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Abstract

Background: Oxygen toxicity is a major cause of lung injury. The base excision repair pathway is
one of the most important cellular protection mechanisms that responds to oxidative DNA
damage. Lesion-specific DNA repair enzymes include hOggl, hMYH, hNTH and hMTH.

Methods: The above lesion-specific DNA repair enzymes were expressed in human alveolar
epithelial cells (A549) using the pSF9I.l retroviral vector. Cells were exposed to a 95% oxygen
environment, ionizing radiation (IR), or H,O,. Cell growth analysis was performed under non-toxic
conditions. Western blot analysis was performed to verify over-expression and assess endogenous
expression under toxic and non-toxic conditions. Statistical analysis was performed using the
paired Student's t test with significance being accepted for p < 0.05.

Results: Cell killing assays demonstrated cells over-expressing hMYH had improved survival to
both increased oxygen and IR. Cell growth analysis of A549 cells under non-toxic conditions
revealed cells over-expressing hMYH also grow at a slower rate. Western blot analysis
demonstrated over-expression of each individual gene and did not result in altered endogenous
expression of the others. However, it was observed that O, toxicity did lead to a reduced
endogenous expression of AINTH in A549 cells.

Conclusion: Increased expression of the DNA glycosylase repair enzyme hMYH in A549 cells
exposed to O, and IR leads to improvements in cell survival. DNA repair through the base excision
repair pathway may provide an alternative way to offset the damaging effects of O, and its
metabolites.

Background

Oxidative stress leading to the overproduction of free rad-
icals in the lungs is present in many clinical situations.
Such clinical settings include acute respiratory distress
syndrome (ARDS), infants of prematurity going on to
develop bronchopulmonary dysplasia (BPD), pathogene-
sis of chronic obstructive pulmonary disease (COPD),

asthma, cystic fibrosis, ischemia-reperfusion injury, drug-
induced lung toxicity, cancer and aging [1-4]. Although
the use of oxygen may be clinically indicated in hypox-
emic situations, one must consider the potential long-
term toxic side effects. For example, we know that oxygen
creates cellular damage by a variety of mechanisms. Nor-
mal cellular metabolism of oxygen involves the transfer of
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electrons from NADH to O, molecules to form water
(H,0). At normal partial pressure, 95% of oxygen mole-
cules (O,) are reduced to H,O and 5% are partially
reduced to toxic byproducts by normal metabolism in the
mitochondria [5]. These metabolites include the superox-
ide anion (O,), hydrogen peroxide (H,0,), and hydroxyl
radicals (*"OH) all of which make up what are known as
Reactive Oxygen Species (ROS) [6]. Exposure to condi-
tions of hyperoxia as well as ionizing radiation (IR) leads
to increased amounts of these ROS and their damaging
effects.

ROS are known to attack the lipids, proteins, and nucleic
acids of cells and tissues [5,7]. Lipids, including pulmo-
nary surfactant, react with ROS to produce lipid peroxides,
which cause increased membrane permeability, inactiva-
tion of surfactant, and inhibition of normal cellular
enzyme processes. Proteins reacting with ROS result in
decreased protein synthesis due to inhibition of ribos-
omal translation or destruction of formed proteins. This
ultimately leads to inactivation of intracellular enzymes
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and transport proteins resulting in impaired cellular
metabolism and accumulation of cellular waste products.
Lastly, ROS cause damage to nucleic acids by leading to
modified purine and pyrimidine bases, apurinic (AP) /
apyrimidinic sites, and DNA protein cross-links which can
lead to single strand breaks [8].

Several defense mechanisms exist to combat the damag-
ing effects of ROS. Intracellular enzymatic systems include
superoxide dismutase which eliminates the superoxide
anion, catalase which catalyzes the reduction of H,0,
directly to H,O without the production of the hydroxyl
radical, and glutathione peroxidase which directly reduces
H,0, and lipid peroxides. Free radical scavengers, which
stop free radical chain reactions by accepting electrons,
include a-tocopheral (vitamin E), ascorbic acid (vitamin
C), niacin (vitamin B), riboflavin (vitamin B,), vitamin A,
and ceruloplasmin [1,2,9]. These systems usually provide
enough protection against oxygen metabolism under nor-
mal conditions, but may become depleted under condi-
tions of increased oxidative stress [7,10].
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Base excision repair pathways for Oxidative DNA damage. (A) BER pathway demonstrating repair of 8-oxoG by the
repair enzymes hOgg! and hNTH. (B) hOgg!, hMYH, and hMTH and their respective repair function.

The defense mechanism of interest in this paper involves
the repair of oxidative damage through the human DNA

base excision repair pathway (BER). BER is the most
important cellular protection mechanism that removes
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oxidative DNA damage [11]. Damaged bases are excised
and replaced in a multi-step process. Lesion-specific DNA
glycosylase repair genes initiate this process. After removal
of the damaged base, the resulting AP site is cleaved by AP-
endonuclease generating a 3'OH and 5'deoxyribose phos-
phate (dRP). B-polymerase, which possesses dRPase activ-
ity, cleaves the dRP residue generating a nucleotide gap
and then fills in this single nucleotide gap. The final nick
is sealed by DNA ligase [12-14] (Figure 1A).

The oxidative repair genes that we have analyzed in this
study include 8-oxoguanine DNA glycosylase (hOggl),
human Mut Y homologue (hMYH), human Mut T homo-
logue (hMTH), and endonuclease III (hNTH) all of which
are present in human cells and involved in the protection
of DNA from oxidative damage. The repair enzyme hOgg1l
is a purine oxidation glycosylase that recognizes and
excise 8-oxoguanine lesions (GO) paired with cytosine.
GO can pair with both cytosine and adenine during DNA
replication [15]. If repair of C/GO does not occur, then
G:C to T:A transversions may result [5,15-17]. The repair
enzyme hMYH is an 8-oxoguanine mismatch glycosylase
that removes adenines misincorporated opposite 8-oxoG
lesions that arise through DNA replication errors [5,18-
20]. The repair enzyme hMTH hydrolyzes oxidized purine
nucleoside triphosphates such as 8-oxo-dGTP, 8-oxo-
GTP, 8-0x0-dATP, and 2-hydroxy-dATP, effectively
removing them from the nucleotide pool and preventing
their incorporation into DNA (Figure 1B) [21]. Lastly, the
repair gene endonuclease III (hNTH) is a pyrimidine oxi-
dation and hydration glycosylase that recognizes a wide
range of damaged pyrimidines [22]. hNTH has also been
shown to have a similar DNA glycosylase/AP lyase activity
that can remove 8-0x0G from 8-0x0G/G, 8-0x0G/A, and
8-0x0G/C mispairs [23,24]. Subsequent steps following
hNTH are identical to those following hOgg1 (Figure 1A).

A previous study has shown that over-expression of the
DNA repair gene hOggl leads to reduced hyperoxia-
induced DNA damage in human alveolar epithelial cells
[25]. The primary goal of our present study was to
compare the protective effects of the four main lesion-spe-
cific DNA glycosylase repair genes by individually over-
expressing each in lung cells and determining which of
these provides the greatest degree of protection under con-
ditions of increased oxidative stress.

Methods

Cell Culture

The human alveolar epithelial cell line A549 (58 year old
Caucasian male), was purchased from ATCC Cat No CCL-
185. The cells were grown in DMEM (Gibco, Grand
Island, NY) supplemented with 10% fetal bovine serum
(FBS) (HyClone, Logan, UT) and penicillin (100 U/ml)/
streptomycin (100 pg/ml) (Gibco, Grand Island, NY).
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Passaging of cells was performed every 3-4 days with cells
grown to 80% confluency in a 10 cm cell culture dish
(Corning Incorporated, Corning, NY). Cells were kept at
37°C in a humidified, 5% CO2 incubator.

Retroviral Vector Construction

The retroviral vector pSF91.1, a gift from Dr. C. Baum
from the University of Hamburg in Germany, was con-
structed with an internal ribosome entry site (IRES)
upstream to the gene expressing enhanced green fluores-
cent protein (EGFP) as previously described [26].

Four DNA repair genes were individually ligated into the
retroviral vector pSF91.1.

hOgg -6pcDNA3. |

was initially amplified by PCR by primers to introduce a
kozak sequence at the 5' end [27]. Digestion of this prod-
uct with EcoRI and Sall was performed and then hOgg1l
was subcloned into digested plasmid vector pSF91.1, with
T4 DNA ligase. DNA sequencing was performed to con-
firm integrity of the hOggl gene.

hMYH/PGEX4T-1 and h(MTHIPGEX4T-1

hMYH was a gift from Dr. A. McCullough (University of
Texas Medical School, Galveston, TX) and hMTH was
cloned in Dr. Kelley's lab. Plasmid DNA was prepared as
above by digestion with EcoRI and Sall and ligated into
pSF91.1 as above and sequencing was performed to con-
firm integrity of the genes.

PGEX-6PI-hNTH I-wild type

this gene was a gift from Dr. S. Mitra (University of Texas
Medical School, Galveston, TX). Digestion with BamHI
and Sall was performed and the hNTH1-wt fragment was
ligated into the empty plasmid vector PUC18. The
hNTHI1-wt fragment was then excised with both sides
flanked by EcoRlI restriction sites and ligated into pSF91.1.
Proper orientation of the gene was confirmed and
sequencing was performed to determine the integrity of
the gene.

Retroviral Production and Infection

DH50 competent cells (Life Technologies, Gaithersburg,
MD) with each of the five DNA repair genes were grown
in LB-broth with ampicillin (Sigma, St. Louis, MO). Plas-
mid DNA was prepared and used to transfect phoenix
amphotropic cells, from the Nolan Lab (Stanford Univer-
sity Medical Center, San Francisco, CA), grown to ~80%
confluency. On the second day sodium butyrate was
added to each plate and incubated at 37°C for 6 hours.
Fresh DMEM supplemented with FBS and penicillin/
streptomycin was added and the plates were incubated at
33°(C. Viral supernatant was collected 24 and 48 hrs later,
filtered through a 0.45 pm acrodisc syringe filter (Pall
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Corporation, Ann Arbor, MI) and frozen at -80°C for later
use. Retroviral titers were determined by fluorescent-acti-
vated cell sorter (FACS) analysis. Titers of viral superna-
tant were 8 x 105to 1.2 x 106 particles/ml [26].

2.5 x 105 A549 cells were suspended with the viral super-
natant and plated in 1 well of a 6-well plate along with
polybrene (Sigma, St. Louis, MO). This exposure was per-
formed 6 hours per day for three days. At approximately
five days from the beginning of the infection, the infected
cells were analyzed using flow cytometry and sorted for
EGEFP expression.

Western Analysis

Cell pellets of sorted cells were resuspended in NuPage
buffer (Invitrogen, Carlsbad, CA) and protein concentra-
tions were determined using the DC protein assay (Bio-
Rad, Hercules, CA). 20 ug of protein were loaded into
individual lanes of a NuPage Bis-Tris Gel (Invitrogen,
Carlsbad, CA). The gel was then transferred to nitrocellu-
lose paper (Osmonics Inc, Gloucester, MA). The mem-
branes were then blocked with 1% blocking solution
(Roche Diagnostics, Indianapolis, IN) for 1 hour at room
temperature and then incubated overnight at 4°C with
rabbit polyclonal antibodies to hOggl (Novus Biologicals,
Littleton, CO), hMTH (Novus Biologicals, Littleton, CO),
hMYH (Oncogene Research Products, Darmstadt, Ger-
many) and hNTH (Proteintech Group Inc, Chicago, IL) all
at a dilution of 1:1000 except hNTH which was diluted
1:2500. They were then washed 2 times with TBST and 2
times with 0.5% blocking solution, 10 minutes per wash.
The membranes were incubated with anti-rabbit second-
ary antibodies at 1:1000 for 1 hour at room temperature.
Lastly, the membranes were washed 4 times with TBST, 15
minutes per wash. The membranes were briefly soaked in
BM chemiluminescence blotting substrate (Roche Diag-
nostics, Indianapolis, IN) and then exposed to high per-
formance autoradiography film (Amersham Biosciences,
Buckinghamshire, England). Kodak Digital Science 1D
Image Analysis software was utilized to quantify the
region of interest (ROI) band mass of individual bands on
films where visualized differences were detected.

Hyperoxic Exposure

Sorted EGFP positive A549 cells infected with the above
DNA repair genes were counted and seeded into 96-well
plates at a density of 1000 cells/well, 6 wells per gene. Six
hours after seeding, individual plates were placed into an
oxygen chamber supplied by Dr. L. Haneline (Wells
Center for Research, Indianapolis, IN) located in a 37°C
incubator. The oxygen chamber was then infused with
95% O, and 5% CO,. Individual plates were removed
after 12, 24, 48, and 72 hours of exposure. Control A549
cells were incubated in a normal 37°C humidified-5%
CO, incubator. O, concentrations were monitored with a
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MAXO, analyzer (Maxtec, Salt Lake City, UT). Four days
from the beginning of the exposure, cells were assessed for
cell growth/survival using the sulforhodamine B assay
(SRB assay).

Sulforhodamine B Assay

The SRB assay (Sigma, St. Louis, MO), developed by the
National Cancer Institute, provides a sensitive measure of
drug-induced cytotoxicity through a colorimetric end-
point that is non-destructive, indefinitely stable, and visi-
ble to the naked eye. This assay was used to assess the cell
growth/survival of over-expressed cells [28]. Cold 10%
TCA was used to fix the cells to the plate. After incubation
for 1 hour at 4°C, the individual wells were rinsed with
water. After air-drying, SRB solution was added to each
well and cells were allowed to stain for 20-30 minutes.
1% acetic acid wash was used to rinse off unincorporated
dye. Incorporated dye was then solubilized in 100 pl per
well of 10 mM Tris. Absorbance was measured by a tuna-
ble microplate reader (Molecular Devices, Sunnyvale, CA)
at a wavelength of 565 nm. Background absorbance meas-
ured at 690 nm was subtracted from the measurements at
565 nm.

Irradiation and H,0, Exposure

Sorted EGFP positive A549 cells were seeded into 96-well
plates at a density of 1000 cells/well. Six hours after seed-
ing, individual plates were then exposed to radiation at
doses of 250, 500, 1000, and 1500 Rads or 0.2 mM, 0.4
mM, and 0.6 mM H,0, (Sigma, St. Louis, MO). All plates
including control plates were then placed into a 37°C
humidified-5% CO, incubator. Four days after exposure,
cells were fixed and assessed for cell growth/survival by
the SRB assay.

pSF91.1

Figure 2

Retroviral vector pSF91.1. Depiction of the retroviral
vector utilized in these experiments demonstrating restric-
tion sites and location of entry of the gene of interest
between the LTR and the IRES.

Natural Cell growth
Sorted EGFP positive A549 cells and wild type cells were
seeded individually onto four 96-well plates at 1000 cells/

Page 4 of 11

(page number not for citation purposes)



Respiratory Research 2004, 5:16

hMTH/pSF91.1 ( 0 dose )
hMTH/pSF91.1 ( 24hrs O, )
hMTH/pSF91.1 ( 1000 Rad )
hMYH/pSF91.1 ( 0 dose)
hMYH/pSF91.1 ( 24hrs O, )
hMYH/pSF91.1 ( 1000 Rad )
hNTH/pSF91.1 ( 0 dose)
hNTH/pSF91.1 (24hrs O,)
hNTH/pSF91.1 ( 1000 Rad )
hOgg1/pSF91.1 ( + Control )

2T - e o e PP GP = e —

e — hOgg!

1 2 3 4 5 6 7 8 9 10

39 —

hOgg1/pSF91.1 ( 0 dose )
hOgg1/pSF91.1 ( 24hrs O, )
hOgg1/pSF91.1 ( 1000 Rad )
hNTH/pSF91.1 ( 0 dose)
hNTH/pSF91.1 ( 24hrs O, )
hNTH/pSF91.1 ( 1000 Rad )
hMTH/pSF91.1 ( 0 dose )
hMTH/pSF91.1 ( 24hrs O,)
hMTH/pSF91.1 ( 1000 Rad )

52— Wl W e - e S S e wmw — MYH

42— wm— S e e W T S ——w ge® —— aClin

1 2 3 4 5 6 7 8 9

Figure 3

http://respiratory-research.com/content/5/1/16

hOgg1/pSF91.1 (0 dose )
hOgg1/pSF91.1 ( 24hrs O, )
hOgg1/pSF91.1 (1000 Rad )
hNTH/pSF91.1 ( 0 dose)
hNTH/pSF91.1 ( 24hrs O, )
hNTH/pSF91.1 ( 1000 Rad )
hMYH/pSF91.1 ( 0 dose)
hMYH/pSF91.1 ( 24hrs O,)
hMYH/pSF91.1 ( 1000 Rad )

hOgg1/pSF91.1 ( 24hrs O,)
hOgg1/pSF91.1 (1000 Rad )
hMYH/pSF91.1 ( 0 dose)
hMYH/pSF91.1 ( 24hrs O,)
hMYH/pSF91.1 ( 1000 Rad )
hMTH/pSF91.1 (0 dose )
hMTH/pSF91.1 ( 24hrs O, )
hMTH/pSF91.1 (1000 Rad )

hOgg1/pSF91.1 ( 0 dose )

12— w—— N S - ctin
35— .-----.--—hNTH
1

2 3 4 5 6 7 8 9

Western analysis of A549 cells over-expressing individual repair genes and effect on endogenous glycosylase
level. (A) Endogenous expression of hOggl was not altered in A549 cells over-expressing any of the other repair genes when
analyzed after non-toxic and toxic exposures. hOgg| protein was not detectable for any of the cells under the above conditions
when compared to cells over expressing hOgg!. (B) and (C) Endogenous expression of hMTH and hMYH respectively also
were not altered in A549 cells over-expressing any of the other repair genes when analyzed after non-toxic and toxic expo-
sures. (D) Endogenous expression of hNTH was analyzed under non-toxic and toxic conditions in A549 cells over-expressing
the other repair genes. Reduced expression of ANTH was observed equally with all of the other genes after exposure to 95%
O,. Endogenous expression of all four genes was equivalent under the above conditions in vector control cells; pSF91.1 (data

not shown).

well. All the plates were placed into a 37°C humidified-
5% CO, incubator. Every 24 hours for 4 days, 1 plate was
removed and the cells were fixed and analyzed by the SRB
assay looking at cell growth under non-toxic conditions.
Growth curves and exponential growth equations were
determined to look at the doubling time (DT) of cells
infected with each repair gene of interest compared to vec-
tor infected and uninfected wild type cells.

Statistics

All drug exposure experiments were performed at least
three times and individual drug doses included 6-8 wells
for each group of infected cells. Analysis of cell growth
and exponential growth equations were determined using
Microsoft Excel. All experiments involving drug exposures

were normalized to the zero dose. Data are expressed as
means = SE. The significance of differences were
calculated using the paired Student's ¢ test with signifi-
cance being accepted for p < 0.05.

Results

Retroviral Constructs

The DNA repair genes hOggl, hMYH, hMTH, and hNTH
were ligated into the retroviral vector pSF91.1 (figure 2).
This vector, derived from a murine stem cell virus back-
bone, along with each individual repair gene, was used for
transfection of phoenix amphotropic cells. Viral superna-
tant was then collected and used to stably infect A549
cells. A heterogeneous population of A549 cells express-
ing EGFP was sorted so all cells used for experiments
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Western analysis of endogenous hNTH repair gene after exposure to O, and IR. (A) Analysis of ANTH expression in
A549 vector control cells following O, or IR treatment. The ROl band mass mean intensity was calculated for individual bands
and hNTH expression was normalized to the corresponding actin loading control. (B) Graph of ROI band mass normalized to

the pSF91.1 zero dose.

contained the genes of interest integrated into their DNA
(data not shown).

Repair Gene Expression

Western blot analysis was performed on sorted cells in
order to verify over-expression of the four genes of inter-
est. hOggl, hMYH, hMTH, and hNTH were all detected at
their correct position on western blots (data not shown).

Western analysis was also utilized to assess whether over-
expression of each individual repair gene resulted in
altered endogenous expression of the other repair genes
under both non-toxic and toxic conditions (24 hrs of 95%
O, and 1000 Rad). Cells over-expressing the repair genes
hOggl, hMYH, hMTH, and hNTH did not lead to altered
expression of the other endogenous repair genes under
the above conditions when compared to each other or
pSF91.1 vector control cells (Figure 3A,3B,3C and 3D).
hOggl's endogenous expression was below the level of
detection. The pattern of endogenous expression of AINTH
was consistent for each condition when comparing cells
over-expressing hOggl, hMYH, hMTH, and pSF91.1.
Reduced expression of hNTH after exposure to 95% O,
was noted.

Lastly, we assessed endogenous expression of each indi-
vidual repair gene in cells infected with pSF91.1 following
non-toxic and toxic conditions (24 hrs of 95% O, and
1000 Rad) at 24 and 48 hrs after the onset of exposure.
Endogenous hMYH and hMTH were expressed to the same

degree. hOggl's endogenous expression was below the
level of detection using western analysis (results not
shown). When analyzing endogenous hNTH expression,
it was noted that hyperoxia at 24 hrs and 48 hrs resulted
in reduced protein expression by 93% and 64% respec-
tively. There also was a small increase in expression of
hNTH noted after 1000 Rad one day post exposure that
was back to baseline by two days post exposure. ROI band
mass quantification demonstrated this finding (Figure 4A
and 4B). Two or more replicates were performed for each
western analysis to determine consistency of the results.

Protection from Hyperoxia and Radiation

A549 cells expressing hMYH demonstrated increased sur-
vival after exposure to conditions with elevated levels of
oxygen compared to cells expressing only the pSF91.1
vector (Figure 5A). Results were highly significant at all
time points except after 12 hours O, where it almost
reached a highly significant value. The differences
between pSF91.1 and hMYH varied from 12% after 12
hours O, exposure to 7% after 72 hours O, exposure.
A549 cells expressing hMYH also demonstrated increased
survival after exposure to all doses of radiation in compar-
ison to pSF91.1 (Figure 5B). These results were also highly
significant at all doses of radiation except at 250 Rads
where it almost reached a highly significant value. The
differences between pSF91.1 and hMYH varied from
12%-14% for all doses of radiation. Also noted in these
experiments was that vector control cells demonstrated no
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Cell survival analysis following O,, IR, and H,O, treatments. A549 cells over-expressing hOgg!, h(MYH, hMTH and
hNTH following (A) O,, (B) IR, and (C) H,O,. Brackets indicate statistical significance at * p < 0.05 and ** p < 0.00| compared
to pSF9I.1 at each individual dose for | representative experiment.

significant difference in survival at all doses of O, and
radiation in comparison to wild type A549 cells.

Experiments looking at the effects of H,O, on cells
expressing the repair genes did not demonstrate increased
survival for any of these repair genes when compared to
vector control cells (Figure 5C). This data demonstrates
that over-expression of htMYH has the ability to improve
cellular survival under conditions of hyperoxia and radia-
tion but may not be able to overcome the toxicity of H,O,.

Cell Growth

Cell growth under normal conditions was ascertained to
determine if over-expression of any of the repair genes
caused an alteration in the growth of cells in the absence
of oxidative stress. Wild type A549 cells and cells express-
ing pSF91.1, hNTH, hOggl, and hMTH appeared to grow
at similar rates with doubling times within the same
range. A549 cells expressing hMYH did show a slower
growth rate that resulted in significant differences in cell
number by day 3. The calculated doubling time for the
cells over expressing hMYH is > 3 hrs longer than the cells
with the other repair genes and vector alone (Figure 6).
This slowing of growth may allow for more time to repair

Page 7 of 11

(page number not for citation purposes)



Respiratory Research 2004, 5:16

Cell Growth hMTH

DT =23 hrs
1.6

hOgg1
144 DT =23.4 hrs
1.2 4

ac
S hNTH
1 % DT =23 hrs
08 —_e—A-549
05 _/ /I

X / DT =23.2hrs
0.4

absorbance

- —%— pSF91.1
0.2 = DT =24 hrs
0 . . . AMYH
day 1 day 2 day 3 day 4 DT = 27.7 hrs
Figure 6

Cell growth curve and associated doubling times
(DT). A549 cells over-expressing hMYH grow at a slower
rate in comparison to all other cells under non-toxic condi-
tions resulting in a prolongation of the doubling time. Of
note, all other over-expressed cells have approximately the
same doubling time as wild type A549 cells. Statistical signifi-
cance noted at ** p < 0.00| compared to pSF9I.1 for | rep-
resentative experiment.

DNA damage, ultimately leading to increased cell survival
following oxidative stress.

Discussion

Oxidative stress to the lung leads to cellular DNA damage
as evidenced by the release of specific gene products
known to regulate DNA base excision repair pathways
such as p53 and p21 [29-31]. Alterations in pro-inflam-
matory mediators, transcription factors, and other related
gene products are also observed [32]. This injury has been
shown to be associated with features of both cellular
necrosis and apoptosis [33-35]. The resultant cellular
inflammation and death from oxidative stress has a dra-
matic impact on the outcome of patients in the clinical
setting [7,36].

Most of our current clinical therapy towards oxidative
stress in the lung involves both supportive measures and
prevention. Research dealing with oxidative lung injury
has focused mainly on enhancing antioxidant enzymatic
processes and free radical scavengers [37-40]. The ability
to alter cellular survival by increasing specific DNA repair
mechanisms may add another approach to the treatment
of oxidant-mediated lung injury.

Many investigators have used hydrogen peroxide as a sub-
stitute for hyperoxia since it is known to be one of the
metabolites produced by the metabolism of oxygen. ROS
such as H,0, and those produced by hyperoxia clearly
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lead to DNA damage but questions exist as to whether
H,0, leads to the same deleterious effects upon DNA as
hyperoxia. Analysis of our growth curves after exposure to
H,0, in comparison to hyperoxia and IR clearly indicates
that cellular protection by oxidative DNA repair genes is
specific to the agent used. Because no protection was
observed with over-expression of any of the repair genes
following exposure to H,0O,, we speculate that the damage
it causes is dissimilar. It may be that its damage not only
involves oxidized bases, but may also include other forms
of DNA, lipid, and protein damage that are not corrected
by oxidative DNA repair genes. Alternatively, the amount
and type of damage evoked by H,0, could be beyond that
which can be corrected by over-expressing these repair
genes.

Another form of stress known to induce damage through
the formation of ROS is IR. Radiation induced free radical
damage to DNA has substantial overlap with that of
oxidative damage [41-43]. The protection provided by
specific oxidative DNA repair genes under conditions of
IR, was notable throughout our experiments only with the
repair enzyme hMYH.

The primary agent utilized to induce the formation of
ROS was an oxygen rich environment. The use of oxygen
as a stressor leading to the formation of ROS, offers a dis-
tinct advantage over IR and H,0, by mimicking the clini-
cal situation where constant exposure to hyperoxia leads
to cumulative cellular damage which further compro-
mises repair. We determined that survival of A549 cells
was also enhanced to a small degree with increased
expression of the repair enzyme hMYH. This was an unex-
pected finding as we anticipated the repair gene hOggl
would demonstrate the greatest protection in response to
oxidative stress based on previous studies, however these
experiments utilized the colony forming assay (CFA) to
detect improvements in survival [25]. Additionally, the
CFA may provide different results compared to the SRB
assay, which allows for growth analysis over a shorter win-
dow of time. Furthermore, their study did not look at the
repair enzyme hMYH and its impact on survival. Another
study has investigated the repair function of hMYH in
MYH-deficient murine cells. It was demonstrated that
transfection of the MYH-deficient cells with a wild-type
MYH expression vector increased the efficiency of A:GO
repair [44].

An interesting observation noted while doing our experi-
ments lead us to look at individual growth characteristics
of cells over-expressing each of the oxidative repair
enzymes. Cells over-expressing the repair enzyme hMYH
clearly grow at a slower rate when compared with the
other enzymes. The mechanism behind this is not
understood at this point in time. The repair action of
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hMYH is known to remove adenines misincorporated
opposite 8-0x0G lesions. This lesion occurs when a C/GO
lesion is allowed to replicate before being corrected by
hOggl1. Repair by hMYH is not a final corrective measure.
The product of hMYH activity is the lesion C/GO, which
allows hOggl to have another opportunity to remove 8-
oxoG opposite cytosine. We know that A549 cells possess
the hOggl gene based on a previous study demonstrating
the presence of this gene after amplification by genomic
PCR [45]. We also have demonstrated endogenous activ-
ity of hOgg1 in A549 cells by using an 8-oxoguanine bio-
activity assay. Therefore, our explanation of these results is
that the slowed growth created by hMYH may provide a
wider window of opportunity for the repair process to
take place, which ultimately grants endogenous hOggl
another opportunity to remove the 8-0xoG lesion created
by oxidative stress.

As noted in the methods section, the SRB assay provides a
sensitive measure of drug-induced cytotoxicity that is used
to assess cell proliferation/survival. The reduced cell pro-
liferation of A549 cells over-expressing hMYH under non-
toxic conditions may likely underestimate the magnitude
of the protective effect of this particular repair enzyme.
This may in fact make the results even more significant.

Recent studies have discovered hereditary variations of the
glycosylase hMYH that may predispose to familial
colorectal cancer [46,47]. Others have looked for tIMYH
variants in lung cancer patients and have not identified
any clear pathogenic biallelic htMYH mutations or an over-
representation of AiMYH polymorphisms [47]. The A549
cell line has not demonstrated somatic mutations in
hMYH, but a single nucleotide polymorphism (SNPs) has
been noted [45]. The impact on function by this SNP is
unknown. It would appear that the function of hMYH is
very important in preventing somatic mutations leading
to cancer in the gastrointestinal tract. Although studies to
date have not demonstrated this same relationship with
lung cancer, we do know that the lungs are subjected to
large quantities of ROS under certain conditions as
discussed earlier. The formation of mutations from oxida-
tive stress does have other deleterious effects on cells
including cellular death by necrosis and apoptosis. Tissue
viability is dependent upon mutation correction and rep-
lication of the surviving cells to replace those that have
died. The ability to enhance cellular survival, after specific
oxidative exposures, is evident after increased production
of the hMYH repair gene in these experiments.

We additionally wanted to determine the level of endog-
enous expression of the glycosylase repair genes in the
pulmonary epithelial A549 cell line. Others have demon-
strated how different stressors lead to alterations in the
endogenous production of specific repair genes. For
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example, it has been shown that endogenous gene expres-
sion of hOgg1 was elevated following exposure to crocido-
lite asbestos which is known to cause an increase in 8-
0x0G levels [48]. It has also previously been reported that
treatment of A549 cells with sodium dichromate, a pro-
oxidant, leads to a reduction of hOgg1l protein expression
that was not observed with H,0, [49]. One additional
study demonstrated a dose dependent down regulation of
hOggl protein expression in rat lung after exposure to
cadmium, a known carcinogen associated with the
formation of intracellular ROS [50]. In our experiments
we were able to demonstrate that both hyperoxia and IR
do not appear to impact the endogenous expression of
hOggl, hMYH, and hMTH at 24 and 48 hours following
exposure. It was noted that endogenous hNTH was
reduced after hyperoxia at 24 and 48 hours after the onset
of exposure. One would speculate that this reduction in
endogenous hNTH secondary to hyperoxia is related to
either decreased production or increased destruction in
response to O, exposure. Over-expression of this repair
enzyme did not result in improvements in survival after
O, exposure based on our experiments. It may be that
endogenous levels are adequate to correct this specific
mutational burden for these experiments.

Furthermore, no previous studies have determined how
cells over-expressing specific repair genes may impact
endogenous expression of the other oxidative BER genes
under both normal and oxidative stress conditions. We
were also able to demonstrate that endogenous expres-
sion of glycosylase repair genes were not altered under
these conditions secondary to the over-expression of any
of these genes. This is an important finding for interpreta-
tion of survival data; protection of cells is due to the over-
expression of the specific gene and not due to enhance-
ment of other endogenous repair enzyme levels, at least
for the genes studied under these conditions.

Some limitations may exist in using a lung carcinoma cell-
line, which likely differs both in proliferative properties as
well as in response to oxidative stress in comparison to
primary epithelial cells. The enhanced cell growth
observed with cell lines may be more reflective of undif-
ferentiated alveolar type II cells which are likely to replace
terminally differentiated alveolar type I cells after injury/
death due to oxidative stress. This may not be a true reflec-
tion of growth under non-toxic conditions when very
little cell division is occurring. This is an inherent problem
observed when comparing cell lines with primary cells
and results need to be interpreted in a way that considers
this.

It is difficult to know how this will translate to pulmonary
epithelial cells in vivo at this stage. It certainly would
appear that the protection observed is modest in degree in
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this pulmonary epithelial cell line. Further experiments
assessing the function of the repair enzyme hMYH in this
model will be important to perform in order to delineate
the findings of slowed growth under normal conditions
and improved survivability under conditions of O, and
IR. More research looking at the potential for combina-
tion therapy, including DNA repair mechanisms in con-
junction with other antioxidant defense mechanisms may
be another approach to enhancing cell survival, which
may lead to better clinical outcomes. Alternatively, cell
survival may not be the most important end point for
hyperoxia studies. Given that 8-oxoG, if left unrepaired,
leads to G:C to T:A transversions, there may be an increase
in mutational burden by these cells that isn't reflected in
cell survival. Further experiments studying the impact on
mutation production is underway. Ultimately, experi-
ments need to be done in animal models to determine the
translation to in vivo pulmonary cells.

Conclusions

In summary, we have demonstrated that over-expression
of the DNA glycosylase repair enzyme hMYH may
enhance survival of a pulmonary epithelial cell line after
exposure to conditions of IR and hyperoxia. We have also
demonstrated that over-expression of hMYH leads to a
slowing of growth of A549 cells under non-toxic condi-
tions, which may in part play a role in this enhancement
of survival by providing a wider window of opportunity
for repair of oxidized lesions to occur. Lastly, we demon-
strated that over-expression does not lead to altered
endogenous expression of these repair genes. As the
understanding of DNA repair mechanisms continues to
grow and the evolution of gene therapy takes place, more
treatment options may be available in the clinical setting
to help with many disease processes including the damag-
ing effects of oxygen and its metabolites.
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