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Abstract: The master regulator of the fibrosis cascade is the myocardin-related transcription fac-
tor/serum response factor (MRTF/SRF) pathway, making it a key target for anti-fibrotic therapeutics.
In the past, inhibitors and small interfering RNAs (siRNAs) targeting the MRTF-B gene have been de-
ployed to counter fibrosis in the eye, with the latter showing promising results. However, the biggest
challenge in implementing siRNA therapeutics is the method of delivery. In this study, we utilised
the novel, pH-sensitive, cationic lipid CL4H6, which has previously demonstrated potent targeting
of hepatocytes and endosomal escape, to safely and efficiently deliver an MRTF-B siRNA into human
conjunctival fibroblasts. We prepared two lipid nanoparticle (LNP) formulations, incorporating
targeting cleavable peptide cY in one of them, and measured their physicochemical properties and
silencing effect in human conjunctival fibroblasts. Both proved to be non-cytotoxic at a concentration
of 50 nM and effectively silenced the MRTF-B gene in vitro, with the targeting cleavable peptide
not affecting the silencing efficiency [LNP with cY: 62.1% and 81.5% versus LNP without cY: 77.7%
and 80.2%, at siRNA concentrations of 50 nM (p = 0.06) and 100 nM (p = 0.09), respectively]. On the
other hand, the addition of the targeting cleavable peptide significantly increased the encapsulation
efficiency of the LNPs from 92.5% to 99.3% (p = 0.0005). In a 3D fibroblast-populated collagen
matrix model, both LNP formulations significantly decreased fibroblast contraction after a single
transfection. We conclude that the novel PEGylated CL4H6-MRTF-B siRNA-loaded LNPs represent a
promising therapeutic approach to prevent conjunctival fibrosis after glaucoma filtration surgery.

Keywords: lipid nanoparticle; siRNA; targeting peptide; glaucoma; fibrosis

1. Introduction

Fibrosis, the pathological dysregulation of wound healing, represents one of the largest
unmet needs in clinical medicine. In contrast with acute inflammatory reactions, which
are short-lived, fibrosis is typically the result of chronic inflammation and is considered
responsible for nearly 45% of all deaths in the developed world [1]. In the eye, it has been
shown that fibrosis plays a major role in the long-term success rate of glaucoma filtration
surgery [2]. According to the World Health Organization, glaucoma is the leading cause of
irreversible blindness worldwide, affecting at present 76 million people and an estimated
112 million people by 2040 [3]. Currently, non-specific antimetabolite drugs, namely,
mitomycin-C (MMC) and 5-fluorouracil (5-FU), are being used in glaucoma filtration
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surgery to modulate wound healing. They both act by suppressing DNA synthesis and
causing non-specific apoptosis, but they are also known to cause serious vision-threatening
complications, such as tissue damage and severe infections [4–6]. There is thus an unmet
need for the development of novel, targeted and non-cytotoxic therapeutic agents.

The ubiquitous Serum Response Factor (SRF) and its co-activators, Myocardin-Related
Transcription Factors A and B (MRTF-A and MRTF-B), are known master regulators of
cytoskeletal gene expression [7,8]. Moreover, it has been shown that the MRTF/SRF
pathway plays an important role in myofibroblast activation [9] and is intricately linked
to most of the key regulators and pathways in fibrosis [10–12], making it a promising
therapeutic target.

Small interfering RNAs (siRNAs) are short, non-coding, double-stranded RNA molecules,
with an average length of 20–25 nucleotides that regulate genes and genomes at some
of the most important levels of genome function, namely during transcription and trans-
lation [13,14]. The major advantage of the siRNA technology is that virtually any gene
can be targeted and silenced by specifically degrading its mRNA, making it a powerful
therapeutic tool in different diseases [15,16].

In the past, locally delivered MRTF/SRF inhibitors [17] and siRNA nanocomplexes [18,19]
have been used to silence MRTF-B expression in fibroblasts and in animal models of
glaucoma filtration surgery, showing promising results. One of the major hurdles for
siRNA-based therapeutics is their delivery; therefore, in this study, we developed and
optimised lipid nanoparticles (LNPs) to safely and effectively deliver MRTF siRNA into
fibroblasts [20,21]. For their preparation, the novel, pH-sensitive and cationic lipid CL4H6
was used, in addition to 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and
polyethylene glycol (PEG) lipids.

The CL4H6 lipid was identified and optimised after screening a pH-sensitive, cationic
lipid library for lipids that could effectively deliver siRNAs into hepatocytes and induce a
potent gene-silencing response [22,23]. Moreover, CL4H6 was shown to be biodegradable
and well tolerated in vivo [22], and it displayed exceptional efficiency of endosomal escape
and cytosolic release [22,23], which would also add to the efficiency of a therapeutic
approach. In fact, it was proven that the CL4H6-LNP is superior to the efficiency of DLin-
MC3-DMA [24,25], a lipid ingredient of Patisiran, which is the first siRNA-based drug
that has been approved by the FDA for the treatment of polyneuropathy in patients with
hereditary transthyretin-mediated amyloidosis (hATTR) [26], thus making it an excellent
tool for our study.

In recent years, cell targeting peptides (CTPs) have been increasingly used with
nanocarriers to achieve targeted delivery of drugs and other therapeutic agents with
high specificity [27]. These CTPs are recognised by cell surface receptors, instigating the
internalisation of their cargos, and thus allowing the delivery of therapeutics in specific
cells. In this study, we used the cleavable version of the targeting peptide Y (cY). cY consists
of a positively charged nucleic acid binding domain composed of 16 lysines (K16), a GA
spacer, a targeting domain (CYGLPHK) and a cleavable RVRR linker [Arg-Val-Arg-Arg↓
(Arg = Arginine, Val = Valine, ↓ = indicating the cleavage site)] that is recognised by
endosomal enzymes, such as cathepsin B and furin, which bind and cleave the peptide
once inside the cells [28]. Peptide Y was identified by a phage peptide library for peptides
that could bind to the cell surface receptors of airway epithelial cells with high affinity. The
amino acid sequence of this peptide closely resembles part of a protein expressed by the
pathogen Legionella pneumophila [29]. Although its specific target is still unknown, we have
demonstrated that peptide Y mediates the targeted delivery of nanoparticles to a variety of
tissues, including lung cells [30] and eye fibroblasts [18].

Here, we demonstrate for the first time that neutral PEGylated CL4H6 LNPs can effi-
ciently deliver siRNAs into human conjunctival fibroblasts and achieve superior silencing
efficiencies in vitro, while also displaying low cytotoxicity. Moreover, we evaluated for the
first time the addition of a targeting peptide to these LNPs by biophysical characterisations
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and by performing transfections of human conjunctival fibroblasts to assess both gene
silencing and functional efficiencies.

2. Materials and Methods
2.1. Materials

The pH-sensitive cationic lipid CL4H6 was made in house as previously described [22].
1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dimirystoyl-sn-glycero,
methoxyethylene glycol 2000 ether (PEG-DMG) were purchased from SIGMA Aldrich (St.
Louis, MO, USA). Cleavable peptide cY (K16RVRRGACYGLPHKFCG) was synthesised
by AMS Biotechnology (Abingdon, UK). The RiboGreen Assay kit was purchased from
ThermoScientific (Loughborough, UK). MRTF-B siRNA and IRR (irrelevant control) siRNA
were purchased from Horizon Discovery (Cambridge, UK), and the sequences for the sense
and antisense strands of siRNAs are shown in Table 1.

Table 1. Structures of the different lipids and sequences of the peptides and small interfering RNAs (siRNAs).

Function Lipids Structure

Lipid
7-(4-(dipropylamino)butyl)-7-

hydroxytridecane-1,13-diyl dioleate
(CL4H6)

Pharmaceutics 2021, 13, x  3 of 16 
 

 

silencing efficiencies in vitro, while also displaying low cytotoxicity. Moreover, we 
evaluated for the first time the addition of a targeting peptide to these LNPs by 
biophysical characterisations and by performing transfections of human conjunctival 
fibroblasts to assess both gene silencing and functional efficiencies. 

2. Materials and Methods 
2.1. Materials 

The pH-sensitive cationic lipid CL4H6 was made in house as previously described 
[22]. 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dimirystoyl-sn-
glycero, methoxyethylene glycol 2000 ether (PEG-DMG) were purchased from SIGMA 
Aldrich (St. Louis, MO, USA). Cleavable peptide cY (K16RVRRGACYGLPHKFCG) was 
synthesised by AMS Biotechnology (Abingdon, UK). The RiboGreen Assay kit was 
purchased from ThermoScientific (Loughborough, UK). MRTF-B siRNA and IRR 
(irrelevant control) siRNA were purchased from Horizon Discovery (Cambridge, UK), 
and the sequences for the sense and antisense strands of siRNAs are shown in Table 1. 

Table 1. Structures of the different lipids and sequences of the peptides and small interfering RNAs (siRNAs). 

Function Lipids Structure 

Lipid 
7-(4-(dipropylamino)butyl)-7-hy-
droxytridecane-1,13-diyl dioleate 

(CL4H6) 
 

Lipid 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine (DOPE) 

 

Lipid 
1,2-dimirystoyl-sn-glycero, methox-

yethyleneglycol 2000 ether (PEG-
DMG) 

 

Function Peptide Sequence 
Targeting Cleavable Y (cY) K16RVRR--GACYGLPHKFCG 
Function siRNAs Sequence 

Targeting MRTF-B Sense: GCA UCA UGC CAC CUU UGA AGA 
Antisense: UCU UCA AAG GUG GCA UGA UGC 

Non-Targeting Control IRR 
Sense: UGG UUU ACA UGU CGA CUA A 

Antisense: UUA GUC GAC AUG UAA ACC A 

2.2. Nanoparticle Formulations 
CL4H6, DOPE and PEG-DMG were prepared in 90% t-BuOH at a final volume of 400 

μL, a molar ratio of 50:50:1 and a final total lipid concentration of 1.4 mg/mL. Then, 100 
μL of a 0.4 mg/mL siRNA solution were mixed with the lipids to give an N/P ratio of 7.5. 
Next, the LNPs were prepared in 20 mM MES buffer (pH 6.0) as previously described [22]. 
A portion of the resulting LNPs were mixed with peptide cY at a weight ratio of 4:1 (pep-
tide:siRNA) by rapid mixing to obtain the LNP+cY nanoparticles. The LNPs were stored 
at 4 °C until needed 

2.3. Cell Culture 

Lipid
1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine
(DOPE)

Pharmaceutics 2021, 13, x  3 of 16 
 

 

silencing efficiencies in vitro, while also displaying low cytotoxicity. Moreover, we 
evaluated for the first time the addition of a targeting peptide to these LNPs by 
biophysical characterisations and by performing transfections of human conjunctival 
fibroblasts to assess both gene silencing and functional efficiencies. 

2. Materials and Methods 
2.1. Materials 

The pH-sensitive cationic lipid CL4H6 was made in house as previously described 
[22]. 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dimirystoyl-sn-
glycero, methoxyethylene glycol 2000 ether (PEG-DMG) were purchased from SIGMA 
Aldrich (St. Louis, MO, USA). Cleavable peptide cY (K16RVRRGACYGLPHKFCG) was 
synthesised by AMS Biotechnology (Abingdon, UK). The RiboGreen Assay kit was 
purchased from ThermoScientific (Loughborough, UK). MRTF-B siRNA and IRR 
(irrelevant control) siRNA were purchased from Horizon Discovery (Cambridge, UK), 
and the sequences for the sense and antisense strands of siRNAs are shown in Table 1. 

Table 1. Structures of the different lipids and sequences of the peptides and small interfering RNAs (siRNAs). 

Function Lipids Structure 

Lipid 
7-(4-(dipropylamino)butyl)-7-hy-
droxytridecane-1,13-diyl dioleate 

(CL4H6) 
 

Lipid 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine (DOPE) 

 

Lipid 
1,2-dimirystoyl-sn-glycero, methox-

yethyleneglycol 2000 ether (PEG-
DMG) 

 

Function Peptide Sequence 
Targeting Cleavable Y (cY) K16RVRR--GACYGLPHKFCG 
Function siRNAs Sequence 

Targeting MRTF-B Sense: GCA UCA UGC CAC CUU UGA AGA 
Antisense: UCU UCA AAG GUG GCA UGA UGC 

Non-Targeting Control IRR 
Sense: UGG UUU ACA UGU CGA CUA A 

Antisense: UUA GUC GAC AUG UAA ACC A 

2.2. Nanoparticle Formulations 
CL4H6, DOPE and PEG-DMG were prepared in 90% t-BuOH at a final volume of 400 

μL, a molar ratio of 50:50:1 and a final total lipid concentration of 1.4 mg/mL. Then, 100 
μL of a 0.4 mg/mL siRNA solution were mixed with the lipids to give an N/P ratio of 7.5. 
Next, the LNPs were prepared in 20 mM MES buffer (pH 6.0) as previously described [22]. 
A portion of the resulting LNPs were mixed with peptide cY at a weight ratio of 4:1 (pep-
tide:siRNA) by rapid mixing to obtain the LNP+cY nanoparticles. The LNPs were stored 
at 4 °C until needed 

2.3. Cell Culture 

Lipid
1,2-dimirystoyl-sn-glycero,

methoxyethyleneglycol 2000 ether
(PEG-DMG)

Pharmaceutics 2021, 13, x  3 of 16 
 

 

silencing efficiencies in vitro, while also displaying low cytotoxicity. Moreover, we 
evaluated for the first time the addition of a targeting peptide to these LNPs by 
biophysical characterisations and by performing transfections of human conjunctival 
fibroblasts to assess both gene silencing and functional efficiencies. 

2. Materials and Methods 
2.1. Materials 

The pH-sensitive cationic lipid CL4H6 was made in house as previously described 
[22]. 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dimirystoyl-sn-
glycero, methoxyethylene glycol 2000 ether (PEG-DMG) were purchased from SIGMA 
Aldrich (St. Louis, MO, USA). Cleavable peptide cY (K16RVRRGACYGLPHKFCG) was 
synthesised by AMS Biotechnology (Abingdon, UK). The RiboGreen Assay kit was 
purchased from ThermoScientific (Loughborough, UK). MRTF-B siRNA and IRR 
(irrelevant control) siRNA were purchased from Horizon Discovery (Cambridge, UK), 
and the sequences for the sense and antisense strands of siRNAs are shown in Table 1. 

Table 1. Structures of the different lipids and sequences of the peptides and small interfering RNAs (siRNAs). 

Function Lipids Structure 

Lipid 
7-(4-(dipropylamino)butyl)-7-hy-
droxytridecane-1,13-diyl dioleate 

(CL4H6) 
 

Lipid 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine (DOPE) 

 

Lipid 
1,2-dimirystoyl-sn-glycero, methox-

yethyleneglycol 2000 ether (PEG-
DMG) 

 

Function Peptide Sequence 
Targeting Cleavable Y (cY) K16RVRR--GACYGLPHKFCG 
Function siRNAs Sequence 

Targeting MRTF-B Sense: GCA UCA UGC CAC CUU UGA AGA 
Antisense: UCU UCA AAG GUG GCA UGA UGC 

Non-Targeting Control IRR 
Sense: UGG UUU ACA UGU CGA CUA A 

Antisense: UUA GUC GAC AUG UAA ACC A 

2.2. Nanoparticle Formulations 
CL4H6, DOPE and PEG-DMG were prepared in 90% t-BuOH at a final volume of 400 

μL, a molar ratio of 50:50:1 and a final total lipid concentration of 1.4 mg/mL. Then, 100 
μL of a 0.4 mg/mL siRNA solution were mixed with the lipids to give an N/P ratio of 7.5. 
Next, the LNPs were prepared in 20 mM MES buffer (pH 6.0) as previously described [22]. 
A portion of the resulting LNPs were mixed with peptide cY at a weight ratio of 4:1 (pep-
tide:siRNA) by rapid mixing to obtain the LNP+cY nanoparticles. The LNPs were stored 
at 4 °C until needed 

2.3. Cell Culture 

Function Peptide Sequence

Targeting Cleavable Y (cY) K16RVRR–GACYGLPHKFCG

Function siRNAs Sequence

Targeting MRTF-B Sense: GCA UCA UGC CAC CUU UGA AGA
Antisense: UCU UCA AAG GUG GCA UGA UGC

Non-Targeting Control IRR Sense: UGG UUU ACA UGU CGA CUA A
Antisense: UUA GUC GAC AUG UAA ACC A

2.2. Nanoparticle Formulations

CL4H6, DOPE and PEG-DMG were prepared in 90% t-BuOH at a final volume of
400 µL, a molar ratio of 50:50:1 and a final total lipid concentration of 1.4 mg/mL. Then,
100 µL of a 0.4 mg/mL siRNA solution were mixed with the lipids to give an N/P ratio
of 7.5. Next, the LNPs were prepared in 20 mM MES buffer (pH 6.0) as previously de-
scribed [22]. A portion of the resulting LNPs were mixed with peptide cY at a weight ratio
of 4:1 (peptide:siRNA) by rapid mixing to obtain the LNP+cY nanoparticles. The LNPs
were stored at 4 ◦C until needed.

2.3. Cell Culture

Human conjunctival fibroblasts were obtained from donor conjunctiva of glaucoma
patients after informed consent and were cultured as previously described [18]. Fibroblasts
between passages 2–8 were used in the experiments. All experimental protocols were
approved by the West of Scotland Research Ethics Committee (REC 19/WS/0146).



Pharmaceutics 2021, 13, 382 4 of 16

2.4. Nanoparticle Size and Zeta Potential

A Nano ZS Zetasizer (Malvern Instruments, Malvern, UK) was used to measure the
size and zeta potential of the nanoparticles by dynamic light scattering (DLS) and laser
Doppler anemometry, respectively, as previously described [18]. Measurements were
performed in triplicates for each sample and the results were analysed using the built-in
software (DTS version 5.03).

2.5. Transmission Electron Microscopy

Nanoparticles were applied to a copper grid (300-mesh) coated with Formvar/carbon
support film (Agar Scientific, Stanstead, UK). They were then incubated for 3 min at
room temperature. The samples were negatively stained with uranyl acetate (1%) for 15 s,
followed by air drying and blotting on filter paper. A Philips CM120 BioTwin TEM was
used for imaging (accelerating voltage 120kV). The images were captured using an AMT
5MP digital TEM camera (Deben UK, Suffolk, UK).

2.6. Encapsulation Assay

The siRNA encapsulation efficiency was determined using the RiboGreen assay.
100 µL of nanoparticles or siRNA solution (for standard curve) were diluted in 100 µL of
10 mM HEPES buffer (pH 7.4) containing 20 µg/mL dextran sulfate and RiboGreen, in the
presence or absence of 0.1 w/v% Triton X-100 (Sigma Aldrich, Gillingham, UK) added to a
96-well plate (Falcon, Fisher Scientific, Loughborough, UK). Fluorescence was measured
using FLUOstar Omega (BMG LABTECH, Aylesbury, UK. The siRNA concentration was
calculated based on an siRNA standard curve. The siRNA encapsulation efficiency was cal-
culated by comparing the siRNA concentrations in the presence and absence of Triton X-100.
The formula used was: siRNA encapsulation % = (Encapsulated siRNA-Unencapsulated
siRNA)/(Total siRNA concentration) × 100.

2.7. In Vitro Transfection

Human conjunctival fibroblasts were seeded in 6-well plates (Falcon, Fisher Scientific,
Loughborough, UK) at a density of 1 × 105 cells per well and were incubated for 24 h to
reach approximately 40% confluency before the LNPs were added. The cells were then
incubated for 48 h at 37 ◦C with four types of LNPs in complete media: LNP-MRTF-B
siRNA, LNP+cY-MRTF-B siRNA, LNP-IRR siRNA, LNP+cY-IRR siRNA. Each type of LNP
was tested at two different siRNA concentrations (50 nM, 100 nM).

2.8. Real-Time Quantitative PCR

Human conjunctival fibroblasts were prepared for RNA extraction as per the manu-
facturer’s instructions using a RNeasy mini kit (Qiagen, Crawley, UK). The high-capacity
cDNA reverse transcription kit was used for reverse transcription as per the manufac-
turer’s instructions (Applied Biosystems, UK). RT-qPCR reactions were performed on a
ViiA7 Real-Time PCR system (Thermo Fisher Scientific, Loughborough, UK) using Quan-
tiFast SYBR Green master mix (Qiagen, Crawley, UK). Assay conditions for RT-qPCR
were as follows: stage 1, 95 ◦C for 5 min; stage 2, 95 ◦C for 10 s; then 60 ◦C for 30 s;
repeated 45 times. The human primers were: MRTF-B, 5′-CTTCCTGTGGACTCCAGTG-3′,
3′-TGTGACTCCTGACTCGCAG-5′; GAPDH, 5′-ACGGATTTGGTCGTATTGGGC-3′, 3′-
TTGACGGTGCCATGGAATTTG-5′. The mRNA values were normalised relative to those
of GAPDH, and each experimental condition was carried out in triplicates.

2.9. Cell Proliferation Assay

Human conjunctival fibroblasts were seeded in 96-well plates at a density of 6.25× 103

cells per well (Falcon, Fisher Scientific, Loughborough, UK). Each nanoparticle formulation
was added in triplicate wells for our measurements. Cell Titer 96 Aqueous one solution
cell proliferation assay (Promega, Southampton, UK) was used to determine cell viability.
The existing medium in each well was discarded and replaced with 100 µL of fresh growth
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medium, as well as 20 µL of the Cell Titer 96 Aqueous one solution. The plates were then
incubated for 2 h at room temperature. Following this, the absorbance readings were
recorded using a FLUOstar Omega (BMG LABTECH, Aylesbury, UK) at 540 nm. The cell
viability was calculated as a percentage of the viability of the control untreated cells.

2.10. Collagen Contraction Assay

Human conjunctival fibroblasts were trypsinised and their cell density in the sus-
pension was calculated. Cell suspensions with a cell density of 1 × 105 cells/mL were
centrifuged for 5 min at 1500 rpm. The supernatant was discarded and the cell pellet was
resuspended in 100 µL of fetal calf serum. A collagen gel solution was prepared using
1 mL of Type 1 collagen at a concentration of 2.05 mg/mL in 0.6% acetic acid (First Link
UK Ltd., Wolverhampton, UK), and 160 µL of concentrated medium [140 µL L-glutamine
(ThermoScientific, Loughborough, UK), 1.4 mL DMEM 10X (Sigma Aldrich, Gillingham,
UK) and 360 µL sodium bicarbonate 7.5% (Sigma Aldrich, Gillingham, UK)]. Before the
cells were added to the solution, the pH was adjusted to pH 7.0 using sodium hydroxide
(Sigma Aldrich, Gillingham, UK). Once the cells were added to the collagen gel solution,
the fibroblast-gel mixture was placed in the MatTek dishes (MatTek Life Sciences, Ashland,
MA, USA) and allowed to set for 10 min in an incubator (37 ◦C with 5% CO2 and 95%
humidity). Each gel disc was gently detached from the edges of the well and 2 mL of
growth medium was added before being placed back into the incubator. To measure
matrix contraction, digital images were taken immediately following the release of the
polymerised matrices (t0) and then daily over a period of 1 week (tn). Image J software
(http://rsb.info.nih.gov/ij/, accessed on 5 February 2021) was used to analyse the images.
The following formula was applied to calculate the gel surface area [A (tn) in % = 100–(100
× rtn2/rt02)], where A is the gel surface area (this value was normalised to the value
calculated at t0) and r is the radius. For each experimental condition, triplicate matrices
were performed.

2.11. Statistical Analyses

To determine statistical significance, a Student’s t-test was performed and p values
were calculated. ANOVA analysis was also used to determine statistically significant
differences between the means of three or more treatment groups. Values that were
statistically significant were expressed as follows: *, p < 0.05; **, p < 0.01; ***, p < 0.001. All
graphs used in the paper display mean and standard error of the mean (SEM).

3. Results
3.1. Development and Biophysical Characterisation of Lipid Nanoparticles (LNPs)

We developed and characterised four LNP formulations: LNP-MRTF-B siRNA, LNP+cY-
MRTF-B siRNA, LNP-IRR siRNA, LNP+cY-IRR siRNA (Figure 1).

LNP-MRTF-B siRNA and LNP+cY-MRTF-B siRNA with cleavable peptide Y were
similar in size, with a mean size of 214.4 ± 2.6 (SEM) nm and 211.2 ± 1.9 nm (p = 0.3749),
respectively (Figure 2A). LNP-IRR siRNA and LNP+cY-IRR siRNA also had a similar mean
size of 213.3 ± 12.9 nm and 225.8 ± 2.4 nm (p = 0.3978), respectively.

http://rsb.info.nih.gov/ij/
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LNP-MRTF-B siRNA and LNP+cY-MRTF-B siRNA with cleavable peptide Y were
weakly cationic and had a mean charge of +2.9 ± 0.1 mV and +6.9 ± 0.2 mV (p = 0001),
respectively (Figure 2B). On the other hand, LNP-IRR siRNA were weakly anionic and
had a mean charge of −6.1 ± 0.5 mV, whereas LNP+cY-IRR siRNA with cleavable peptide
Y were cationic with a mean charge of +13.6 ± 0.2 mV (p = 0.000004). Therefore, all
nanocomplexes were near neutral [31].

LNP-MRTF-B siRNA and LNP+cY-MRTF-B siRNA with cleavable peptide Y had
low polydispersity indices (PDIs) of 0.10 ± 0.01 and 0.11 ± 0.02 (p = 0.6541), respectively,
indicating a monodisperse population (Figure 2C). LNP-IRR siRNA and LNP+cY-IRR
siRNA with cleavable peptide Y had higher PDIs of 0.22 ± 0.02 and 0.27 ± 0.02 (p = 0.1850),
respectively.

LNP-MRTF-B siRNA and LNP+cY-MRTF-B siRNA with cleavable peptide Y were
also characterised using negative staining TEM. The TEM imaging showed a spherical
morphology in both LNP formulations and an approximate size of 200 nm (Figure 3), which
is in accordance with the DLS measurements in Figure 2A.



Pharmaceutics 2021, 13, 382 7 of 16
Pharmaceutics 2021, 13, x  7 of 16 
 

 

 
Figure 2. Biophysical characterisation of different lipid nanoparticle (LNP) siRNA formulations. 
(A) Size in nm. (B) Zeta potential in mV. (C) Polydispersity index. Results represent mean ± SEM. 
***, p < 0.001; ns, not significant. 

Figure 2. Biophysical characterisation of different lipid nanoparticle (LNP) siRNA formulations.
(A) Size in nm. (B) Zeta potential in mV. (C) Polydispersity index. Results represent mean ± SEM.
***, p < 0.001; ns, not significant.



Pharmaceutics 2021, 13, 382 8 of 16

Pharmaceutics 2021, 13, x  8 of 16 
 

 

LNP-MRTF-B siRNA and LNP+cY-MRTF-B siRNA with cleavable peptide Y were 
also characterised using negative staining TEM. The TEM imaging showed a spherical 
morphology in both LNP formulations and an approximate size of 200 nm (Figure 3), 
which is in accordance with the DLS measurements in Figure 2A. 

 
Figure 3. Negative staining transmission electron microscopy (TEM) imaging of LNP-MRTF-B siRNA (Left panel) and 
LNP+cY-MRTF-B siRNA with cleavable peptide Y (Right panel). The upper panels represent lower magnification (scale 
bar, 500 nm), while the lower panels represent higher magnification (scale bar, 100 nm). 

3.2. Targeting Cleavable Peptide cY Significantly Increases Encapsulation Efficiency of LNPs 
The LNP-MRTF-B siRNA concentration was 40 ng/μL and after performing the en-

capsulation assay, it was calculated as 37.0 ng/μL. The LNP+cY-MRTF-B siRNA concen-
tration with cleavable peptide Y was 39.4 ng/μL and after performing the encapsulation 
assay, it was calculated as 39.1 ng/μL. The percentage LNP encapsulation significantly 
increased from 92.5 ± 0.7% for LNP-MRTF-B siRNA to 99.3 ± 0.1% for LNP+cY-MRTF-B 
siRNA (p = 0.0005) (Figure 4). 

The LNP-IRR siRNA concentration was 40 ng/μL and after performing the encapsu-
lation assay, it was calculated as 37.1 ng/μL. The LNP+cY-MRTF-B siRNA concentration 
with cleavable peptide Y was 39.4 ng/μL and after performing the encapsulation assay, it 
was calculated as 38.3 ng/μL. The percentage LNP encapsulation also significantly in-
creased from 92.8 ± 0.6% for LNP-IRR siRNA to 97.4 ± 0.4% for LNP+cY-IRR siRNA (p = 
0.0032) (Figure 4). 

100 nm

LNP-MRTF-B siRNA

500 nm

MRTF-B siRNA

100 nm

LNP+cY-MRTF-B siRNA

LNP+cY-MRTF-B siRNA

500 nm

LNP-MRTF-B siRNA

500 nm

Figure 3. Negative staining transmission electron microscopy (TEM) imaging of LNP-MRTF-B siRNA (Left panel) and
LNP+cY-MRTF-B siRNA with cleavable peptide Y (Right panel). The upper panels represent lower magnification (scale bar,
500 nm), while the lower panels represent higher magnification (scale bar, 100 nm).

3.2. Targeting Cleavable Peptide cY Significantly Increases Encapsulation Efficiency of LNPs

The LNP-MRTF-B siRNA concentration was 40 ng/µL and after performing the encap-
sulation assay, it was calculated as 37.0 ng/µL. The LNP+cY-MRTF-B siRNA concentration
with cleavable peptide Y was 39.4 ng/µL and after performing the encapsulation assay, it
was calculated as 39.1 ng/µL. The percentage LNP encapsulation significantly increased
from 92.5 ± 0.7% for LNP-MRTF-B siRNA to 99.3 ± 0.1% for LNP+cY-MRTF-B siRNA
(p = 0.0005) (Figure 4).

The LNP-IRR siRNA concentration was 40 ng/µL and after performing the encapsula-
tion assay, it was calculated as 37.1 ng/µL. The LNP+cY-MRTF-B siRNA concentration with
cleavable peptide Y was 39.4 ng/µL and after performing the encapsulation assay, it was
calculated as 38.3 ng/µL. The percentage LNP encapsulation also significantly increased
from 92.8 ± 0.6% for LNP-IRR siRNA to 97.4 ± 0.4% for LNP+cY-IRR siRNA (p = 0.0032)
(Figure 4).

3.3. LNPs Achieve Efficient Silencing of MRTF-B Gene Expression in Human
Conjunctival Fibroblasts

Without cleavable peptide Y, the silencing efficiency of LNP-MRTF-B siRNA on MRTF-
B gene expression was significantly increased in human conjunctival fibroblasts from 77.7%
(p = 0.00006) to 80.2% (p = 0.0000002) at siRNA concentrations of 50 nM and 100 nM,
respectively, compared to LNP-IRR siRNA (Figure 5).
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Figure 5. MRTF-B gene silencing in human conjunctival fibroblasts after transfection with LNP
formulations with and without cleavable peptide Y, and at siRNA concentrations of 50 nM and 100 nM.
mRNA levels were normalised relative to that of GAPDH and the results represent mean ± SEM for
triplicate experiments. ***, p < 0.001.

With cleavable peptide Y, the silencing efficiency of LNP+cY-MRTF-B siRNA on
MRTF-B gene expression was significantly increased in human conjunctival fibroblasts
from 62.1% (p = 0.0005) to 81.5% (p = 0.000005) at siRNA concentrations of 50 nM and
100 nM, respectively, compared to LNP+cY-IRR siRNA (Figure 5).

The addition of cleavable peptide Y to LNP+cY-MRTF-B siRNA formulations did not
have a significant effect on the silencing efficiency of MRTF-B gene expression in human
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conjunctival fibroblasts at siRNA concentrations of 50 nM (p = 0.06) and 100 nM (p = 0.09),
compared to LNP-MRTF-B siRNA formulations.

3.4. LNPs Display Low Cytotoxicity at 50 nM siRNA Concentration in Human
Conjunctival Fibroblasts

At a siRNA concentration of 50 nM, LNP-MRTF-B siRNA without cleavable peptide
Y were not cytotoxic in human conjunctival fibroblasts compared to LNP-IRR siRNA
or untreated control cells (F(2,6) = 0.83, p = 0.48) (Figure 6). At a siRNA concentration
of 50 nM, LNP+cY-MRTF-B siRNA with cleavable peptide Y were also not cytotoxic in
human conjunctival fibroblasts compared to LNP+cY-IRR siRNA or untreated control cells
(F(2,6) = 4.22, p = 0.07).
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Figure 6. Cell viability of human conjunctival fibroblasts after transfection for 48 h with LNP formulations with and without
cleavable peptide Y, and at siRNA concentrations of 50 nM and 100 nM. The siRNA concentrations at 50 nM and 100 nM
were 0.693 µg/mL and 1.386 µg/mL, respectively. The total lipid amount at 50 nM was 25.2 µg for LNP+cY and 26.7 µg for
LNP. At 100 nM, the total lipid amount was 50.2 µg for LNP+cY and 53.3 µg for LNP. Results represent mean ± SEM for
three independent replicates. ns, not significant.

At a siRNA concentration of 100 nM, LNP-MRTF-B siRNA without cleavable peptide
Y showed lower cell viability compared to LNP-IRR siRNA or untreated control cells, but
the difference was not statistically significant (F(2,6) = 3.44, p = 0.10) (Figure 6). At a siRNA
concentration of 100 nM, LNP+cY-MRTF-B siRNA with cleavable peptide Y treatment also
led to decreased cell viability compared to LNP+cY-IRR siRNA or untreated control cells,
but the results were not statistically significant (F(2,6) = 3.38, p = 0.10).

3.5. LNP-MRTF-B siRNA Decrease Matrix Contraction after a Single Transfection Treatment

As LNP-MRTF-B siRNA and LNP+cY-MRTF-B siRNA formulations efficiently silenced
MRTF-B gene expression and displayed low cytotoxicity at a siRNA concentration of 50 nM,
we further tested the effect of these LNPs on fibroblast contractility using a functional
collagen contraction assay. A three-dimensional free-floating fibroblast-populated collagen
contraction model was used as it is a validated in vitro model of tissue contraction in the
eye and includes two mechanisms: direct cell-mediated contractile activity and matrix
degradation by the fibroblasts [32–35]. Drugs that have been shown to be effective in the
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three-dimensional free-floating fibroblast-populated collagen contraction model have also
been found to be effective in the rabbit model of glaucoma filtration surgery [36,37].

Analysis of the data at day 3 showed that there was a significant relationship between
matrix contraction and LNP siRNA treatment (F(2, 6) = 329.4, p < 0.0001). At day 3,
LNP-MRTF-B siRNA and LNP+cY-MRTF-B siRNA decreased matrix contraction by 28.0%
(p < 0.0001) and 27.2% (p < 0.0001), respectively, compared to LNP-IRR siRNA (Figure 7).
There were no statistically significant differences in matrix contraction between LNP-MRTF-
B siRNA and LNP+cY-MRTF-B siRNA at day 3 (p = 0.7856).
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B siRNA compared to LNP-IRR siRNA. All LNP formulations were tested at siRNA concentrations of 50 nM. Results
represent mean ± SEM for three independent replicates. Representative gel areas at day 3 of contraction assay are shown.
***, p < 0.001.

Analysis of the data at day 7 showed that there was a significant relationship be-
tween matrix contraction and LNP siRNA treatment (F(2,6) = 42.4, p = 0.0003). At day
7, LNP-MRTF-B siRNA and LNP+cY-MRTF-B siRNA decreased matrix contraction by
9.8% (p = 0.0007) and 10.7% (p = 0.0004), respectively, compared to LNP-IRR siRNA (Fig-
ure 7). There were no statistically significant differences in matrix contraction between
LNP-MRTF-B siRNA and LNP+cY-MRTF-B siRNA at day 7 (p = 0.7825).

4. Discussion

Nanoparticle-mediated siRNA therapy presents us with many advantages over non-
specific cytotoxic antimetabolite drugs, such as MMC, since it can offer greater cell speci-
ficity, potency and longer duration of the therapeutic effects [38,39]. Indeed, over the last
decade, there has been a surge in the number of publications and clinical trials of novel
siRNA-based therapeutics for ocular disorders [40–45].

We have previously used receptor-targeted nanocomplexes (RTNs), comprising oligoly-
sine epithelial-targeting peptides and liposomes (e.g., DOTMA and DOPE), that self-
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assemble on mixing to form positively charged, monodisperse nanoparticles with an
average diameter of approximately 100 nm, which can encapsulate and transfect siRNAs
efficiently [46,47].

This study demonstrates that the PEGylated CL4H6-LNPs can effectively deliver
the MRTF-B siRNAs into human conjunctival fibroblasts and lead to significant in vitro
gene silencing of about 80%. Moreover, we have shown that the MRTF-B siRNA-loaded
nanoparticles are not cytotoxic in vitro at a concentration of 50 nM. These pH-sensitive, near
neutral PEGylated nanoparticles proved to have equally good silencing efficiency when
compared to other targeted highly cationic non-PEGylated siRNA nanocomplexes that
we have tested in the past [18,30], and they exhibited far superior silencing activity when
compared to highly cationic PEGylated nanocomplexes [19,48]. This is possibly due to their
ability to effectively escape from the endosomes via membrane fusion [22,23], as well as
their high encapsulation efficiency. In addition, their near neutral charge might be another
factor contributing to the effect of PEGylation in these formulations, which is in accordance
with our other previous studies in which we showed that anionic PEGylated formulations
efficiently silenced genes of interest [46]. Considering their high silencing efficiency, this
would permit the use of even lower non-cytotoxic doses (<10 nM) in future studies.

By preparing LNPs with and without the targeting cleavable cY peptide, we wanted
to test whether its addition had any effects on the physicochemical properties, cytotoxicity
and transfection efficiency of the nanoparticles. Peptides with cleavable linkers, in this
case an RVRR linker that is recognised by endosomal enzymes such as cathepsin B and
furin, have been shown to transfect cells more efficiently compared to their non-cleavable
peptide counterparts [28]. This is possibly due to the fact that once inside the endosomes,
cleavage of the peptides can cause the nanoparticles to disengage from the receptor and be
released from the endosomal membrane more efficiently. An important finding was that
even though the addition of the cleavable cY peptide did not improve gene silencing, it did
improve the encapsulation efficiency in our formulations to 99%, proving that the presence
of the peptide forces the nanocomplexes to be tightly packed, protecting their cargo. An
additional explanation could be that the positively charged RNA binding domain of the cY
peptide can attract and bind multiple siRNA molecules in the interior of the LNPs; these
electrostatic interactions prevent premature nucleic acid leakage from the nanoparticles,
leading to increased encapsulation efficiencies [49,50].

Several studies have also reported a correlation between nanoparticle physicochemical
properties (i.e., size, charge) and transfection efficiency, as well as cytotoxicity [51–55].
Furthermore, neutral nanoparticles are known to aggregate; however, the addition of PEG
hinders LNP aggregation and reduces non-specific interactions by sterically precluding NPs
from interacting with neighbouring NPs and blood/media components [56,57]. In addition,
PEG modification increases the thickness of the fixed aqueous layer on the interface of
LNPs, resulting in decreased zeta potential, which is the electrical potential at the slipping
plane. In our study, the LNPs containing the MRTF-B siRNA, with and without cleavable
peptide, were weakly cationic (+6.9 mV and +2.9 mV, respectively) with a size of around
200 nm, and a low polydispersity index (PDI) of around 0.1, indicating a homogenous
nanoparticle population. On the other hand, the LNPs containing the control siRNA and
cleavable cY peptide were more cationic (+13.6 mV), whereas the LNPs without the peptide
were weakly anionic (−6.1mV). Moreover, they formed similar size nanoparticles (215 nm),
with a slightly higher PDI (0.22 and 0.27, respectively), indicating a broader particle size
distribution. Overall, the smaller, homogeneous nanocomplexes containing the MRTF-B
siRNA were less or not cytotoxic to human conjunctival fibroblasts when compared to the
control siRNA nanocomplexes.

Moreover, previous studies with freshly prepared cationic non-PEGylated nanocom-
plexes indicated that 70% MRTF-B gene silencing was sufficient to completely block matrix
contraction in a seven-day collagen contraction assay [19]. Here, we were able to show a sig-
nificant 30% decrease in matrix contraction with our PEGylated targeted and non-targeted
LNPs at day 3. This difference might be attributed to the presence of PEG in our LNPs.
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Another contributing factor to the difference in these results was that our LNPs were stored
for over 1 month in the fridge, whereas the other formulations used in our previous study
were freshly made. Drug stability is a very important consideration when translating new
therapeutics to patients in clinic and the LNPs demonstrated remarkable efficiency even
when refrigerated for long periods, which makes them ideal as therapeutic nanoagents.

The next step is to test our formulations in vivo to verify their safety and efficiency.
As shown in previous studies, nanoparticles can be locally administered to the glaucoma
filtration surgery site [17,18]; thus future research would involve testing them in a pre-
clinical animal model, such as the rabbit model of glaucoma filtration surgery [37,58,59].
The rabbit model is a validated and clinically relevant model for understanding and
preventing tissue scarring. The agents that have shown a reduction in the formation of
scar tissue in the rabbit model have also been shown to be effective in human clinical
trials [60–62]. Future work should also focus on optimising the concentration, dosage and
application of our therapeutic approach to achieve long-lasting effects that could prevent
conjunctival fibrosis, since designing a drug that would only require a single administration
at the time of the surgery remains a major challenge in glaucoma filtration surgery.
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