resulting in persistent higher excitability
to repetitive irrelevant sounds during the early phase of
information processing.

There are still some limitations to this study. First, while
we tried to recruit CI children with consistent conditions
(such as brand of CI devices), inhomogeneous aspects of CI
children were still present. For example, two CI children had
fitted hearing aids before cochlear implantation. We cannot
separate the effect of early hearing aid fitting from that of
CI use on the development of sensory gating. Therefore, a
more detailed grouping method should be considered based
on a larger sample size. Second, there was a lack of children
implanted with the CI devices before the age of 12 months.
Previous findings have shown the positive effect of early CI
use on auditory rehabilitation (Sharma et al., 2002b; Dettman
et al., 2007). Although we did not find correlations between
the onset age of CI use and the P50-N100-P200 gating
ratio, there is a possibility that earlier cochlear implantation
(<12 months) may result in better rehabilitation of auditory
sensory gating.

CONCLUSION

The CI helps to restore auditory sensory gating in prelingually
deafened children. However, this gating ability is deficient
in CI children during the early phase. Long-term auditory
deprivation adversely affects auditory sensory gating and
attentional performance.
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