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The timing and duration of sleep results from the interaction
between a homeostatic sleep–wake-driven process and a periodic
circadian process, and involves changes in gene regulation and
expression. Unraveling the contributions of both processes and
their interaction to transcriptional and epigenomic regulatory dy-
namics requires sampling over time under conditions of unper-
turbed and perturbed sleep. We profiled mRNA expression and
chromatin accessibility in the cerebral cortex of mice over a 3-d
period, including a 6-h sleep deprivation (SD) on day 2. We used
mathematical modeling to integrate time series of mRNA expres-
sion data with sleep–wake history, which established that a large
proportion of rhythmic genes are governed by the homeostatic
process with varying degrees of interaction with the circadian pro-
cess, sometimes working in opposition. Remarkably, SD caused
long-term effects on gene-expression dynamics, outlasting pheno-
typic recovery, most strikingly illustrated by a damped oscillation
of most core clock genes, including Arntl/Bmal1, suggesting that
enforced wakefulness directly impacts the molecular clock machin-
ery. Chromatin accessibility proved highly plastic and dynamically
affected by SD. Dynamics in distal regions, rather than promoters,
correlated with mRNA expression, implying that changes in ex-
pression result from constitutively accessible promoters under
the influence of enhancers or repressors. Serum response factor
(SRF) was predicted as a transcriptional regulator driving immedi-
ate response, suggesting that SRF activity mirrors the build-up and
release of sleep pressure. Our results demonstrate that a single,
short SD has long-term aftereffects at the genomic regulatory
level and highlights the importance of the sleep–wake distribution
to diurnal rhythmicity and circadian processes.
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According to the 2-process model (1, 2), sleep regulation re-
sults from an interaction between a sleep homeostatic pro-

cess and a circadian process often referred to as “process S” and
“process C,” respectively. The sleep homeostat tracks the need
or pressure for sleep as it increases during wake and decreases
during sleep, while the circadian process dictates the optimal
time of day for sleep to occur. Their fine-tuned interaction as-
sures optimal timing, duration, and quality of both wakefulness
and sleep, and even minor changes in either of these processes or
their alignment cause performance decrements and clinically
significant sleep disruption (3, 4).
The circadian clock is described as self-sustained ∼24-h os-

cillations involved in a variety of physiological processes and
behaviors, such as sleep (3, 5). It is encoded molecularly through
negative feedback loops involving the core clock genes, which are
capable of generating oscillations in constant environmental
conditions; that is, in the absence of periodically occurring time
cues such as the light/dark cycle (6). However, this apparent
autonomy does not inevitably imply that the expression of all

genes displaying a rhythm with a period of 24 h is directly driven
by the circadian clock. For example, the light/dark cycle, besides
entraining the circadian clock, directly influences many physio-
logical and behavioral processes (7). Also, the rhythmic organi-
zation of sleep–wake behavior and associated feeding and
locomotion directly drives gene expression (8). Disentangling the
respective contributions of the circadian and sleep–wake-driven
processes is experimentally challenging and has been addressed
by methods suppressing 1 component (e.g., surgical or genetic
ablation of circadian oscillators) or uncoupling their relationship
through forced desynchrony or sleep deprivation (SD) (3, 9).
SD experiments aiming at identifying genes associated with

the sleep homeostatic process follow the rationale that causing
mice to stay awake during a time when they normally sleep will
induce an acute response in sleep–wake-driven genes. Indeed,
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studies comparing gene-expression levels immediately after SD
with controls collected at the same time of day have identified
many differentially expressed genes (10–13), and a few studies
have probed the punctual effect of SD at different times of the
24-h cycle in mice (13, 14), or expression dynamics in blood
during SD in humans (15, 16). However, assessing the respective
contributions of the 2 processes requires measuring gene ex-
pression over multiple time points, not only under SD (i.e.,
enforced waking), but also under spontaneous sleep–wake dy-
namics pre- and post-SD. Furthermore, to systematically link
temporal gene expression to the sleep–wake distribution and
circadian clock, the analysis should consider the entire time se-
ries, rather than only pair-wise differential comparisons. Finally,
the regulatory mechanisms underlying such dynamics are largely
unexplored (17), particularly in this kind of dynamic context.
To systematically investigate the gene-expression dynamics

caused by 1 acute SD episode, as well as the underlying regula-
tory events, we measured chromatin accessibility alongside
mRNA expression in the cerebral cortex of adult C57BL6/J mice
over 24 h before, during, and over 48 h following 1 6-h session of
total SD, as well as 7 d after the intervention (see study design in
Fig. 1A). We modeled the entire time series based on the as-
sumptions of the 2-process model as to the dynamics of each of
the 2 contributing processes, to objectively assess whether the
mRNA accumulation dynamics of each cortically expressed gene
follow process S, process C, or a combination thereof. This set-
ting allowed us to characterize the temporal dynamics of the
consequences of SD on gene expression and regulation, and
dissect the interaction between processes S and C. Moreover, we
identified genomic regulatory elements implicated in the tran-
scriptional response to sleep loss by exploring the hitherto under-
studied epigenetic landscape of sleep (18).

Results
Behavioral Response and Recovery after Sleep Deprivation. We
recorded sleep and the electroencephalogram (EEG) across the
198-h protocol (Methods and Fig. 1A) (n = 6) and observed the
typical distribution of sleep over 24 h, with mice spending most
of the light periods asleep, while being predominantly awake
during the dark periods (Fig. 1C). δ-Power in nonrapid-eye
movement (NREM) sleep (Fig. 1 B, Upper), an EEG-derived
variable considered to reflect sleep “pressure,” was high after
spontaneous waking in the dark phase and decreased during the
light phase, and we observed the well-known effects of SD,
namely an increase in δ-power within the first hour immediately
following SD and a rebound of time spent in NREM sleep ob-
served during the first 12 h of recovery (T30 to T42). We found
that values for NREM sleep no longer significantly deviated
from baseline levels already after T42 (Fig. 1C, black line).
During the dark phase (T36 to T48), δ-power even dropped
below the levels reached at this time during baseline. Computer
simulation of process S (Methods) based on the sleep–wake
distribution demonstrated that this decrease of δ-power below
baseline level was a consequence of the increased time spent in
NREM sleep during the first 12 h after SD (Fig. 1 B, Lower).
REM sleep was affected in the same manner as NREM sleep
(Fig. 1 C, Lower).
We asked whether the fast reversal of the phenotype in the

EEG data would be paralleled by changes at the gene expression
and regulatory levels in the cerebral cortex, or whether novel
molecular dynamic patterns could be observed. We therefore
measured and analyzed the temporal dynamics of transcriptomes
and chromatin accessibility over a total of 78 h, including base-
line, SD, and recovery.

Sleep–Wake History Is the Main Driver of Transcriptome Dynamics.
We first examined the overall variability of the detected fraction
of the transcriptome (13,842 genes) using principal component

analysis (PCA) (Fig. 2A) over all 56 tissue samples (n = 3 to 4 per
time point per condition) (Methods). We observed that samples
formed 3 groups along the first principal component (PC1) axis.
The left-most group gathered time points during the light phase
of the light–dark cycle, while the middle group represented time
points during the dark phase. Without a forced-wakefulness
treatment, this separation could evoke that PC1 separates sam-
ples according to time of day (or Zeitgeber time, ZT, where
ZT0 denotes the onset of the light phase of the 24-h period).
However, this notion is challenged by the shift toward the right
of the samples taken at ZT3 and ZT6 during SD (T27 and T30),
suggesting that the PC1 axis follows (from left to right) increased
time spent awake prior to sampling rather than ZT, as animals
spent more time asleep in the light (left) than in the dark period
(middle group), while the right-most group did not sleep at all
prior to sampling.
To further illustrate that PC1 is sleep–wake driven, we over-

laid the changes in PC1 with expected levels of homeostatic sleep
need based on the sleep–wake distribution of the current ex-
periment (see simulated process S in Fig. 1B). Indeed, PC1 in-
creased during periods of waking, decreased during periods of
sleep and, importantly, reached its maximum during SD, paralleling
process S (Fig. 2B) and EEG δ-power (19) (Fig. 1B), thus high-
lighting the pervasive impact of sleep–wake distribution on gene
expression, which we further explore below.

Clustering of mRNA Temporal Profiles Highlights Diverse Response
and Recovery Kinetics. To uncover and classify broad temporal
patterns in our data, we first performed an exploratory analysis
using k-means clustering. With this unsupervised clustering, we
grouped the expression time courses of 3,461 conservatively se-
lected genes displaying statistically robust temporal variation
from T0 to T78 (false-discovery rate [FDR]-adjusted P < 0.001,
likelihood ratio test). We observed distinct profiles of response
to SD and subsequent recovery by comparing the cluster average
of T24 to T78 with the baseline day (T0 to T18) (Fig. 2C, light
gray line and blue dashed line, respectively). The general pat-
terns cover immediate response (clusters 1 to 6), prolonged re-
sponse (cluster 7), delayed response (cluster 8), as well as slight
to absent response (clusters 9 and 10, mean P values across
genes >0.24). These patterns are combined with either a fast
(clusters 1 to 4) or slow (clusters 5 to 8) reversal to baseline
values. Generally, the fast response and fast reversal dynamics,
together with a direction of change opposite to what is expected
by time of day, suggests that these genes are sleep–wake driven;
that is, genes that usually go up when the mouse is predomi-
nantly asleep are down-regulated during SD (clusters 1, 3, 5) and
vice versa (clusters 2, 4, 6). Furthermore, the slower dynamics of
response and reversal (cluster 7, 8) show that the effects of SD
can also occur after the immediate response and last beyond the
exposure itself. This suggests that the time required for molec-
ular recovery exceeds the time for phenotypic recovery.

Modeling Temporal Transcriptome Dynamics. To better characterize
and distinguish these expression dynamics, we modeled gene
expression over the entire time course, including baseline, SD,
and the aftermath of SD, taking into account that the gene-
expression dynamics can be sleep–wake driven, circadian, or a
combination of both, following the assumptions of the 2-process
model as to the dynamics of both processes. Specifically, process
S is a sleep–wake-driven process in which a homeostatic need for
sleep increases according to an exponential saturating function
while awake and again exponentially decreases while asleep. The
dynamics of process C, on the other hand, are assumed to follow
a sinusoidal oscillation not influenced by sleep–wake state (20).
Furthermore, because rhythmicity can be suppressed or altered
during mistimed or restricted sleep (13, 15, 16, 21), we included
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the possibility that it could remain perturbed after the end of
the SD.
We thus devised 6 models to explain the gene-expression dy-

namics of the full transcriptome (all 13,842 detected genes) (SI
Appendix, Fig. S1): 1) Constant or “flat” model (F); 2) sleep–
wake history modeled from sleep–wake data [S, in analogy to
process S in the 2-process model (1)]; 3) cosine dynamics with a
24-h rhythm (C); 4) cosine with amplitude change after SD (CA);
5) sleep–wake + cosine (S+C); and 6) sleep–wake + cosine with
amplitude change (S+CA). To select the best among competing
models, we used the Bayesian Information Criterion (BIC) (22)
to balance model fit and model complexity, which we trans-
formed into model probability or weight w (Methods). For each
gene, the sum of the weights for all 6 models equals 1, and the
model with the highest weight is assigned to the gene. Each gene
is assigned 1 of the 6 models. In the example of the core clock
gene Nr1d1/RevErbα (Fig. 3A), the selected model was cosine
with amplitude change after SD (model CA, represented as a
bold line in Fig. 3A), due to a very high weight w = 0.977. Indeed,
the baseline pattern (from T0 to T24) is consistent with a cir-
cadian oscillation, the amplitude of which is significantly reduced
after SD and, surprisingly, not reestablished by T78. All fits are
presented in Dataset S1.

Model S Recapitulates Known Sleep–Wake-Driven Genes and Closely
Parallels EEG δ-Power Dynamics.We summarized the genes assigned
to each model genome-wide (Fig. 3B), and found that, after the
flat model, which fit more than half the detected genes (7,391

genes) (see example in Fig. 3C), the sleep–wake-driven model
(model S) had the largest number of genes assigned to it
(2,677 genes) (see example in Fig. 3D), consistent with the in-
terpretation of PC1 reflecting sleep–wake history and the pre-
dominance of fast-response dynamics in our cluster analysis
(clusters 1 to 6). Analyzing the parameters of genes associated
with model S, we found that the fitted time constants describing
the rates at which expression changes during waking and reverts
while sleeping (τw, median = 7.05 h) and sleep (τs, median =
1.68 h) were strikingly close to the dynamics of EEG δ-power
found for this inbred strain (23) (Fig. 1B) and explains why the
time course of PC1 closely follows process S dynamics derived
from EEG δ-power (Fig. 2B).
Model S included genes previously described as affected at the

end of SD, such as Egr2, Arc, Fos, and Cirbp (12, 13, 24) (Fig. 3D
and SI Appendix, Fig. S2) (all w > 0.833), but also, surprisingly,
the core clock genes Clock and Npas2 (w = 0.787, respectively
w = 0.527) (SI Appendix, Fig. S2). Generally, model S genes were
enriched for gene ontology (GO) terms related to the organi-
zation of synapses and mitochondria, as well as ion transport
(Dataset S2).
Model S genes that were up-regulated during SD, in baseline

had their maximum expression during the dark period when
waking prevails, while those down-regulated during SD peaked
during the baseline light period (Fig. 4A). Thus, many sleep–
wake-driven genes appear rhythmic under baseline conditions, and
conversely, rhythmic genes could therefore in part be sleep–wake
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Fig. 1. Study design and long-term effects of SD on sleep behavior and EEG δ-power. (A) Tissue collection schedule with time in hours from beginning of the
experiment (T) and corresponding ZT. White and gray bars are 12-h:12-h light/dark cycle. Red bar is SD. (B) Long-term effects of SD on NREM sleep δ-power
(1 to 4 Hz, Upper), and simulation of process S (Lower). White and gray shading is 12-h:12-h light/dark cycle. Red shading is SD. Red and blue bars under the
graphs denote significant increase, respectively, and decrease compared to baseline (t test, P < 0.05, n = 6). Baseline data are repeated over the entire time
course as a light blue line. Mean δ-power values (±SEM) and process S are expressed as the percentage of intraindividual deviations from the time interval in
baseline with the lowest overall power (ZT8 to ZT12, average across 2 d). (C) NREM (Upper) and REM (Lower) sleep quantity. Asterisks denote significant
increases compared to baseline (t test, P < 0.05, n = 6). Baseline data and shading as above.
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driven. To address this question, we applied a harmonic regression
to the baseline (day 0) time points, which yielded a set of 862 os-
cillating genes (FDR-adjusted P < 0.05). Strikingly, we found that
the majority of these genes (578, 67%) were assigned to the S
model, and were underrepresented in model C (SI Appendix, Fig.
S3A) (P = 2.4e-76, χ2 test). Oscillating genes assigned to model S
were enriched for terms related to metabolism, signaling, and
molecular transport, while those assigned to other models were
enriched for GO terms related to neurogenesis (Dataset S2).

mRNA Expression of All but 1 Core Clock Gene Is Sensitive to SD.
Following closely, the cosine model (model C) was the third most-
abundant category with 2,457 genes. This model gathers genes the
oscillation of which is largely unaffected by SD as illustrated by the
top fit Caskin2 (w = 0.880) (Fig. 3E). The genes with the largest
amplitude showing 24-h oscillations in gene expression resistant to
SD were Sgk1, a glucocorticoid regulated kinase, and Cldn5, a
principal tight junction protein in the blood–brain barrier (SI
Appendix, Fig. S2), reaching their peak just before the light-to-
dark and dark-to-light transitions, respectively. Generally, ex-
amining the oscillation patterns of this group of genes, we find
that the phases (i.e., time of day at which expression peaks) of
model C genes tend to accumulate in the second half of the light
or dark phases (ZT10 and ZT22) (Fig. 4A).

Interestingly, our algorithm assigned Cry1 as the only core
clock gene in this model, with model CA second in explaining its
mRNA dynamics (w = 0.661 and w = 0.336, respectively) (SI
Appendix, Fig. S2). The other clock genes, instead of fitting
model C as might be expected, were assigned to model S (see
above), the altered amplitude model CA, or the more complex
models (models S+C and S+CA, see below). Clock genes
assigned to model CA (which contained in total 794 genes) had
damped amplitudes after SD, and encompassed the example
Nr1d1 (Fig. 3A), as well as Arntl/Bmal1 (Fig. 3G), Per3, Cry2, and
Nr1d2/RevErbβ (SI Appendix, Fig. S2). Except for Cry2, where
the top weights were w(CA) = 0.645 and w(C) = 0.347, the model
C weight w(C) of the other clock genes was negligible [highest
w(C) = 0.0003 for Nr1d1], meaning these clock genes were
assigned to CA either unequivocally or with a close call to the
more complex models S+C and S+CA (Dataset S1). Model CA
also contained genes with increased amplitudes (331 of 794;
42%) after SD, such as Akr1cl, Erbb3, Eva1b, and Zfp473 (Fig.
4B and SI Appendix, Fig. S2). Interestingly, the phases of ex-
pression differed between the genes with increased vs. decreased
amplitudes, the former group having a similar distribution of
phases to those of model C genes (ZT10 and ZT22), while the
latter group peaked around ZT2 and ZT15 (Fig. 4A). Model C
genes were mainly related to morphogenesis, while model CA
genes were enriched for axonogenesis (decreased amplitude after

Fig. 2. Sleep–wake history is the main driver of transcriptome dynamics. (A) PCA of the expression of the 13,842 detected genes. The number in parenthesis
in the axis label denotes the fraction of the variance explained by the component. Colors denote ZT (ZT0 to ZT12: light period; ZT12 to ZT24/0: dark period).
Baseline samples are represented by discs and samples collected during or after SD by triangles. Text labels denote time of sample collection according to the
experimental design (Fig. 1A). (B) PC1 plotted over time. Gray line: Sleep–wake-driven simulation of process S with the same time constants used to predict
EEG δ-power dynamics (Fig. 1B). (C) k-Means clusters of the 3,461 genes with statistically significant temporal gene expression (FDR-adjusted P < 0.001,
likelihood ratio test). Vertical dotted lines are ZT0 of each day. White and black bars are 12-h:12-h light/dark cycle. Blue dashed line is average of the cluster
under baseline, repeated for comparison over the 3 d of the experiment. Light gray thick line is cluster average. Red box is SD. Gray shaded bar above each
graph: proportion of genes with P < 0.05 according to a likelihood ratio test between SD and baseline conditions at the same ZT.
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SD) and lipid metabolism genes (increased amplitude after SD)
(Dataset S2).

Sleep and the Circadian Process Can Work in Opposition to Limit
Oscillation Amplitudes in Baseline. Model S+C (357 genes) in-
corporated the sleep–wake history and time of day to output a
strong response to SD while maintaining modest fold-changes
during baseline (e.g., Gkn3, Per1, and Fosb) (Fig. 3F and SI
Appendix, Fig. S2). Indeed, this model, together with its altered-
amplitude counterpart (S+CA, see below) allowed us to explain
complex temporal patterns, notably due to contributions from
both the S and C models to the log mRNA abundance. For genes
up-regulated during SD, both the S and C components increased
concurrently during SD, but discordantly in baseline (e.g., Fosb)
(Fig. 4C). Similarly, for genes down-regulated during SD, the S
and C components decreased concurrently during SD, but dis-
cordantly in baseline (e.g., Gkn3) (Fig. 4C). The discordant ac-
tion caused dynamics in mRNA levels to be limited during
baseline, while the concordant action during SD allows large
fold-changes relative to baseline. In comparison, in model S
where the buffering by the C component is absent, the difference
in fold-change from the highest point after SD and the highest
point in baseline, both compared to the baseline average, was
smaller than for models S+C and S+CA (Fig. 4D), meaning that
expression changes in model S genes are similar whether wake-
fulness is spontaneous or enforced, and regardless of time of day.
We note that S+C genes, which were enriched in genes involved
in corticosteroid response (Dataset S2), tend to peak around the
light-to-dark and dark-to-light transitions, a shift in comparison
with model C and model S genes (Fig. 4A).

SD Represses the Circadian Contribution in Genes with Complex
Dynamics, Leaving Them Predominantly under the Control of
Process S. The most complex of our models, model S+CA (166
genes, example Dbp) (Fig. 3H), incorporated sleep–wake his-
tory, time of day, and altered amplitudes to model the response
to SD and subsequent change in amplitudes after SD. In this

model, we see that the additive dynamic process observed in
model S+C can be accompanied by altered amplitudes after SD
(Fig. 4B) (104 damped, respectively, 62 increased amplitudes),
meaning that the contribution of the C component to gene-
expression dynamics, relative to that of the S component, is
modulated after SD. For example, for Dbp, breaking down the
contribution of the S and CA part of the dynamics show that
in baseline, the expression is influenced by both sleep–wake
history and time of day, while after SD, the contribution of time
of day is diminished by 90%, and thus the recovery dynamics
are driven mainly by S (Fig. 4C, blue dotted curve). Other ex-
amples of genes with damped amplitudes include Per2 (SI
Appendix, Fig. S2), a gene known to be subject to complex in-
teractions between processes S and C (25), as well as the clock
output genes Nfil3/E4bp4 and Bhlhe41/Dec2 (SI Appendix, Fig.
S2). S+CA genes peak during the first half of the light, re-
spectively, and dark phases, at yet a different time than all
other models. Still, genes displaying decreased expression un-
der waking had phases overlapping with model CA (Fig. 4A).
Globally, model S+CA was enriched for genes involved in
rhythmic processes, brain development, and response to hor-
mones and drugs (Dataset S2).

Recovery Time Course Uncovers Hitherto Unnoticed Genes Affected
by SD. Strikingly, a majority of the genes assigned to the amplitude-
affected models CA and S+CA (759 of 960 genes, 79%) were not
identified when we examined differential expression at the end of
SD alone (i.e., T30 vs. T6), as in previous studies (e.g., refs. 13, 24,
and 26). For example, fatty acid binding protein 7, Fabp7 (model
CA) (SI Appendix, Fig. S2), is not differentially expressed at T27
nor T30; however, its oscillation amplitude displays the strongest
reduction from T36 onwards among nondifferentially expressed
genes, possibly due to its being a target of Nr1d1 (model CA,
differentially expressed at T27 and T30) and thus downstream of
the primary response (27). This was especially true for the CA
model, where only 53 of 794 (7%) genes were differentially
expressed at ZT6, vs. 115 of 166 (69%) for the S+CA model (as a
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comparison, 1,675 of 2,677 [63%] genes in the S model were
significantly differentially expressed at T30, and 172 of 2,457 [7%]
genes in the C model).
Conversely, genes that were differentially expressed at T27 or

T30 (3,558 genes) were enriched in models S, S+C and S+CA,
and underrepresented in models C and CA (SI Appendix, Fig.
S3B). Interestingly, 604 of these genes were assigned to model F,
representing genes acutely affected by SD, which is not equiva-
lent to sleep–wake-driven, as their expression is systematically
perturbed only at 1 or both of these SD time points, but other-

wise not modulated by the sleep–wake distribution. These genes
are enriched for morphogenesis and metabolism (Dataset S2).
To assess how gene-expression dynamics return to baseline, we

examined differential expression at each time point during and
after SD compared to baseline (i.e., T27 vs.T3, T30 vs. T6, T36
vs. T12, etc., until T78 vs. T6) (see experimental design in Fig.
1A) and found 210 genes genome-wide that were differentially
expressed after phenotypic recovery (i.e., after T42), namely 137
genes at T48 and 75 genes at T60. This was consistent with the
observation that the proportion of genes with P < 0.05 in the
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cluster analysis did not reach 0 for all post-SD time points
(Fig. 2C).
To summarize the long-term changes in gene expression, we

quantified—for each of the 5 dynamic models—the effect sizes
of the differential expression, time point by time point, and
compared them to the effect sizes found for genes in the static
model F, which we used as background (Fig. 5). Models S and
S+C returned to baseline by T48, while model C showed mar-
ginal effects during the dark phase. Strikingly, models CA and
S+CA showed long-term effects, the former as a continuously
small-to-moderate effect size until and including T78, and the
latter as a renewed effect late in the time course following a 12-h
period without effect. We note that the effects have ceased for
all models by T192 (i.e., 7 d after SD).

Genome-Wide Assay for Transposase-Acessible Chromatin Using
Sequencing Analysis Shows a Rapid Response and Sleep–Wake-Driven
Dynamics in Chromatin Accessibility.We next asked which regulatory
elements are underlying the extensive transcriptome dynamics in
our dataset. We used assay for transposase-accessible chromatin
using sequencing (ATAC-seq) (28) to identify a union of 130,727
regions of accessible chromatin (hereafter referred to as “peaks”)
(Methods) over all time points (i.e., a peak is present in at least
1 time point). The majority of peaks do not change over time and
are constantly accessible. Indeed, while 25% of expressed genes
showed a time dynamic according to a likelihood ratio test at a
0.001 FDR threshold, only 4% of ATAC-seq peaks display a time
dynamic at the same stringent threshold. While PC1 (10%) prob-
ably represents experimental noise, 7% of the variance among time
points, represented by PC2, could be attributed to the sleep–wake
history and follows sleep–wake dynamics, paralleling the RNA-seq
data (see PC2 in Fig. 6; see also Fig. 2 A and B).
The strongest differential signal relative to baseline occurred

during SD with 1,793 peaks differentially accessible (differen-
tially accessible sites, DAS) at ZT3 (T27 vs. T3, after 3-h SD),
2,098 at ZT6 (T30 vs. T6, end of 6-h SD), with 607 peaks in
common. Differential signal during SD (ZT3 and ZT6) consisted
predominantly of increased accessibility (91% of DAS for ZT3
and 88% of DAS for ZT6), while the 645 late-responding DAS
(i.e., differentially accessible at ZT12 only, T36 vs. T12, after 6 h
of recovery) (SI Appendix, Fig. S4A) were more likely to be
decreased (56%).
The DAS followed the homeostatic process, as we found that

the effect of spontaneous waking during the first 6 h of the base-
line dark phase (ZT12 to ZT18, when mice are predominantly
awake) (Fig. 1C) was similar to the effect of forced wakefulness

(SD). Specifically, 83% of the DAS displayed a similar response to
spontaneous and forced wakefulness, and are thus likely to be
sleep–wake-driven instead of being affected by other factors as-
sociated with the SD protocol, such as stress.
Consistent with previous studies (e.g., refs. 29–31), accessi-

bility peaks from all time points and conditions were mainly lo-
cated in intronic or intergenic regions (SI Appendix, Fig. S4B).
When considering only DAS sites (at ZT3, ZT6, or ZT12), the
proportion of intergenic regions was increased at the expense of
the other regions (Fisher’s exact test, FDR adjusted P < 0.01),
suggesting that SD influences the accessibility of distal rather
than proximal elements (SI Appendix, Fig. S4 C–E).

Gene Expression Correlates with Chromatin Accessibility at Distal
Elements Rather than Promoters. Broadly classifying the dynamic
profiles of chromatin accessibility over time by k-means clustering,
we found 3 main types of temporal profiles, all of which were
reminiscent of sleep–wake-driven dynamics (SI Appendix, Fig.
S4F). Clusters 1 to 3 displayed an early response to SD with a fast
recovery; clusters 4 to 7 also presented an immediate response, but
a slow recovery; while clusters 8 to 10 displayed a late response.
Because of this similarity with the RNA-seq clustering (RNA
clusters 1 to 8), and because of the similarity in the general dy-
namics observed by PCA between RNA-seq and ATAC-seq, we
sought to connect these changes in accessibility with changes in
gene expression and, as both signals originate from the same mouse,
correlated ATAC-seq peak signal over time to gene-expression
levels over time by calculating the Pearson correlation across
samples (Methods). We confined the possible peak-to-gene asso-
ciations to a single peak per gene within the same topologically
associated domain defined from chromatin looping interaction
data (HiC) generated from mouse cerebral cortex (32). The ra-
tionale of this approach is that any element known to physically
interact with the promoter of a gene and shown to correlate in
activity with the expression of that gene is a likely regulator of it.
In total, the expression level of 3,294 genes (24% of detected
genes) was significantly associated with the ATAC-seq signal of
1 peak, either positively or negatively, at distances ranging from
the transcription start site (TSS) to 5 Mb away (mean distance for
all significant associations at 0.05 FDR: 0.65 Mb) (Fig. 7A).
SD significantly changed chromatin accessibility (DAS at

T27 and/or T30) for 24% of all chromatin-gene expression pairs
we detected (802 of 3,294). Of these pairs, 529 showed a change
in gene expression at T27 or at T30. A large proportion of this
set involved sleep–wake-driven genes (354 and 54 pairs involving
model S and S+C genes, respectively, 82%). Furthermore, we
found that 64 of the 802 pairs were associated to models with
altered circadian amplitude after SD (37 and 27 pairs involved
genes in model CA and S+CA genes, respectively). This suggests
that chromatin changes could be partially responsible for both
immediate and delayed dynamic alterations in gene expression
induced by SD.
Only 38 of 3,294 significant gene–peak associations were prox-

imal (i.e., the peak spanned the TSS), overlapping with only 2
genes of the top 34 pairs, namely Klhdc9, an interaction partner of
CDK2-associated cyclin A1, Ccna1 (33) (model S) (Fig. 7B), and
Ciart/Chrono (model S+CA) (Fig. 7C), an interaction partner and
suppressor of the ARNTL and PER2 proteins (34).
Thus, the majority of genes correlated more strongly with a

distal element than with the accessibility of their promoters.
Generally, the average correlation coefficient between the ex-
pression and the ATAC signal spanning the TSS of all genes
involved in an association was 0.16, while it was 0.5 for the
correlation between expression and the ATAC signal of the top
associated distal peak for the same genes (Fig. 7A). The top
correlations to a distal element involved the environmental
sensor Hif3a (model C) (Fig. 7D), and the immediate-early gene
(IEG) Fosl2 (model S) (Fig. 7E). In the case of Hif3a, the distal
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element (Fig. 7D, blue line) displayed an immediate response to
SD with a significant increase at T27 and T30, possibly a relative
decrease at T36 before resuming the baseline pattern from T42,
while the RNA oscillation (Fig. 7D, red line) was largely un-
perturbed. For Fosl2, we observed a fast response of the distal
element together with the mRNA, plateauing already at T27 and
followed by a fast recovery by T42, whereas accessibility at the
promoter followed a different pattern. We observed similar re-
lationships between gene expression and accessibility of the
corresponding promoter and associated distal peak for the
remaining genes of the top 34 correlations (SI Appendix, Fig. S5).
The widespread lack of correspondence between promoter

accessibility dynamics and transcription hint at a model where
transcription happens from an accessible promoter under the
regulation of a distal element mediated by transcription factors
(TF). A TF motif activity analysis (35, 36) taking advantage of
our paired RNA-seq and ATAC-seq data predicted the serum
response factor (SRF) motif to be by far the most statistically
significant candidate in the entire temporal gene-expression
dataset (i.e., the genes assigned to models S, C, CA, S+C and
S+CA, z-score = 3.35) (SI Appendix, Fig. S6A). Randomizing the
association between TF motif site counts and the expression
profile showed that obtaining a z-score of 3.35 was highly sta-
tistically significant (P < 10−7). The inferred temporal activity of
SRF (Methods) was consistent with sleep–wake-driven dynamics,
paralleling the expression of the Srf transcript (SI Appendix, Fig.
S6 B and C). The genes with the strongest contribution to the
enrichment signal—namely Egr2, Junb, Fos, Arc, and Nr4a1—are
IEGs and were all classified under model S, as was Srf itself
(model S, w = 0.979). Scanning the open chromatin regions
corresponding to <5 kb up- and downstream of the promoters of
these genes, we found SRF binding sites that overlapped with
chromatin immunoprecipitation sequencing (ChIP-seq) peaks
against SRF in mouse fibroblasts (37) (see examples in SI Ap-
pendix, Fig. S6D).

Discussion
We have characterized the dynamics in the cerebral cortex of
transcriptome and regulatory elements in relation to the sleep–
wake distribution before, during, and after an SD, a 1-time and
short intervention during the first half of the habitual rest phase
of mice. To classify the genes according to their respective tem-
poral expression patterns, we developed a model-selection approach
according to sleep–wake-driven dynamics, time-of-day dynamics,
interactions between the 2, with the possibility of an alteration of
the oscillation amplitude. This set of models allowed us to de-
termine the relative contributions of and interaction between the
circadian and sleep–wake processes governing the expression of
genes with 24-h rhythms. This approach, which recapitulated
previously identified sleep–wake-driven genes (SI Appendix, Fig.

S3 C and D), proved more powerful in identifying genes affected
by SD than past single time-point differential expression studies.

SD Causes Long-Term Alterations of the Molecular Circadian Clock.
Our most striking finding is the pervasive control sleep–wake
dynamics exerted on the expression of rhythmic genes, as well as
the widespread and long-lasting impact of SD. Indeed, genes
displaying rhythmic expression under baseline conditions were in
majority assigned to the S model and even underrepresented in
the C model. Moreover, genes perturbed late in the time course
were enriched for GO terms related to circadian rhythms (Dataset
S2). The molecular perturbations outlast the phenotypic changes,
as seen particularly by the long-lasting effects of SD on model CA
and S+CA, meaning that the mice have not yet recovered from
SD despite behavioral and cortical electrophysiological measures
of sleep need having returned to baseline. Although long-term
electrophysiological consequences have been observed in the rat
hypothalamus (38), the long-term aftereffects of a SD challenge
are generally understudied.
Specifically, we found that most clock genes were affected by

SD, in the form of a damped amplitude after SD, and conversely,
we found an enrichment of rhythmic process genes in model
S+CA. The damped amplitude we observed in the rhythmic ex-
pression of most of the known clock genes (i.e., Arntl, Per2, Per3,
Nr1d1, Nr1d2, Cry2, Ciart, and the clock-output genes Dbp, Nfil3,
Bhlhe41, all of which were model CA and S+CA genes) could be
an important long-term consequence of SD. Indeed, previous
work had already shown that the cortical expression of a number
of clock genes is affected during SD (for reviews, see refs. 26, 39,
and 40) and that SD acutely suppresses the specific DNA-binding
of the circadian transcription factors BMAL1 and NPAS2 to their
target genes Per2 and Dbp (41), demonstrating that prolonged
wakefulness intervenes directly at the core of the circadian mo-
lecular machinery. Because Ciart is sensitive to and affects stress
signaling pathways (34, 42), it can be conjectured that the stress
associated with SD (24) could be a factor contributing to the
sustained circadian dysregulation of the clock gene circuitry.
Furthermore, this long-term damping of clock gene rhythms was
all the more surprising given the fact that the observations were
made under entrained light–dark conditions and in the presence
of a largely unaffected diurnal sleep–wake distribution, 2 factors
known to contribute to high amplitude clock gene expression.
Because disrupted clock gene rhythms have been causally impli-
cated in the etiology of disease like metabolic syndrome (reviewed
in ref. 4), clock genes could be a final common molecular path-
way underlying the etiology of metabolic syndrome associated
both with insufficient good quality sleep and with circadian
misalignment (39).
We observed that, for a subset of genes controlled by both the

circadian and the sleep–wake-driven process (classified as model
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S+C and S+CA genes), the 2 processes worked in opposition,
thereby limiting gene expression under baseline conditions. This
“buffering” interaction provides an intriguing parallel with hu-
man and primate studies of cognitive performance under forced
desynchrony or SD protocols, where it was found that the phase
of the circadian wake-promoting signal is timed in such a way
that it opposes the sleep–wake-dependent accumulation of sleep
propensity and peaks in the hour prior to habitual sleep onset.
This timing is essential for maintaining high and stable levels of
attention and cognitive performance during the day, as well a
consolidated period of sleep during the night (43–48).

Do Sleep–Wake-Driven Changes in Chromatin Accessibility Predict
Transcriptome Dynamics?Quantifying chromatin accessibility allowed
us to discover a set of genomic regions as candidate first actors in a
possible repertoire set in motion early during SD and giving rise to
differential gene expression. The time course of the accessibility of
these regions closely resembles an IEG response with a very fast
modulation of the chromatin, detected already after the first 3 h of

SD, a striking illustration of the plasticity of this compartment. This
IEG-like response of both mRNA and accessibility, and the simi-
larities of the rise and decay rates of the model S genes, raises the
possibility that EEG δ-power is linked to, or even preceded by,
molecular changes in IEGs in the brain.
Overall, dynamics in chromatin accessibility were most pro-

nounced during SD, and no longer significantly differed from
baseline by 12 h after SD (T42). Although we cannot exclude
that this seemingly faster recovery is due to a lower sensitivity of
the ATAC-seq signal relative to RNA-seq, these results do show
that changes in chromatin accessibility start appearing early in
the response to SD, confirming that chromatin accessibility is
dynamic and can change on short time scales, even faster than
observed in circadian oscillations (49).
The increased proportion of distal elements among DAS

compared to all regions, together with the correlation of dynamic
gene expression with distal elements rather than the respective
promoters, is consistent with a scenario where expression is
modulated by different enhancers or repressors interacting with

A

B

D

C

E

1 2 3 4 6 7

P
ea

rs
on

 c
oe

ffi
ci

en
t

78

5.1

5.3

5.5

5.7

5.9

 Klhdc9

Time [h]
0 6 18 30 42 54 66

1.7

2

2.3

2.6

2.9

Tr
an

sc
rip

t l
ev

el

 Ciart

Time [h]
0 6 18 30 42 54 66 78

4

4.53

5.05

5.58

6.1

5.1

5.32

5.55

5.78

6

AT
A

C
 le

ve
l a

t p
ro

m
ot

er

 Hif3a

Time [h]
0 6 18 30 42 54 66 78

0.9

1.5

2.1

2.7

3.3

2.2

2.75

3.3

3.85

4.4

0.6

1.25

1.9

2.55

3.2

Tr
an

sc
rip

t l
ev

el
AT

A
C

 le
v e

l a
t p

ro
m

ot
er

 Fosl2

Time [h]
0 6 18 30 42 54 66 78

3

3.53

4.05

4.58

5.1

3.4
3.7
4
4.3
4.6

4.4
4.62
4.85
5.08
5.3

AT
A

C
 le

ve
l a

t d
is

ta
l e

le
m

en
t

Fig. 7. Gene expression predominantly correlates with the dynamics of distal accessible genomic regions rather than promoters. (A) Distance from ATAC-seq
peak to the associated TSS. (B–E) Temporal patterns of gene–peak associations (with promoter for genes associated with distal elements). Red: RNA-seq
signal. Blue and green: ATAC signal of the distal element, respectively promoter, of the associated gene. Red box is SD. Gray shading is dark phase of the
light–dark cycle. Baseline data are repeated over the entire time course as a stippled line.

Hor et al. PNAS | December 17, 2019 | vol. 116 | no. 51 | 25781

G
EN

ET
IC
S



an accessible promoter under the influence of regulator proteins.
For example, SRF is bound to a constitutively open promoter,
ready for an interaction with a distal element that changes its
own activity and mediates the changes in gene expression. The
implication of SRF as a candidate priming factor in the response
to SD is compelling, as it plays a key role in activity-dependent
modulation of synaptic strength (50), and its ortholog blistered is
required to increase sleep after social enrichment in Drosophila
(51, 52).

Conclusion
Our results imply that beyond an apparent recovery from SD lie
deeper, more complex, and longer-lasting molecular perturba-
tions, especially among clock genes. We also show that genes can
seem unchanged by SD when sampled at a single time point, yet
be affected by a profound perturbation later on or, in some cases,
before that time point, as was illustrated here for Srf expression
and chromatin accessibility. These perturbations eventually re-
cover, as hinted by the absence of differential expression after
7 d; however, until baseline is reached, this temporary regulatory
background could possibly cause the response to another expo-
sure (repeated SD or other) to differ from that under the pre-SD
baseline background. While it is debated whether repeated SD
on subsequent days alter the homeostatic response at the phe-
notypic level in rats (EEG) (53, 54), recent studies in humans
found that even 2 nights of recovery sleep were insufficient to
completely reverse the metabolic perturbations caused by mul-
tiple nights of restricted sleep (55, 56). Follow-up experiments at
the molecular level will show how such a transient “new base-
line” due to only a partial recovery would influence the response
to a second event occurring before full recovery.

Methods
Animals. Male C57BL/6J mice were purchased from Charles River France and
allowed to acclimate to our sleep study facility for 2 to 4 wk prior to ha-
bituation to the experimental setting. Animals were kept in accordance to the
Swiss Animal Protection Act, and all experimental procedures were approved
by the veterinary authorities of the state of Vaud (i.e., the Service de la
Consommation et des Affaires Vétérinaires [SCAV]).

Surgery, EEG Recording, and Analysis. The EEG cohort consisted of 12 male
C57BL/6J mice 10 to 12 wk at the time of SD from another study (12). Surgical
implantation of electrodes, EEG recording, data collection, and processing
were performed according to our standard procedure (57). EEG was recorded
from 2 d prior to SD (which were averaged to constitute a 24-h baseline)
until 2 d after SD, and 5 additional days in 6/12 mice. For details on EEG
spectral analysis, simulation of process S and statistics, see SI Appendix, Ma-
terials and Methods.

SD and Tissue Collection. Mice for tissue collection were divided into SD and
non-SD (controls, Ctr), with 3 to 4 individuals per time point per condition.
After habituation to the experimental setting, the SD mice (now 11 to 12 wk)
were SD for 6 h starting at light onset (ZT0 to ZT6) as described in ref. 57, and

allowed to recover according to the tissue collection schedule (Fig. 1A and SI
Appendix, Materials and Methods). Control mice were killed at the same
time of day as SD mice. The cortex was rapidly dissected and flash-frozen in
liquid nitrogen.

Tissue Processing and Sequencing Library Preparation. Tissue from each indi-
vidual was used for both RNA-seq and ATAC-seq. RNA-seq libraries were
prepared from total RNA by a standard Illumina protocol. ATAC-seq libraries
were generated from 100,000 nuclei according to ref. 58, with minor
modifications.

Sequencing Data Analysis. RNA-seq data were analyzed using kallisto v0.43.0
(59) followed by sleuth (60) with batch effect correction by ComBat [R
package sva (61)]. ATAC-seq reads were processed using bowtie2 (62),
samtools (63), and bedtools, followed by peak-calling and quantification by
Macs2 (64) and HTSeq.

Clustering of mRNA and ATAC-Seq Profiles. We performed k-means clustering
on genes displaying a statistically significant variation over time, as defined
by a likelihood ratio test in sleuth for RNA-seq and edgeR for ATAC-seq, and
empirically chose k = 10 as a balance between variance explained and
generalizability of each cluster.

mRNA Time-Course Analysis. We used a model selection approach to classify
the temporal log mRNA abundance of all 13,842 expressed genes into the
scenarios described in Results (see also SI Appendix, Fig. S1), penalizing for
model complexity using the BIC. Rationale, equations, and mathematical
details are found in SI Appendix, Materials and Methods.

Peak-To-Gene Expression Association. To associate gene-expression dynamics
with chromatin accessibility dynamics, we used a Pearson correlation co-
efficient across the samples and confined the possible association tests to
previously defined topological interaction domains in cortex tissue from
ref. 32.

Prediction of TF Binding Site Activity in Promoters. We inferred TF activity
based on the presence of TF motifs within ATAC-seq–positive regions and the
abundance of the nearby transcript, using MARA, as previously described
(35, 36), with position weight matrices of 179 mouse TFs (http://swissregulon.
unibas.ch).

Data Accessibility. Raw read files (.fastq), RNA transcripts per million, ATAC-
seq peak calls, and quantification are publicly available in the Gene Ex-
pression Omnibus/Sequence Read Archive repository under accession no.
GSE140345 (65).

Code Availability. Code to run the model selection analysis is publicly available,
found at https://github.com/jakeyeung/SleepDepModelSelection (66).
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