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Abstract: Among the six Critical Nanoscale Design Parameters (CNDPs) proposed by Prof. Donald
A. Tomalia, this review illustrates the influence of the sixth one, which concerns the elemental
composition, on the properties of dendrimers. After a large introduction that summarizes different
types of dendrimers that have been compared with PolyAMidoAMine (PAMAM) dendrimers, this
review will focus on the properties of positively and negatively charged phosphorhydrazone (PPH)
dendrimers, especially in the field of biology, compared with other types of dendrimers, in particular
PAMAM dendrimers, as well as polypropyleneimine (PPI), carbosilane, and p-Lysine dendrimers.
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1. Introduction

Prof. Donald A. Tomalia created the word “dendrimer” from two Greek words δέντρo (dendro),
which translates to “tree”, and µέρoσ (meros), which translates to “part,” and synthesized the famous
PAMAM (PolyAMidoAMine) dendrimers [1–3]. In addition to this pioneering work, he has recently
proposed a new concept for unifying and defining nanoscience, which he has called “CNDPs,” which
stands for Critical Nanoscale Design Parameters [4,5]. This concept can be applied to both hard
(metal-based) nanoparticles and to soft (organic) nanoparticles. It is particularly well adapted to
the definition and properties of dendrimers, which are soft nano-objects, synthesized step by step
to finely tune their properties [6,7]. Six parameters have been defined in the CNDP concept; they
concern the (i) size; (ii) shape; (iii) surface chemistry; (iv) flexibility/rigidity; (v) architecture; and
(vi) elemental composition of nano-objects. In this review, we will particularly emphasize the sixth
parameter, concerning the elemental composition of dendrimers, with particular attention on the
differences this criterion induces on properties, despite identical terminal functions.

A non-exhaustive search in the literature reveals that comparison experiments have been carried
out in most cases with PAMAM dendrimers compared to other types of dendrimers, such as PPI
(polypropyleneimine) [8–10], triazine [11,12], aliphatic ester [13,14], and carbosilane [15,16] dendrimers.
The structure of the third generation of these dendrimers is shown in Figure 1. We will consider only
publications in which comparative experiments have been done under conditions that are exactly
the same and have been reported in an experimental publication, and not publications in which the
comparison has been done with references to literature. Comparisons between PAMAM and PPI have
been the most widely studied and in different areas. Differences in the fluorescence of the dye phenol
blue encapsulated within the dendrimers demonstrated as expected that the interior of PPI dendrimers
is slightly less polar than that of PAMAM dendrimers, both having amino terminal functions [17].
The comparison has also been carried out for catalysis. Different generations of both families of
dendrimers have been used for the synthesis of gold nanoparticles (about 2 nm diameter in all cases)
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by a wet chemical NaBH4 method. The nanoparticles were then used for catalyzing the reduction
of 4-nitrophenol. For Generations 2 and 3, it was shown that the rate constant with nanoparticles
entrapped inside PAMAM dendrimers is higher than with PPI dendrimers, but no marked difference
was observed for higher generations [18]. Generations 1–5 of PAMAM and PPI (called DAB in this
study) dendrimers have been functionalized by promesogenic units derived from salicylaldimine.
All these dendrimers exhibit liquid crystalline properties. The only differences between both series
are a higher thermal stability and a wider mesophase temperature range in the PAMAM series, as a
consequence of an increased rigidity, due to hydrogen bonds between the amido groups [19].
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However, the largest number of comparisons between PAMAM and PPI dendrimers concerns
their biological properties. Their toxicity has been tested toward the B16F10 cancerous cell line and
in vivo in mice bearing this tumor. It has been shown that both families of dendrimers behaved
essentially similarly, depending on the type of their terminal functions, and not on their internal
structure [20]. Other toxicity assays have been carried out with Chinese hamster ovary and human
ovarian carcinoma (SKOV3) cells. It has been shown that the two Generation 4 dendrimers with amino
terminal functions are very harmful toward both types of cells [21]. MRI (magnetic resonance imaging)
contrast agents based on gadolinium complexes have been grafted on the surface of Generation 4
PAMAM and PPI dendrimers, and these compounds were injected to mice. It was shown that the PPI
dendrimer (DAB), compared with the PAMAM dendrimer, accumulated more significantly in the liver
than in the blood [22]. Hyperpolarized xenon, generally protected in a cage of type cryptophane-A,
is another MRI agent. These cages were entrapped most efficiently inside PAMAM dendrimers than
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inside PPI dendrimers (11 cages versus 4 for the fifth generations) [23]. Different types of molecules
of biological interest have been entrapped also inside both families of dendrimers. This comprises
the encapsulation of Vitamins C, B-3, and B-6 [24], phenylbutazone (an anti-inflammatory agent) for
which PAMAM dendrimers have a higher loading ability than PPI dendrimers [25], and bortezomib
(a proteasome inhibitor), which was by far more efficiently solubilized in water by PPI dendrimers
than by PAMAM dendrimers [26].

A few other types of dendrimers have been compared to PAMAM dendrimers. For instance, the
catalytic efficiency of carbosilane dendrimers bearing SCS-pincer palladium complexes as terminal
functions has been compared to that of PAMAM dendrimers bearing the same type of terminal
functions. The PAMAM dendrimers were found to be superior, by showing a higher reaction rate and
a higher linear/branched ratio, in the cross coupling reaction between vinyl epoxide and styrylboronic
acid. In the auto-tandem catalysis of cynnamyl chloride, hexamethylditin, and 4-nitrobenzaldehyde,
only small differences were observed in the efficiency of both families of dendrimers [27]. The effect
of PAMAM dendrimers and of triazine dendrimers of comparable size and number of terminal
functions, both families being capped with primary amines, was tested toward platelet aggregation,
in human platelet-rich plasma. It was shown that triazine dendrimers provoked platelet aggregation
less aggressively than PAMAM dendrimers did [28]. The cytotoxicity of a series of aliphatic
polyester dendrimers and PAMAM dendrimers, both having alcohol terminal functions, was evaluated
toward human cervical cancer (HeLa), acute monocytic leukemia cells (THP.1), and primary human
monocyte-derived macrophages. The aliphatic polyester dendrimers were found to be less toxic than
the PAMAM dendrimers, and more easily cleavable [29].

To conclude this introductory overview, it seems that the internal structure is of relative
importance for the properties of dendrimers. However, in this review, in which phosphorhydrazone
dendrimers are compared with other types of dendrimers (including PAMAM and carbosilane
dendrimers), we will show that the internal structure of dendrimers may be of crucial importance,
in particular when considering the biological properties.

2. Phosphorhydrazone Dendrimers Compared to Other Types of Dendrimers

Two different families of phosphorus-containing dendrimers have been compared with other
types of dendrimers: those having positive charges (ammoniums) as terminal functions, and those
having negative charges (phosphonates) as terminal functions. They will be presented in this order.
In all cases, the comparison is focused on the biological properties [30,31], as these dendrimers are
soluble in water [32].

2.1. Positively Charged Phosphorus Dendrimers

Several generations of phosphorhydrazone (PPH) dendrimers having tertiary amines as terminal
functions, subsequently protonated (the third generation is shown in Figure 2), have been compared
essentially with PAMAM dendrimers, and occasionally with carbosilane dendrimers, having primary
amines/ammoniums as terminal functions. These positively charged phosphorus dendrimers have
been shown to be efficient transfection agents [33], and they display a high anti-prion activity in vivo,
against the scrapie form of several strains of prions [34].

In the following sections, we will compare positively charged PPH dendrimers with other types
of cationic dendrimers, concerning their interference with clinical chemistry tests, their efficiency as
carriers, and their efficiency against neurodegenerative diseases.
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2.1.1. Comparative Interference with Clinical Chemistry Tests

Classical clinical chemistry tests (analysis of blood biochemical parameters) are widely used
for assessing the toxicity of compounds. However, it is important to determine if the presence
of nanoparticles in general and of dendrimers in particular can interfere or not with these
tests. The tests were carried out with positively charged dendrimers of type phosphorhydrazone
(Generation 4, 96 tertiary ammonium groups), PAMAM (Generation 4, 64 primary ammonium groups),
and carbosilane (Generation 3, 24 quaternary ammonium groups) in standardized human serum,
in the absence of cells. It was shown that these dendrimers interfere with the clinical chemistry tests,
inducing changes in enzymes activity, and interactions with the test reagents (but not with a protein).
These changes can be wrongly interpreted as the appearance of dysfunctions of the liver or buds,
so this type of preliminary evaluation is necessary before any animal tests [35].
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2.1.2. Comparative Efficiency as Carriers

As already indicated, the transport and delivery properties of positively charged
phosphorhydrazone dendrimers have been discovered very early, with the transport of the luciferase
plasmid through the membrane of mammalian cells and its delivery inside the nucleus [33]. Changing
the nature of the ammonium terminal functions did not improve the transfection efficiency [36].
Positively charged PAMAM and PPH dendrimers, both of Generation 4, were tentatively used to
carry the plasmid, inducing an increased GDNF expression (the Glial cell line-Derived Neurotrophic
Factor) into Schwann cells, isolated from sciatic nerves. The phosphorhydrazone dendrimers were
found to be less effective than the PAMAM dendrimers for the transfection of these Schwann cells,
but both were by far less effective than HIV-based lentiviruses. The transgenic Schwann cells were
then used to regenerate transected peripheral nerves in rats [37]. PAMAM, PPH, and carbosilane
dendrimers were used to complex different anticancer siRNA (small interfering RNA). Then, heparin
was added to determine if the siRNA could be released from the dendrimer and if its structure
was maintained. These dendrimers are effective for protecting siRNAs from RNase A activity, but
treatment with heparin induced the release of siRNA only from the complexes obtained with PAMAM
or carbosilane dendrimers, whereas the complexes formed with the phosphorhydrazone dendrimers
were not destroyed by heparin [38]. These experiments were carried out in the perspective of the
gene therapy of cancers, so these complexes were transfected in HeLa and HL-60 cancerous cell
lines. The most effective carriers of siRNA among the three types of dendrimers tested were the PPH
dendrimers [39].

2.1.3. Comparative Efficiency against Neurodegenerative Diseases

The very first example in this field, using phosphorhydrazone dendrimers, concerned their
interaction with the scrapie form of prions (PrPSc), which is responsible for several types of spongiform
encephalopathies, such as Creutzfeldt–Jakob disease and mad cow disease. The Generation 4 of
positively charged phosphorhydrazone dendrimers was able to eliminate the PrPSc from infected cells,
and was even found efficient in vivo, for mice infected with brain cells from terminally ill mice [34].
A sequel of this work concerned the interaction of dendrimers with the PrP 106–126 peptide, which
is suspected to be involved in the formation of amyloid fibrils in these encephalopathies, as well as
the Aβ 1–28 peptide for Alzheimer’s disease. The interaction of three types of positively charged
dendrimers (phosphorhydrazone Generation 4, PAMAM Generations 5 and 6, and PPI Generation 3)
with both types of peptides was assessed, using EPR analyzes with a spin probe. It was shown that
the interactions of the dendrimers with PrP 106–126 are weaker than with Aβ 1–28. The PAMAM
dendrimers seem to be better peptide-aggregation scavengers than the other dendrimers [40].

The interaction of the same three families of dendrimers with heparin, which is involved in the
process of fibril formation in the prion diseases, was also measured. All these dendrimers interact
with heparin, mainly by electrostatic interactions. These interactions are indirectly responsible for the
inhibition or enhancement of fibril formation, depending on the concentration. At high concentrations,
the dendrimers directly impede fibril formation, whereas at low concentrations, they sequester the
heparin, preventing it from inducing fibril formation. The dye Thioflavin T-3516 (ThT), which is
generally used for detecting amyloid structures, as it fluoresces only in their presence, was used for
detecting the interaction of the phosphorhydrazone dendrimers with heparin. Although ThT did
not fluoresce in the presence of the dendrimers alone, or heparin alone, a fluorescence was detected
for the complex between heparin and the phosphorhydrazone dendrimers. Only these phosphorus
dendrimers behaved this way, as no fluorescence was detected for the complexes formed with PAMAM
or PPI dendrimers [41].

Rotenone is a pesticide, which is also a damaging agent, increasing the amount of reactive oxygen
species (ROS) in neurons, α-synuclein aggregation, and the activation of microglia, and which is
associated with an increased risk of Parkinson’s disease. In view of the above-mentioned properties of
dendrimers on brain diseases, in particular for preventing aggregation and the formation of fibrils,
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it seemed important to investigate if positively charged dendrimers can prevent the damages caused by
rotenone on mouse mHippoE-18 cells in vitro. The dendrimers tested here were PAMAM dendrimers,
PPH dendrimers, and small viologen-phosphorus dendrimers [42,43]. These dendrimers increased
cell viability, decreased ROS production, and preserved the mitochondrial function [44].

2.2. Negatively Charged Phosphorus Dendrimers

Negatively charged dendrimers are classically obtained by grafting carboxylic acids as
terminal functions, from which sodium salts are easily obtained. This was done in particular
with phosphorhydrazone dendrimers [45,46]. However, the negatively charged phosphorus
dendrimer possessing the most important biological properties up to now has not carboxylates
but azabisphosphonate salts as terminal functions. The structure of the first generation is shown in
Figure 3, called “ABP,” which stands for AzaBisPhosphonate. In a first experiment, it was shown that
this dendrimer is able to induce in vitro the activation of human monocytes, which are a pivotal cell
population of innate immunity in the blood [47]. It was shown later that this activation of monocytes
occurs through an anti-inflammatory pathway [48]. Among a series of PPH dendrimers having
different types of negatively charged terminal functions and of different generations (0 to 2), it was
shown that the first generation shown in Figure 3 was the most active [49]. Tailoring the number of
terminal functions from 2 to 30 for first-generation PPH dendrimers, by playing with the reactivity
of the cyclotriphosphazene, demonstrated that compounds decorated with 8–12 azabisphosphonate
terminal functions are the most efficient [50].
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Figure 3. First-generation phosphorhydrazone dendrimer with azabisphosphonate terminal
functions (ABP).

In a second experiment, it was shown that the same dendrimer ABP is able to multiply by several
hundreds the number of natural killer (NK) cells, which are pivotal for innate immunity, implicated in
the early immune response against infections and playing a crucial role in anticancer immunity. As the
proliferation of NK cells was extremely tedious to achieve before our work, it was important to verify
if the NK cells obtained thanks to this dendrimer were fully functional. Their ability to kill the same
cancer cell lines with the same efficiency as uncultured NK cells was succesfully assessed with respect
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to 15 cell lines (leukemia and carcinoma). Importantly, no agressiveness of the NK cells generated with
this dendrimer toward lymphocytes coming from the same blood donor was observed, demonstrating
the safety of this compound [49]. It was shown later on that a multistep cross-talk between monocytes
and NK cells is necessary before the proliferation of NK cells [51].

In a third experiment, the anti-inflammatory properties of this dendrimer ABP were tested
in vivo against chronic inflammatory diseases such as multiple sclerosis (MS) in mice. MS is a
chronic inflammatory disease of the central nervous system, thought to be due to an inflammatory
attack by autoreactive T cells, which amplify an inflammatory cascade, inducing myelin sheath,
resulting in impaired nerve conduction. In a mouse model of MS, in which an experimental
autoimmune encephalomyelitis (EAE) has been induced, the dendrimer ABP prevents the development
of EAE, and inhibits the progression of established disease. One important mechanism of action of
the dendrimer ABP in this case is that it skews the cytokine production by splenocytes from an
inflammatory pattern to an anti-inflammatory one [52].

In continuing the study of the structure/activity relationship, the same terminal functions were
grafted to the surface of a series of dendrimers. These functions were first grafted to the surface of a
first-generation PPI dendrimer, and both dendrimers were tested against another chronic inflammatory
disease, rheumatoid arthritis (RA). RA is an autoimmune inflammatory disease, which is characterized
by inflammation of the synovial membrane, cartilage degradation, and bone erosion, leading to major
handicaps. The ABP dendrimer was found to be very efficient in mice suffering from an RA-like
inflammatory disease, whereas the PPI dendrimer had no activity. The dendrimers were given weekly,
either intravenously or orally. For mice treated with the dendrimer ABP, normal synovial membranes,
reduced levels of inflammatory cytokines, and the absence of both cartilage destruction and bone
erosion were observed. Dendrimer ABP increases the level of anti-inflammatory cytokines and has
anti-osteoclastic properties. On the contrary, for mice that received the PPI dendrimer decorated with
the same azabisphosphonate terminal functions, no difference was observed compared to untreated
mice [53].

This work displayed for the first time a drastic difference between the biological activity of two
dendrimers having the same terminal functions, but a different internal structure. This idea was
then developed to test a larger number of dendrimer families. As the activation of monocytes is the
first step for all biological properties of the dendrimer ABP, this was considered as the suitable test
to determine the properties of these dendrimers (Figure 4). Dendrimers of type thiophosphate and
carbosilane were functionalized with exactly the same function as with ABP. Dendrimers with amine
terminal functions (PPI, PAMAM, and p-Lysine) were functionalized by peptide couplings, affording
a linker different from the one used for ABP. Thus, the same linker was used also on the surface of
a first-generation phosphorhydrazone dendrimer. The dendrimers containing heteroatoms (P or Si)
in their structure, even those having a structure very different from that of ABP (thiophosphate and
carbosilane), are efficient for the activation of monocytes, even if ABP is still the most efficient. On the
contrary, all the “organic” dendrimers (PPI, PAMAM, and p-Lysine) have absolutely no efficiency for
the activation of monocytes. In order to try to understand this surprising result, all-atom molecular
dynamics simulations were carried out for all of these families of dendrimers. It was shown that
all of the compounds that are active have all of their terminal functions gathered in a single side of
the dendrimers, which look like cauliflowers and afford a localized high density of functions. On
the contrary, the dendrimers that are non-active have a rather spherical structure, and the terminal
functions are distributed all over the surface, affording a low local density of functions. This study
was the largest given the number of different families that were assayed in identical conditions [54].
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3. Conclusions

In view of all these results, how can our initial question of which dendrimer attains the most
desirable properties be answered? Concerning positively charged dendrimers, in particular their
transfection efficiency when using plasmids, the PAMAM dendrimers are generally more efficient
than the phosphorhydrazone dendrimers. However, when considering the delivery of siRNA,
the phosphorhydrazone dendrimers seem more efficient than the PAMAM dendrimers. For other
properties, in particular concerning brain diseases, PAMAM, PPI, and PPH dendrimers have almost
the same properties, with either PAMAM or PPH being slightly better depending on the precise type
of experiment. The situation is very different concerning negatively charged dendrimers. Indeed, with
strictly identical terminal functions, the dendrimers containing heteroatoms (P or Si) in their structure
have anti-inflammatory properties, whereas the “organic” dendrimers do not. Table 1 summarizes the
types of dendrimers and their types and numbers of terminal functions, which have been compared to
PPH dendrimers.

Table 1. Types of dendrimers, with the nature and number of their terminal functions, used for
comparison in different biological experiments. The most efficient compound for each experiment is
highlighted in red.

PPH PAMAM PPI PCSi P-Lys Experiment Ref.

-NEt2H)96 -NH3)64 -NMe3)24 Clinical tests [35]

-NEt2H)96 -NH3)64 Transfection [37]

-NEt2H)48/
-NEt2H)96

-NH3)32/
-NH3)64

-NMe3)8 Protection SiRNA 1 [38]

-NEt2H)48/
-NEt2H)96

-NH3)32/
-NH3)64

-NMe3)8 Carrier of Si RNA [39]

-NEt2H)96
-NH3)64/
-NH3)128

-NH3)16 Peptide aggregation scavenger [40]

-NEt2H)96
-NH3)64/
-NH3)128

-NH3)16 Interaction with heparin [41]

-NEt2H)48/
-NEt2H)96

-NH3)32/
-NH3)64

Decrease ROS 2 levels [44]

(PO3HNa)2]12 (PO3HNa)2]8 Against RA 3 [53]

(PO3HNa)2]12
4 (PO3HNa)2]8 (PO3HNa)2]8 (PO3HNa)2]8 (PO3HNa)2]8 Activation of monocytes [54]

1 Small interfering RNA. 2 Reactive Oxygen Species. 3 Rheumatoid Arthritis. 4 Same efficiency with PPH
(PO3HNa)2]8 [50].



Molecules 2018, 23, 622 9 of 12

Thus, the real conclusion of this review is that the sixth parameter of the CNDPs, concerning
the elemental composition of nano-compounds, especially dendrimers, has to be taken into account
when dealing with properties, especially biological properties. Definitively, the internal structure of
dendrimers is not an “innocent” scaffold.
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