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Periventricular leukomalacia, specifically characterized as white matter injury, in neonates is strongly
associated with the damage of pre-myelinating oligodendrocytes. Clinical data suggest that hypoxia-
ischemia during delivery and intrauterine or neonatal infection-inflammation are important factors in the
etiology of periventricular leukomalacia including cerebral palsy, a serious case exhibiting neurobehavioral
deficits of periventricular leukomalacia. In order to explore the pathophysiological mechanisms of white
matter injury and to better understand how infectious agents may affect the vulnerability of the immature
brain to injury, novel animal models have been developed using hypoperfusion, microbes or bacterial
products (lipopolysaccharide) and excitotoxins. Such efforts have developed rat models that produce
predominantly white matter lesions by adopting combined hypoxia-ischemia technique on postnatal days
1-7, in which unilateral or bilateral carotid arteries of animals are occluded (ischemia) followed by 1-2
hour exposure to 6-8% oxygen environment (hypoxia). Furthermore, low doses of lipopolysaccharide that
by themselves have no adverse-effects in 7-day-old rats, dramatically increase brain injury to hypoxic-
ischemic challenge, implying that inflammation sensitizes the immature central nervous system.
Therefore, among numerous models of periventricular leukomalacia, combination of hypoxia-ischemia-
lipopolysaccharide might be one of the most-acceptable rodent models to induce extensive white matter
injury and ensuing neurobehavioral deficits for the evaluation of candidate therapeutics.
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Cerebral palsy (CP), one of the most-devastating neural

diseases, results from asphyxia during delivery as well as

intrauterine infection [1]. The disease is also called periventricular

leukomalacia (PVL), hypoxia-ischemia encephalopathy (HIE),

white matter injury/damage (WMI/WMD), and CP in serious

cases exhibiting neurobehavioral symptoms. Although asphyxia

during delivery is considered an important etiological factor

in many cases with PVL, the etiology might be multi-factorial.

Infections and inflammation, coagulopathy and genetic

background alone or in combination seem to be important

[2]. Furthermore, it is well known that respiratory dysfunction

is a predominant factor in pre-term infants in which a very-

high incidence of CP is produced [3-6]. Motor, perceptual,

visual, behavioral and/or cognitive disorders occur in the

majority of cases with PVL [7-9]. For a better understanding

of the underlying mechanisms of WMI, several animal models

of PVL have been developed based on the hypoxia-ischemia

(HI) surgery, infection or lipopolysaccharide (LPS) administration,
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or excitotoxin challenge. In this review, we summarized these

models of PVL and analyzed the association between infection/

inflammation and cerebral palsy found in human infants [10].

Neuropathology of Infantile PVL

Although infantile WMI was named PVL [11], it seems

like that WMI is widespread including periventricular,

subcortical and callosal white matters, and internal capsule

[12-15]. Injury of white matter usually predominates, however

gray matter areas, such as the cerebral cortex, thalamus and

basal ganglia, are also affected directly or secondarily due

to loss of white matter according to the severity [14,16]. WMI

lesions are shown to be focal or diffuse [17]. The focal lesions

involve necrosis of all tissue constituents, neurons or axons,

astrocytes and oligodendrocytes, which may lead to cavitary

lesions with surrounding proliferating astrocytes (so called

astrocytosis or hypertrophic astrocytes). In comparison, the

diffuse type involves a broad paucity of white matter, thinning

of the corpus callosum, and often ventriculomegaly in late

stages [18]. Particularly, the diffuse injury is characterized by

astrogliosis, loss of oligodendroglial lineage, and impaired

myelinogenesis [19]. WMI usually occurs during delivery when

the white matter is non-myelinated or in the initial phase

of myelination, and populated mainly by late oligodendroglial

progenitors (O4+O1−), but with a small proportion of immature

oligondendroglia (O4+O1+) [20]. Axons may also be lost in

the lesions as demonstrated by axonal retraction balls and

clubs [11,21]. Accumulation of amyloid precursor proteins

(APP) [22] and axonal transections [21] are seen in the focal

lesions [23]. In addition to hypertrophic (activated) astrocytes,

microglia and macrophages are also constituents of WMI

[14,15,22], and these cells are immunoreactive for the pro-

inflammatory cytokines including tumor-necrosis factor-α

(TNF-α) and interleukin-6 (IL-6) [24], suggestive of an inflammatory

response. These cells may be reactivated residents of the

white matter or recruited from the blood, indicating the

possible participation of blood-derived inflammatory cells [25].

Etiology of Infantile PVL

There are two major etiologies of PVL; i.e., ischemia

(hypoxia)-reperfusion [26] and infection/inflammation, resulting

in fetal inflammatory responses [27]. The ischemia-reperfusion

process is confirmed by the presence of arterial end and

border zones in the periventricular white matter [28,29],

pressure-passive circulation without autoregulatory function

[30], and the susceptibility of O4+O1− late oligodendroglial

progenitors which are predominating oligodendroglial cells

at gestational weeks 24-32 (GW24-32) or GW24-40 susceptible

to oxidative stress, excitotoxicity and in vitro ischemia (Figure

1) [19,20,31-35]. On the other hand, inflammatory pathway

is supported by the fact that WMI is predicted by histological

chorioamnionitis and vasculitis in umbilical cord and chorion

plate as well as pro-inflammatory cytokines such as IL-6 and

IL-8 in amniotic fluid and fetal blood [27,36,37]. In addition,

microglia/macrophages in white matter lesions exhibit

immunoreactivity for IL-6 and TNF-α [24]. Premyelinating

oligodendrocytes (pre-OLs), which have been shown to be

a key cellular target in PVL, are in a phase of active development

during GW24-40 [20,33-35]. Four developmental stages of

oligodendroglial maturation include (1) oligodendroglial

progenitors, (2) late oligodendroglial progenitors (O4+O1− pre-

oligodendrocytes), (3) immature oligodendrocytes (O4+O1+),

Figure 1. Developmental stage-dependent periventricular leukomalacia of rodents induced by hypoxia-ischemia. PND, post-natal
day; WMI, white matter injury.
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and (4) mature myelin-producing oligodendrocytes [myelin

basic protein (MBP) positive (MBP+)]. Pre-oligodendrocytes

(late oligodendroglial progenitors) and immature oligodendrocytes

are referred as pre-OLs. These differentiating forms, especially

the O4+O1+ immature oligodendrocytes, ensheath axons for

differentiation into myelin-producing oligodendrocytes.

Mature, MBP-expressing and ultimately myelin-producing

oligodendrocytes are not abundant in cerebral white matter

until after term. During the peak period of PVL, O4+O1−

late oligodendroglial progenitors predominate in cerebral white

matter and at GW28 account for 90% of the total

oligodendroglial population [20]. At GW28-40, O4+O1− cells

begin differentiation into O4+O1+ immature oligodendrocytes,

which consists of approximately 30% of total oligodendrocyte

population during the later premature period and about 50%

by term. These two early differentiating cells are specifically

vulnerable to injurious insults, such as ischemia and

inflammation, which lead to excitotoxicity and generation

of free radicals. These pre-OLs show enhanced vulnerability

to the following factors: (1) reactive oxygen species (ROS)

and reactive nitrogen species (RNS), because of impaired

antioxidant defenses; (2) excitotoxicity due to exuberant

expression of calcium-permeable glutamate receptors, and

enhanced expression of the main glutamate transporter, which

can become a source of injurious glutamate; and (3) cytokine

injury, because of both expression of the interferon-γ (IFN-

ã) receptors on the pre-OLs in the context of pronounced

availability of IFN-γ in the abundant astrocytes of PVL, and

sensitivity to injury by tumor-necrosis factor-α (TNF-α), which

is secreted by the abundant activated microglia [38-52].

Microglia play key roles during brain development, involving

apoptosis, vascularization, axonal development, and myelination

[53-56]. Thus, microglia become prominent in the forebrain

at GW16-22 [57-60], reaching a peak in cerebral white matter

in the third trimester [60]. It is believed that microglia be

key effectors of cellular injury following ischemia and/or

inflammation, since they generate ROS/RNS, secrete injurious

cytokines, and enhance excitotoxicity [44-48,58,61-63].

Because microglia are abundant in normal cerebral white

matter during peri-natal period, their activation leads to injury

to white matter constituents including pre-OLs, and also axons

and subplate neurons [60]. Not surprisingly, it was found out

that many activated microglia are present diffusely in cerebral

white matter in association with pre-OLs injury in PVL [39].

Animal Models of PVL

According to clinical information described above, a large

number of animal models of PVL have been developed. PVL

can be induced either by induction of a systemic inflammatory

response through administration of bacteria or its products

such as LPS [64-69], or ante- or post-natal HI surgery [68,70-

73]. White matter lesions can also be induced by N-methyl-

D-aspartate (NMDA) [65,74] and non-NMDA receptor [68]

agonists, indicating that excitotoxicity may be involved in

the development of PVL. The period prior to generalized

myelinogenesis represents the developmental stage with a

high vulnerability of white matter [19,65,73,75-78]. The white

matter vulnerability has been related to the presence of

O4+O1− pre-OLs at GW24-32 in humans [19,20,73]. The

pre-OLs (O4+O1−) are susceptible to HI in immature rats,

whereas O4+O1+ immature oligodendrocytes are not [73].

Oligodendrocytes immunoreactive for O4 but negative for

O1 predominate in the rat white matter on post-natal days

2-4 (PND2-4) [68,73], whereas O4+O1+ cells predominate

on PND7. This agrees with the suggestion in mice [65] that

PND5 corresponds to GW24-30 in humans with regard to

white matter maturation [77]. These studies suggest that white

matter vulnerability in the rat/mouse on PND4, rather than

PND7, would correspond to the white matter vulnerability

in pre-term infants.

Hypoperfusion models

In most of the HI models of PVL, both gray and white

matters are affected, except for the dog model of ischemia

[79] or hemorrhagic hypotension model [71] in fetal sheep,

which produced selective WMI. In general, the pattern of

WMI in rabbits, cats, dogs and sheep has a distribution and

morphological features closer to human pre-term brain lesions

(predominantly white matter) than that in rodents (Table 1)

[1]. Induction of extensive WMI is difficult in rats and mice,

which may be due to the different central nervous system

(CNS) anatomy of rodents that have a much lower white/

gray matter ratio. However, based on the cost efficiency,

availability of antibodies and transgenic animals, rodent PVL

models are acceptable. Earlier, a PVL model in immature

animals with unilateral carotid ligation and exposure to 8%

oxygen environment for 1-3 hours was introduced [80], in

Table 1. Comparative time schedule for CNS development in
animals and humans [1]

Animal
Human pre-term 
(GW23-36)

Human term
(GW37-42)

Mouse PND3-7 PND8-12

Rat PND3-7 PND8-12

Rabbit GD20-28 (70-85%) Birth, GD33 (100%)

Dog Birth PNW>2

Sheep GD93-99 GD119-133 (90%)

PND, post-natal day; GD, gestational day; PNW, post-natal week.
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which even though the vulnerability of myelinogenic zones

was emphasized, most researches in this model have focused

on gray matter injury. Nevertheless, it has been used successfully

to study the response of immature oligodendroglial and stem/

progenitor cells in white matter and periventricular zones

to HI both in 9-day-old mice [81] and 7-day-old rats [73,82,83].

A corresponding model in 1-day-old rats has also been

developed, which produces injury predominantly in the gray

matter [84]. Recently, a modification model in rats, unilateral

carotid artery ligation and 6% oxygen for 1 hour on PND7,

was found to lead to selective loss of O1+ oligodendroglia

and decrease of MBP in the corpus callosum and periventricular

white matter 4 days later, without affecting gray matter [68].

Another study induced a loss of O4+ cells in the corpus

callosum by bilateral carotid artery ligation and 10-min

exposure to 8% oxygen environment [70]. In another study,

permanent bilateral carotid artery ligation of PND5 or PND7

rats resulted in subcortical white and gray matter injuries

[72,83]. However, because of limited survival beyond 2-3

days [83], 2-hour transient bilateral carotid ligation allowed

long-term survival and still produced similar distribution of

damage in subcortical regions. In comparison, permanent

bilateral carotid artery ligation of 1-day-old rats allowed long-

term survival longer than 2 weeks and produced WMI in

corpus callosum, subcortex, internal capsule, and a significant

enlargement of the ventricles [85] with limited pathology in

the gray matter. Although rodent models need to be further

explored, unilateral carotid artery ligation followed by exposure

8% oxygen for 2-3 hours is suitable, since various parameters

to evaluate neurobehavioral deficits are obtainable, without

mortality [83]. Interestingly, a model was introduced in rabbit

fetuses of gestational days 21-25 (GD21-25), subjected to

intrauterine hypoperfusion and WMI affecting O4+O1− pre-

oligodendrocytes, were found 1-7 days after the insult [78].

Post-natal changes in magnetic resonance imaging (MRI) were

found in the white matter and, moreover, severe neurological

dysfunctions were demonstrated after birth approximately 10

days post-induction [86].

Inflammation models

Extra-amniotic or intrauterine inoculation of live E. coli

[67,87,88] without antibiotics induced pre-term stillbirth within

48 hours. In live pups sacrificed at 12-30 hours, brain injury

was not detected [67,88]. However, antibiotic administration

prevented pre-term delivery and fetal infection was delayed.

Brain injury was detected in a part of pups after 2-6 days

[87,88]. It is of interest to note that most fetuses with brain

injury were blood culture negative, whereas there were

inflammatory changes in chorioamniotic membranes. The

results indicate that brain injury is related to the sustained

inflammatory response rather than to passage of microbes

into the brain, which is supported by the lack of massive

accumulation of granulocytes in the CNS lesions [67].

Underlying mechanisms of LPS-induced PVL are not fully

known. LPS is believed to activate innate immune system

via interaction with toll-like receptors (TLR) on immune cells

[89]. LPS binds to CD14 that facilitates activation of TLR-

4, which in turn, resulting in nuclear factor-κB (NF-κB)

activation and production of pro-inflammatory cytokines

[89,90]. Thus, TLR-4- or CD14-deficient mice do not respond

to LPS. TLR-4 receptors were found in the immature brain,

and LPS administration induced an increased expression of

CD14 [69]. In addition to the inflammatory response [91,92],

LPS induces hypoperfusion [93], hypoglycemia [93], hyperthermia

[91] and lactic acidosis, which may important factors triggering

brain damage. In fact, a high dose of LPS (12 mg/kg) induced

hypotension (50% decrease) as well as decrease in cerebral

blood flow (CBF) in white matter, suggesting that hypoperfusion

is an important contributor to injury in this region [93].

Interestingly, even a lower dose of LPS (4 mg/kg), leading

to a 20-30% decrease in arterial blood pressure, was enough

to induce widespread white matter lesions. Therefore, it is

expected that appropriate (moderate) doses of LPS would

induce hypoperfusion and injury of white matter. In young

rabbits, intravenous injection of LPS (10 mg/kg) was found

to decrease CBF by 25 and 43% in cerebral cortex and white

matter, respectively [94]. However, brain injury was seen in

the both regions, making it uncertain to what extent the

decrease of CBF was the critical level for brain injury. Moreover,

it was reported that WMI evolved in response to repeated

doses of LPS in fetal sheep, in spite of the fact that hemodynamic

effects became less pronounced, suggesting that hypoperfusion

was not the critical factor [95]. Thus, it is suggested that the

LPS-induced development of brain injury cannot be fully

explained in terms of cerebral hypoperfusion. Especially, white

or gray matter injuries in rats (PND5-7) were not successfully

produced using various dose levels of LPS (0.3 mg/kg up to

100 mg/kg), in spite of a marked mRNA expression of pro-

inflammatory cytokines in the white matter [66,69,96],

implying that at least this form of CNS inflammation in rats

was not sufficient to produce WMI. Such results indicate

that LPS-induced WMI might be caused by a combination

of systemic and CNS inflammatory effects.

Excitotoxic models

Intracerebral administration of excitatory amino acid (EAA)

receptor agonists [NMDA and DL-α-amino-3-hydroxy-5-

methyl-4-isoxalone propionic acid (AMPA)] in PND7-14 rats
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has been shown to induce lesions 40 times larger than in

adult rats in the striatum, hippocampus and cerebral cortex

[74]. Subcortical injection of ibotenate (an NMDA receptor

agonist) in PND5 mice produced cortical and white matter

injuries [65,97]. The topographical localization, ontogenetic

window, and pharmacology of the lesions suggested that the

lesions were primary, not secondary to the lesions in cerebral

cortex or other gray matter areas. Indeed, microglia activation

is triggered by NMDA, leading to extensive astroglial (but

not oligodendroglial) death [97]. By comparison, injection

of AMPA to PND7 rats caused selective WMI affecting O4+O1+

pre-oligodendroglia (expressing GluR4 receptors), which was

attenuated by NBQX (an AMPA receptor antagonist), but not

by dizocilpine (MK-801; an NMDA receptor antagonist) [68].

Furthermore, in pre-oligodendroglial cultures, EAA-mediated

inhibition of cystine uptake led to the depletion of glutathione

and susceptibility to injury evoked by oxygen free radicals

[31]. In spite of partial contradiction, these studies suggest

that NMDA and AMPA receptors as well as non-receptor-

mediated mechanisms may be involved in WMI. Injection

of high doses of excitotoxins is highly artificial and the role

of excitotoxicity in WMI remains obscure, but such paradigms

may be useful to explain some aspects of human disease.

Comparison of PVL models

In sheep fetuses, both LPS (100 ng) injection and asphyxia

(25-min umbilical cord occlusion) caused periventricular (focal

and diffuse) and subcortical (diffuse) WMI with a quite similar

distribution, except for somewhat broader involvement of

the gray matter (striatum and hippocampus) after umbilical

cord occlusion. In both models, there were acute losses of

glial fibrillary acidic protein (GFAP)-positive astroglia and cyclic

nucleotide phosphohydrolase (CNPase)-positive immature

oligodendroglia. In contrast, marked microglial responses were

seen in both models, although microglial accumulation was

more focal within the lesions induced by LPS. Furthermore,

inflammatory cell infiltrations occurred much more frequently

after LPS challenge, probably corresponding to macrophages/

polymorphonuclear neutrophiles (PMNs) found in other

models of LPS-induced WMI in cats and dogs [91,92] or

after local administration of LPS into the immature brain [98].

The results suggest that PVL evoked by a systemic inflammation

(inflammatory WMI) has a different morphological appearance

than that produced by hypoperfusion (ischemic WMI). And

comparison of the underlying mechanisms of the two lesions

may be of interest as these forms of injury may have clinical

relevance [26,27]. The different distribution of microglia and

macrophages following the two insults may be critical, because

these cells appear to have a key role in ibotenate-induced

WMI [97], and because microglial toxicity depends on the

density of microglia [99].

Only intraperitoneal administration of LPS to the pregnant

rats or to the neonatal pups does not produce consistent

brain injury [66,69]. However, LPS (0.3 mg/kg), intraperitoneally

given 4 hours prior to HI in 7-day-old rats (brain maturity

corresponding to near term), sensitized the brain to injury;

20-min HI plus LPS injection (HIL) induced extensive lesions

in all animals, whereas 20-min HI alone produced essentially

minimal or no injury [69]. In contrast, administration of another

endotoxin, lipoteichoic acid, 3 hours prior to HI reduced

brain injury [100]. Thus, further studies are necessary to find

out whether this intriguing difference can be explained by

the fact that LPS and lipoteichoic acid act via different receptors

[90].

The potential of infections and inflammation in brain injury

is not limited to pre-term infants. The relationship between

infection/inflammation and PVL including CP may be higher

in term rather than in pre-term infants [101,102]. Notably,

chorioamnionitis was related to serious CP with 9-fold higher

risk [10], in which the levels of pro-inflammatory cytokines

and chemokines were much higher [103]. Moreover, the

combination of intrauterine infection and asphyxia during

delivery (hard labor) appeared to confer a synergistic effect

with a substantially (78-fold) higher risk of CP [104], suggesting

that inflammation (or infectious products) may sensitize the

fetus to additional insults.

Conclusion

Earlier, experimental researches on peri-natal brain injury

have focused on hypoxic-ischemic damage to reflect the

clinical problem of birth asphyxia, which has demonstrated

critical clues on the pathophysiology of immature neuronal

injury. However, only a small proportion of casualties suffering

from PVL, especially CP, are related to asphyxia. In our recent

understanding, intrauterine or peri-natal infection is emerged

to be an important factor in pre-term as well as in term

infants. Consequently, a number of novel animal models have

been introduced in various species to demonstrate the features

of WMI and explain underlying pathology in the early

immature brain, either induced by hypoperfusion or infectious

agents. Furthermore, recent studies have shown that bacterial

endotoxin sensitize the brain to a secondary HI, supportive

of the involvement of combinational factors in infantile brain

injury. Conclusively, it is suggested that HIL models that consists

of hypoxia-ischemia-LPS could be one of the best choices

to induce extensive WMI and ensuing neurobehavioral deficits

for the screening of candidate therapeutics.
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