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Abstract
Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in
the brain. Current brain imaging techniques in isolation cannot resolve the brain’s spatio-temporal dynamics, because they
provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration
approach that uses representational similarities to combinemeasurements of magnetoencephalography (MEG) and functional
magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation.
Applying this approach to 2 independentMEG–fMRI data sets,we observed that neural activityfirst emerged in the occipital pole
at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams.
Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in
representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally
resolved view of the rapid neural dynamics during the first fewhundredmilliseconds of object vision. They further demonstrate
the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how
the brain computes complex cognitive functions.
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Introduction
Amajor challenge of cognitive neuroscience is tomap the diverse
spatio-temporal neural dynamics underlying cognitive functions
under the methodological limitations posited by current neuroi-
maging technologies. Noninvasive neuroimaging technologies
such as functional magnetic resonance imaging (fMRI) and
magneto- and electroencephalography (M/EEG) offer either high
spatial or high temporal resolution, but not both simultaneously.
A comprehensive large-scale view of brain function with
both high spatial and temporal resolution thus necessitates

integration of available information frommultiple brain imaging
modalities,most commonly fMRI andM/EEG (for review, see Dale
and Halgren 2001; Debener et al. 2006; Rosa et al. 2010; Huster
et al. 2012; Jorge et al. 2014).

Here, we provide a novel approach to combine MEG and fMRI
based on 2 basic principles. First, we assume “representational
similarity”: if neural representations of 2 conditions are similarly
represented in fMRI, they should also be similarly represented in
MEG (Kriegeskorte 2008; Kriegeskorte and Kievit 2013; Cichy et al.
2014). Second, we assume “locality” of neural representation:
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information is represented in neuronal populations in locally re-
stricted cortical regions, rather than being distributed across the
whole brain. Based on these assumptions, linking the similarity
relations in MEG for each millisecond with the similarity rela-
tions in a searchlight-based fMRI analysis (Haynes and Rees
2005; Kriegeskorte et al. 2006) promises a spatio-temporally
resolved account of neural activation.

We used the proposed methodology to yield a novel charac-
terization of the spatio-temporal neural dynamics underlying a
key cognitive function: visual object recognition. Visual object
recognition recruits a temporally ordered cascade of neuronal
processes (Robinson and Rugg 1988; Schmolesky et al. 1998;
Bullier 2001; Cichy et al. 2014) in the ventral and dorsal visual
streams (Ungerleider and Mishkin 1982; Milner and Goodale
2008; Kravitz et al. 2011). Both streams consist of multiple brain
regions (Felleman and Van Essen 1991; Grill-Spector and Malach
2004; Wandell et al. 2007; Op de Beeck et al. 2008; Grill-Spector
and Weiner 2014) that encode different aspects of the visual
input in neuronal population codes (Haxby et al. 2001; Pasupathy
and Connor 2002; Haynes and Rees 2006; Kiani et al. 2007; Meyers
et al. 2008; Kreiman 2011; Konkle and Oliva 2012; Tong and Pratte
2012; Cichy et al. 2013).

Analysis of 2 MEG–fMRI data sets from independent experi-
ments yielded converging results: Visual representations
emerged at the occipital pole of the brain early (∼50–80 ms),
before spreading rapidly and progressively along the visual
hierarchies in the dorsal and ventral visual streams, resulting
in prolonged activation in high-level ventral visual areas. This re-
sult for the first time unravels the neural dynamics underlying
visual object recognition in the human brain with millisecond
and millimeter resolution in the dorsal stream and corroborates
previous findings regarding the successive engagement of the
ventral visual stream in object representations, available until
now only from intracranial recordings. Further region-of-interest
analyses revealed that dorsal and ventral regions showed MEG–
fMRI correspondence in representations significantly later than
early visual cortex.

In sum, our results offer a novel description of the complex
neuronal processes underlying visual recognition in the human
brain and demonstrate the efficacy and power of a similarity-
based MEG–fMRI fusion approach to provide a refined spatio-
temporally resolved view of brain function.

Materials and Methods
Participants

Weconducted2 independent experiments. Sixteenhealthy volun-
teers (10 female, age: mean ± SD= 25.87 ± 5.38 years) participated
in Experiment 1 andfifteen (5 female, age:mean± SD = 26.60 ± 5.18
years) in Experiment 2. All participants were right-handed with
normal or corrected-to-normal vision and provided written con-
sent. The studies were conducted in accordance with the Declar-
ation of Helsinki and approved by the local ethics committee
(Institutional Review Board of the Massachusetts Institute of
Technology).

Experimental Design and Task

The stimulus set for Experiment 1 was C = 92 real-world object
images on a gray background, comprising human and animal
faces, bodies, as well as natural and artificial objects (Fig. 2A).
This stimulus set was chosen as it had yielded strong and con-
sistent neural activity in previous studies, including monkey

electrophysiology (Kiani et al. 2007), fMRI (Kriegeskorte et al.
2008), and ROI-based MEG–fMRI fusion (Cichy et al. 2014). The
stimulus set for Experiment 2 was C = 118 real-world object
images on real backgrounds (Fig. 4A). This stimulus set had
no strong categorical structure, in particular involving human
bodies and faces, with each image being from a different entry-
level category. The rationale of this choicewas 2-fold: first, to pre-
sent objects in a more ecologically valid fashion than in Experi-
ment 1 through the use of natural backgrounds and second, to
show that MEG–fMRI fusion does not necessarily depend on
particular stimulus characteristics and object categories, such
as silhouette images that drive V1 strongly, and categories,
such as human bodies and faces that drive high-level visual
stream strongly.

In both experiments, images were presented at the center of
the screen at 2.9° (Experiment 1) and 4.0° (Experiment 2) visual
angle with 500 ms duration, overlaid with a gray fixation cross.
We adapted presentation parameters to the specific require-
ments of each acquisition technique.

For MEG, participants completed 2 sessions of 10–15 runs of
420 s each for Experiment 1, and 1 session of 15 runs of 314 s
each for Experiment 2. Image presentation was randomized in
each run. Trial onset asynchrony was 1.5 or 2 s (Experiment 1;
see Supplementary Fig. 1) and 0.9–1 s (Experiment 2). SOA was
shortened for Experiment 2, as no significant effects in MEG–
fMRI fusion were observed after 700 ms post stimulus onset,
resulting in faster data collection and increased participant com-
fort and compliance. Participants were instructed to respond
to the image of a paper clip shown randomly every 3–5 trials
(average 4) with an eye blink and a button press.

For fMRI, each participant completed 2 sessions. For Experi-
ment 1, each session consisted of 10–14 runs of 384 s each, and
for Experiment 2, each session consisted of 9–11 runs of 486 s
each. Every image was presented once per run, and image order
was randomizedwith the restriction that the same conditionwas
not presented on consecutive trials. In both experiments, 25% of
all trials were null trials, that is, 30 in Experiment 1 and 39 in
Experiment 2. During null trials, only a gray background was
presented, and the fixation cross turned darker for 100 ms. Parti-
cipants were instructed to respond to the change in luminance
with a button press. TOS was 3 s, or 6 s with a preceding null
trial.

Note that the fMRI/MEG data acquired for Experiment 1 (as de-
scribed below) has been published previously (Cichy et al. 2014),
combining MEG and fMRI data in a region-of-interest-based
analysis.

MEG Acquisition and Analysis

We acquired MEG signals from 306 channels (204 planar gradi-
ometers, 102 magnetometers, Elekta Neuromag TRIUX, Elekta,
Stockholm, Sweden) at a sampling rate of 1 kHz, filtered between
0.03 and 330 Hz. We applied temporal source space separation
(maxfilter software, Elekta, Stockholm; Taulu et al. 2004; Taulu
and Simola 2006) before analyzing data with Brainstorm (Tadel
et al. 2011). For each trial, we extracted peri-stimulus data from
−100 ms to +700 ms, removed baseline mean, and smoothed
data with a 20-ms sliding window. We obtained 20–30 trials for
each condition, session, and participant.

Next, we determined the similarity relations between visual
representations as measured with MEG by multivariate pattern
analysis (Fig. 1). The rationale of using machine classifiers is
that the better a classifier predicts condition labels based on pat-
terns of MEG sensormeasurements, themore dissimilar theMEG
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patterns are and thus the underlying visual representations. As
such, classifier performance can be interpreted as a dissimilarity
measure. Here, we used a linear SVM classifier, which can auto-
matically select MEG sensors that contain discriminative infor-
mation robustly in noisy data. This obviates the need for an a
priori human-based selection that might introduce a bias by
favoring particular sensors. An analysis approach that would
weigh the contribution of all channels equally, such as a correl-
ation-based approach (see fMRI analysis below) might be less
suitable, because it would be strongly influenced by noisy MEG
channels. For example, in situations when comparatively few
MEG channels contain information, noisy channels might
strongly change the similarity relations between conditions in
the MEG and thus impact the fusion with fMRI. Further, note
that the fMRI searchlight used below does select features by
constraining voxels to a local sphere for each searchlight, where-
as in the MEG analysis all sensors (equivalent to all fMRI voxels)
are used.

We conducted the multivariate analysis with linear SVMs in-
dependently for each subject and session. For each peri-stimulus
time point from −100 to +700 ms, preprocessed MEG was ex-
tracted and arranged as 306 dimensional measurement vectors
(corresponding to the 306 MEG sensors), yielding M pattern
vectors per time point and condition (image). We then used su-
pervised learning with a leave-one-trial out cross-validation to
train a SVM classifier (LibSVM implementation , www.csie.ntu.
edu.tw/~cjlin/libsvm) to pairwise discriminate any 2 conditions.
For each time point and condition pair, M-1 measurement vec-
tors were assigned to the training set and used to train a support
vectormachine. The left outMth vectors for the 2 conditionswere

assigned to a testing set and used to assess the classification per-
formance of the trained classifier (percent decoding accuracy).
The training and testing process was repeated 100 times with
random assignment of trials to the training and testing set. De-
coding results were averaged across iterations, and the average
decoding accuracy was assigned to a matrix of size C × C (C = 92
for Experiment 1, 118 for Experiment 2), with rows and columns
indexed by the classified conditions. The matrix was symmetric
and the diagonal was undefined. This procedure yielded 1 C × C
matrix of decoding accuracies for every time point, referred to
as MEG representational dissimilarity matrix (MEG RDM). For
Experiment 2, measurement vectors were averaged by 5 before
entering multivariate analysis to reduce computational load.

fMRI Acquisition

MRI scans were conducted on a 3 T Trio scanner (Siemens,
Erlangen, Germany) with a 32-channel head coil. In both
experiments and each session, we acquired structural images
using a standard T1-weighted sequence (192 sagittal slices,
FOV = 256 mm2, TR = 1900 ms, TE = 2.52 ms, flip angle = 9°).

Functional data were collected with 2 different protocols. In
Experiment 1 (partial brain coverage), data had high spatial reso-
lution, but covered the ventral visual brain only. In each of 2 ses-
sions, we acquired 10–14 runs of 192 volumes each for each
participant (gradient-echo EPI sequence: TR= 2000ms, TE = 31 ms,
flip angle = 80°, FOV read = 192 mm, FOV phase = 100%, ascending
acquisition, gap = 10%, resolution = 2 mm isotropic, slices = 25).
The acquisition volume covered the occipital and temporal lobe
and was oriented parallel to the temporal cortex.

Figure 1. Spatially unbiasedMEG–fMRI fusion analysis scheme. (A)MEGanalysis.WeanalyzedMEGdata in a timepoint-specific fashion for eachmillisecond t from−100 to
+700 ms with respect to stimulus onset. For each pair of conditions, we used support vector machine classification to determine howwell conditions were discriminated

bymultivariateMEG sensor patterns. Repeating this procedure for each condition pair yielded a condition-by-condition (C × C) matrix of decoding accuracies, constituting

a summary of representational dissimilarities for a time point (MEG representational dissimilarity matrix, MEG RDM). (B) fMRI analysis. We used searchlight analysis to

reveal representational dissimilarity in locally constrained fMRI activity patterns. In detail, for each voxel v in the brain, we extracted fMRI patterns in its local vicinity

(4-voxel radius) and calculated condition-wise dissimilarity (1− Spearman’s R), resulting in a condition-by-condition (C ×C) fMRI representational dissimilarity matrix

(fMRI RDM), constituting a summary of representational dissimilarities for a voxel’s vicinity. (C) fMRI–MEG fusion. In the space of representational dissimilarities, MEG

and fMRI results become directly comparable. For each time-specificMEGRDM,we calculated the similarity (Spearman’s R) to each fMRI searchlight’s fMRI RDM, yielding a

3-D map of MEG–fMRI fusion results. Repeating this procedure for each millisecond yielded a movie of MEG–fMRI correspondence in neural representations, revealing

spatio-temporal neural dynamics.
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The second data set (Experiment 2) had lower spatial
resolution, but covered the whole brain. We acquired 9–11 runs
of 648 volumes for each participant (gradient-echo EPI sequence:
TR = 750 ms, TE = 30 ms, flip angle = 61°, FOV read = 192 mm, FOV
phase = 100% with a partial fraction of 6/8, through-plane acceler-
ation factor 3, bandwidth 1816 Hz/Px, resolution = 3 mm3, slice gap
20%, slices = 33, ascending acquisition).

fMRI Analysis

Wepreprocessed fMRI data using SPM8 (http://www.fil.ion.ucl.ac.
uk/spm/). Analysis was identical for the 2 experiments. For each
participant, fMRI data were realigned and co-registered to the T1

structural scan acquired in the first MRI session. Then, MRI data
were normalized to the standard MNI template. We used a gen-
eral linear model (GLM) to estimate the fMRI response to the 92
(Experiment 1) or 118 (Experiment 2) image conditions. Image
onsets and duration entered the GLM as regressors and were
convolved with a hemodynamic response function. Movement
parameters were included as nuisance parameters. Additional
regressors modeling the 2 sessions were included in the GLM.
The estimated condition-specific GLM parameters were con-
verted into t-values by contrasting each condition estimate
against the implicitly modeled baseline.

We then analyzed fMRI data in a spatially unbiased approach
using a searchlight analysis method (Kriegeskorte et al. 2006;
Haynes et al. 2007). We processed each subject separately. For
each voxel v, we extracted condition-specific t-value patterns in
a sphere centered at v with a radius of 4 voxels (searchlight
at v) and arranged them into fMRI t-value pattern vectors. For
each pair of conditions, we calculated the pairwise dissimilarity
between pattern vectors by 1 minus Spearman’s R, resulting in a
92 × 92 (Experiment 1) or 118 × 118 (Experiment 2) fMRI represen-
tational dissimilarity matrix (fMRI RDM) indexed in columns and
rows by the compared conditions. fMRI RDMs were symmetric
across the diagonal, and entries were bounded between 0 (no
dissimilarity) and 2 (complete dissimilarity). This procedure
resulted in 1 fMRI RDM for each voxel in the brain.

MEG–fMRI Fusion with Representational Similarity
Analysis

To relate neuronal temporal dynamics observed in MEG with
their spatial origin as indicated by fMRI, weused representational
similarity analysis (Kriegeskorte 2008; Kriegeskorte and Kievit
2013; Cichy et al. 2014). The basic idea is that if 2 images are simi-
larly represented in MEG patterns, they should also be similarly
represented in fMRI patterns. Comparing similarity relations in
this way allows linking particular locations in the brain to par-
ticular time points, yielding a spatio-temporally resolved view
of the emergence of visual representations in the brain.

We compared fMRI RDMs with MEG RDMs. For Experiment 1,
analysis was conducted within subject, comparing subject-
specific fMRI and MEG RDMs. Since only 15 subjects completed
the fMRI task, out of the 16 that completed the MEG task, N was
15. For Experiment 2, only one MEG session was recorded, and to
increase power, we first averaged MEG RDMs across participants
before comparing the subject-averaged MEG RDMs with the sub-
ject-specific fMRI RDMs.

Further analysis was identical for both experiments and inde-
pendent for each subject. For each time point, we computed the
similarity (Spearman’s R) between the MEG RDM and the fMRI
RDM of each voxel. This yielded a 3-D map of representational
similarity correlations, indicating locations in the brain at
which neuronal processing emerged at a particular time point.

Repeating this analysis for each time point yielded a spatio-
temporally resolved view of neural activity in the brain during
object perception.

Spatio-Temporally Unbiased Analysis of Category-
Related Spatial Effects

We investigated the spatio-temporal neural dynamics with
which neural activity indicated category membership of objects.
The analysis was based on data from Experiment 1, where the
image set showed a clear categorical structure at supra-category,
category, and sub-category level. We investigated 5 categorical
divisions: 1) animacy (animate vs. inanimate), 2) naturalness
(natural vs. man-made), 3) faces versus bodies, and 4,5) human
versus animal faces and bodies.

To determine the spatial extent of category-related neural ac-
tivity (Fig. 6A), we conducted a searchlight analysis comparing
(Spearman’s R) fMRI RDMs to theoretical model RDMs capturing
category membership, that is, higher dissimilarity between pat-
terns for objects across category boundary than within category
boundary (modeled as RDM cell entries 1 and 0, respectively).
Analysis was conducted independently for each subject (com-
paring subject-specific fMRI and MEG RDMs) and yielded 5 cat-
egorical division-specific 3-D maps.

To visualize the spatio-temporal extent of category-related
activity, we repeated the MEG–fMRI fusion analysis for each cat-
egorical division limited to the parts of the RDMs related to the
division. We also masked the results of this category-related
MEG–fMRI fusion approach with the results of the category-
related fMRI analysis. This yielded a spatio-temporally resolved
view of neural activity in the brain during object perception of a
particular categorical division.

Definition of Regions of Interest

To characterize the spatial extent of the MEG–fMRI fusion results
and enable region-of-interest-based MEG–fMRI analysis, we ob-
tained visual regions in occipital, parietal, and temporal cortex
from a probabilistic atlas (Wang et al. 2015). Since visual stimuli
were presented at 3°–4° visual angle, they fell largely into the
foveal confluence confounding the distinction between V1, V2,
and V3. We thus combined regions V1 to V3 into a single ROI
termed early visual cortex (EVC), also easing visualization. Add-
itional regions included 6 ROIs in the dorsal visual stream (intra-
parietal sulcus: IPS0, IPS1, IPS2, IPS3, IPS4, and IPS5) and 5 ROIs in
the ventral visual stream (h4, ventral occipital cortex VO1&2,
temporal occipital cortex TO1&2, lateral-occipital cortex LO1&2
and parahippocampal cortex PHC1&2). Unique ROIs were created
from the probabilistic map by assigning each voxel to the ROI of
highest probability, conditional the aggregate probability over all
ROIs was ≥33%. Due to limited fMRI coverage, ROIs for parietal re-
gions could only be defined for Experiment 2.

Region-of-Interest-Based MEG–fMRI Fusion

We conducted the MEG–fMRI fusion analysis using fMRI voxel
patterns restricted to specific ROIs. For each subject and ROI, we
constructed an fMRI RDM by comparing condition-specific voxel
activation patterns in dissimilarity (1-Spearman’s R), equivalent
to the searchlight-based analysis. This yielded 1 fMRI RDM for
each ROI and subject.

The fusion of MEGwith fMRI in the ROI approach followed the
approach in Cichy et al. (2014). In detail, for each ROI we averaged
the subject-specific fMRI RDMs and calculated the similarity be-
tween the average-fMRI RDM and the subject-specific MEG RDMs
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for each timepoint (Spearman’s R), yielding time courses ofMEG–
fMRI similarity for each subject (n = 15), in each ROI.

Statistical Testing

For the searchlight-based analyses, we used permutation tests for
random-effects inference and corrected results for multiple com-
parisons with a cluster-level correction (Nichols and Holmes 2002;
Pantazis et al. 2005; Maris and Oostenveld 2007). In detail, to deter-
mine acluster-definition threshold,we averaged the 4-dimensional
(4-D) subject-specific data across subjects (3-D space × 1-D time),
yielding a mean 4-D result matrix. We then constructed an empir-
ical baseline voxel distribution by aggregating voxel values across
space and time points from −100 to 0 ms of themean result matrix
and determined the right-sided 99.9% threshold. This constituted a
baseline-based cluster-definition threshold at P= 0.001.

To obtain a permutation distribution ofmaximal cluster size, we
randomly shuffled the sign of subject-specific data points (1000
times), averaged data across subjects, and determined 4-D clusters
by spatial and temporal contiguity at the cluster-definition thresh-
old. Storing the maximal cluster statistic (size of cluster with each
voxel equally weighed) for each permutation sample yielded a dis-
tribution of themaximal cluster size under the null hypothesis. We
report clusters as significant if they were greater than the 99%
threshold constructed from the maximal cluster size distribution
(i.e., cluster size threshold at P=0.01).

For the analyses of category-related spatial signals in Experi-
ment 1, we conducted 5 independent statistical analyses, one for
each categorical subdivision. We randomly shuffled the sign of
subject-specific data points (10 000 times) and determined 3-D
clusters by spatial contiguity at a cluster-definition threshold at
P = 0.001 1-sided on the right tail.We report clusters as significant
with a cluster size threshold at P = 0.01.

For the region-based MEG–fMRI fusion analysis, we used
sign-permutation tests and cluster-based correction for multiple
comparisons. In detail, we randomly shuffled the sign of subject-
specific data points (1000 times) and determined 1-D clusters by
temporal contiguity at a cluster-definition threshold at P = 0.05
1-sided. We report clusters as significant with a cluster size
threshold at P = 0.05.

To calculate 95% confidence intervals for the peak latency and
onsets of the first significant cluster in the ROI-based MEG–fMRI
fusion analysis, we created 1000 bootstrapped samples with
replacement. For each sample, we recalculated the peak latency
and onset of the first significant cluster, yielding empirical distri-
butions for both. This resulted in bootstrap estimates of both
statistics and thus their 95% confidence intervals.

To determine significance in peak latency differences for MEG–
fMRI time courses of different ROIs,weused bootstrapping. For this,
we created 1000 bootstrapped samples by sampling participants
with replacement. This yielded an empirical distribution of mean
peak latency differences. Setting P < 0.05, we rejected the null hy-
pothesis if the 95% confidence interval did not include 0. Results
were FDR-corrected for multiple comparisons.

Results
MEG–fMRI Fusion in Representational Similarity Space

In 2 independent experiments, participants viewed images of
real-world objects: 92 objects on a gray background in Experi-
ment 1 (Fig. 2A), and 118 objects on a real-world background in
Experiment 2 (Fig. 4A). Each experiment consisted of separate re-
cording sessions presenting the same stimulus material during
MEG or fMRI data collection. Images were presented in random

order in experimental designs optimized for each imaging
modality. Subjects performed orthogonal vigilance tasks.

To integrate MEG with fMRI data, we abstracted from the sen-
sor space of each imaging modality to a common similarity
space, defined by the similarity of condition-specific response
patterns in eachmodality. Ourapproach relies on representation-
al similarity analysis (Kriegeskorte 2008; Cichy et al. 2014) and
effectively constructs MEG and fMRI representational similarity
relations that are directly comparable.

In detail, forMEGweanalyzed data in a timepoint-specific fash-
ion for each millisecond from −100 to +1000 ms with respect to
stimulus onset (Fig. 1). To make full use of the information
encoded at each time point acrossMEG sensors, we usedmultivari-
ate pattern analysis (Carlson, Tovar, et al. 2013; Cichy et al. 2014;
Clarke et al. 2015; Isik et al. 2014). Specifically, for each time point,
we arranged the measurements of the entire MEG sensor array
into vectors, resulting in different pattern vectors for each condi-
tion, stimulus repetition, and time point. These pattern vectors
were the input to a support vector machine procedure designed
to classify different pairs of conditions (images). Repeating the clas-
sification procedure for all pairs of conditions yielded a condition ×
condition (C ×C) matrix of classification accuracies, one per time
point. Interpreting classification accuracies as a representational
dissimilarity measure, the C ×C matrix summarizes for each time
point which conditions are represented similarly (low decoding ac-
curacy) or dissimilarly (high decoding accuracy). Thematrix is thus
termed MEG representational dissimilarity matrix (MEG RDM).

For fMRI, we used a searchlight approach (Haynes and Rees
2005; Kriegeskorte et al. 2006) in combination with multivariate
pattern similarity comparison (Kriegeskorte 2008; Kriegeskorte
et al. 2008; Kriegeskorte and Kievit 2013) to extract information
stored in local neural populations resolved with the high spatial
resolution of fMRI. For every voxel in the brain, we extracted
condition-specific voxel patterns in its vicinity and calculated pair-
wise dissimilarity (1 minus Pearson’s R) between voxel patterns of
different conditions. Repeating this procedure for all pairs of condi-
tions yielded a C × C fMRI representational dissimilarity matrix
(fMRI RDM) summarizing for each voxel in the brain which condi-
tions are represented similarly or dissimilarly.

Thus, MEG and fMRI data became directly comparable to each
other in similarity space via their RDMs, allowing integration
of their respective high temporal and spatial resolution. For a
given time point, we compared (Spearman’s R) the corresponding
MEG RDM with each searchlight-specific fMRI RDM, storing
results in a 3-D volume at the location of the center voxel of
each searchlight. Each time-specific 3-D volume indicated
where in the brain the fMRI representations were similar to the
ongoing MEG representations. Repeating this procedure for all
time points yielded a set of brain volumes that unraveled the
spatio-temporal neural dynamics underlying object recognition.
We corrected for multiple comparisons across space and time
by 4-D cluster correction (cluster-definition threshold P < 0.001,
cluster size threshold P < 0.05).

MEG–fMRI Fusion Reveals Successive Cortical Region
Activation in the Ventral and Dorsal Visual Stream
During Visual Object Recognition

We applied the MEG–fMRI fusion method to data from Experi-
ment 1, that is, visual responses to a set of C = 92 images of
real-world objects (Fig. 2A). fMRI data had only a partial brain
coverage of occipital and temporal cortex (Fig. 2B). Results re-
vealed the spatio-temporal dynamics in the ventral visual path-
way in the first few hundred milliseconds of visual object
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Figure 2. Stimulusmaterial, fMRI brain coverage, and significantMEG–fMRI fusion results for Experiment 1. (A) The stimulus set consisted of 92 cropped objects, including

human and animal bodies and faces, as well as natural and artificial objects. During the experiment, images were shown on a uniform gray background (shown on white

background here for visibility). (B) We recorded fMRI with partial brain coverage (blue regions), reflecting the trade-off between high-resolution (2 mm isovoxel), extent of

coverage, and temporal sampling (TR = 2s). (C) MEG–fMRI fusion revealed spatio-temporal neural dynamics in the ventral visual stream, originating at the occipital lobe

and extending rapidly in anterior direction along the ventral visual stream. Red voxels indicate statistical significance (n = 15, cluster-definition threshold P < 0.001, cluster

threshold P < 0.01). A millisecond resolved movie is available as Supplementary Movie 1.
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perception.We observed the emergence of neuronal activitywith
onset around approximately 50–60 ms at the occipital pole, suc-
ceeded by rapid activation in the anterior direction into the tem-
poral lobe (Fig. 2C, for ms-resolved, see Supplementary Movie 1).

A projectionof the results ontoaxial slices at 140 msafter stimulus
onset exemplifies the results (Fig. 3, for ms-resolved, see Supple-
mentary Movie 2). Supplementary MEG–fMRI fusion with MEG
RDMs averaged across subjects, rather than subject specific as

Figure 3. Axial slices exemplifying the MEG–fMRI fusion results for Experiment 1 at 140 ms. (A) MEG–fMRI representation correlations were projected onto axial slices of a

standard T1 image in MNI space. The results indicate neural activity reaching far into the ventral visual stream in temporal cortex. Color-coded voxels indicate strength of

MEG–fMRI representation correlations (Spearman’s R, scaled between 0 andmaximal observed value, n = 15, cluster-definition threshold P < 0.001, cluster threshold P < 0.01).

A millisecond resolved movie is available as Supplementary Movie 2. (B) Rendering of ventral and dorsal regions of interest from a probabilistic atlas (Wang et al. 2015).
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above, yielded qualitatively similar results (for ms-resolved re-
sults, see Supplementary Movies 3 and 4).

Due to the limited MRI coverage in Experiment 1, spatio-
temporal dynamics beyond the ventral visual cortex, and in par-
ticular the dorsal visual stream, could not be assessed (Andersen
et al. 1987; Sereno and Maunsell 1998; Sereno et al. 2002; Denys
et al. 2004; Lehky and Sereno 2007; Janssen et al. 2008; Konen
andKastner 2008). To provide a full-brain viewof spatio-temporal
neuronal dynamics during object recognition and to assess the
robustness of the MEG–fMRI fusionmethod to changes in experi-
mental parameters such as image set, timing, recording protocol,
we conducted Experiment 2 with full brain MRI coverage (Fig. 4B)
and a different, more extended, set of object images (C = 118;
Fig. 4A). We again observed early neuronal activity in the occipi-
tal pole, though with a somewhat slower significant onset
(∼70–80 ms), and rapid successive spread in the anterior direction
across the ventral visual stream into the temporal lobe (Fig. 4C;
see Supplementary Movie 5), reproducing the findings of Experi-
ment 1. Crucially, we also observed a progression of neuronal
activity along the dorsal visual pathway into the inferior parietal
cortex from approximately 140 ms onward. Figure 5 shows
example results at 180 ms projected onto axial slices (for ms-
resolved, see Supplementary Movie 6).

Together, our results describe the spatio-temporal dynamics
of neural activation underlying visual object recognition during
the first few hundred milliseconds of vision as a cascade of
cortical region activations in both the ventral and dorsal visual
pathways.

Spatio-Temporally Unbiased Analysis of
Category-Related Effects

The results of the MEG–fMRI fusion approach indicated the over-
all spatio-temporal neural dynamics during object recognition,
but offered no information on the content of the emerging neural
activity. To investigate, we determined object category-related
spatio-temporal dynamics using data from Experiment 1,
which had an image set with a clear categorical structure at
supra-category, category, and sub-category level in 5 subdivi-
sions: 1) animacy (animate vs. inanimate), 2) naturalness (natural
vs. man-made), 3) faces versus bodies, and 4,5) human versus
animal faces and bodies.

We first determined the spatial extent of category-related
neural activity. For this, we created theoretical model RDMs
capturing category membership, that is, higher dissimilarity
between patterns for objects across category boundary than
within category boundary (modeled as RDM cell entries 1 and 0,
respectively). We conducted a searchlight analysis, determining
the similarity between each model RDM and the searchlight
RDMs. This yielded five 3-D maps indicating where category-
related signals emerged in the brain. Across-subject results
(sign-permutation test, cluster-definition threshold P < 0.001,
cluster threshold P < 0.01) are reported in volume in Figure 6
and projected onto axial slices in Figure 7.

We found significant clusters for all categorical subdivisions,
except naturalness. All clusters extended from early visual cortex
up to parahippocampal cortex for animacy and into lateral- tem-
poral-, and ventral-occipital cortex for the remaining categories.

To visualize the spatio-temporal extent of category-related
neural activity, we repeated the MEG–fMRI fusion analysis for
each categorical subdivision, limiting the comparison of MEG
and fMRI RDMs to the parts relevant to the categorical division.
We thenmasked the results of the category-relatedMEG–fMRI fu-
sion with the results of the category-related fMRI analysis. This

analysis showed the dynamics for category-related activity for
the animacy, the face versus body, and the human versus animal
face subdivisions, and is visualized in Supplementary Movie 7 in
volume, and Supplementary Movie 8 projected onto axial slices.
In sum, these results describe the spatio-temporal dynamics of
neural activation related to object category in the ventral visual
stream.

Parietal and Ventral Cortices Exhibited MEG–fMRI
Correspondence in Representations Significantly Later
than Early Visual Cortex

The results of the MEG–fMRI fusion analysis indicated a
progression of activity over time in the dorsal and ventral
stream. To further investigate the parietal and ventral activity
progression, that is, its precise anatomical extent and relation
to activity in early visual cortex, we conducted a region-of-
interest-based analyses. For this, we determined the time
course with which ROI-specific fMRI RDMs correlated with
MEG RDMs over time (Fig. 8A). We determined statistical signifi-
cance by sign-permutation tests (P < 0.05 cluster-definition
threshold, P < 0.05 cluster threshold). For both experiments, cor-
roborating the findings of the searchlight-based MEG–fMRI ana-
lysis, significant clusters were found in EVC (Fig. 8B) and all
investigated ventral visual areas (Fig. 8C, TO1&2, VO1&2,
LO1&2, PHC1&2) for Experiments 1 and 2 (Fig. 6C,D), as well as
IPS0, 1, and 2, but not IPS3, 4, or 5 (Fig. 8D). 95% confidence inter-
vals on the onset of the first significant peak and the peak la-
tency for each ROI are reported in Table 1.

We further characterized the nature of the neural activity in
the ventral and parietal cortex by determining whether parietal
and ventral cortex showed MEG–fMRI correspondence in repre-
sentations at the same or different time points compared with
activity in EVC, and to each other, by comparing peak-onset la-
tencies. Comparedwith EVC,MEG–fMRI correspondence in repre-
sentations emerged significantly later in IPS0 and 2 (all P < 0.01,
details in Table 2A). Peak latency in IPS1 was not significantly dif-
ferent fromEVC, likely due to the low SNR. For the ventral stream,
corroborating Cichy et al. (2014), convergent results across experi-
ments showed that all regions (except LO1&2 for Experiment 1)
peaked later than EVC (all P < 0.01, details in Table 2B). However,
we did not find a difference in peak latency between any of the
ventral regions and IPS0, 1, or 2 except IPS2 and TO1&2 (P = 0.011,
all other P > 0.12). This indicates that neural activity in the dorsal
and ventral stream occurred later than in early visual cortex dur-
ing object vision.

Finally, visually the temporal duration of significant clusters
seemed to be larger for ROIs in the ventral compared with the
dorsal progression, possibly indicating different temporal
dynamics. However, quantitative analysis by bootstrapping the
participant pool (1000 times) did not show statistical differences
in the temporal duration of the ventral and dorsal progression
(in 2 definitions: either the length of the first significant cluster
or temporal duration from the first to the last significant time
point for all clusters).

Discussion
Summary

To resolve spatio-temporal neural dynamics in the human brain
during visual object recognition, we proposed aMEG–fMRI fusion
method based on representational similarities and multivariate
pattern analysis. The locus of activation onset was at the occipi-
tal pole, followed by rapid and progressive activation along the
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processing hierarchies of the dorsal and ventral visual streams
into temporal and parietal cortex, respectively. In the ventral vis-
ual stream, further analysis revealed the spatio-temporal extent
of category-related neural signals. Further, we found that dorsal

and ventral regions exhibited MEG–fMRI correspondence in re-
presentations later than early visual cortex. This result provides
a comprehensive and refined view of the complex spatio-
temporal neural dynamics underlying visual object recognition

Figure 4. Stimulus material, brain coverage, and significant MEG–fMRI fusion results for Experiment 2. (A) The stimulus set consisted of 118 objects on natural

backgrounds. (B) We recorded fMRI with a whole-brain coverage (blue regions). (C) Whole-brain analysis revealed neural dynamics along the dorsal visual stream into

parietal cortex in addition to the ventral visual stream. Red voxels indicate statistical significance (N = 15, cluster-definition threshold P < 0.001, cluster threshold

P < 0.01). A millisecond resolved movie is available as Supplementary Movie 5.
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in the human brain. It further suggests that the proposed meth-
odology is a strong analytical tool for the study of any complex
cognitive function.

Tracking Neural Activity During Visual Object Recognition

Our results revealed the spatio-temporal neural dynamics during
visual object recognition in the human brain, with neuronal

Figure 5. Axial slices exemplifying theMEG–fMRI fusion results for Experiment 2 at 180 ms. (A) MEG–fMRI representation correlations were projected onto axial slices of a

standard T1 image in MNI space. In addition to ventral cortex activation, reproducing Experiment 1, we also observed activation far up the dorsal visual stream in inferior

parietal cortex. Color-coded voxels indicate strength of MEG–fMRI representation correlations (Spearman’s R, scaled between 0 and maximal value observed, n = 15,

cluster-definition threshold P < 0.001, cluster threshold P < 0.01). A millisecond resolved movie is available as Supplementary Movie 6. (B) Rendering of ventral and

dorsal regions of interest from a probabilistic atlas.
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activation emerging in the occipital lobe and rapidly spreading
along the ventral and dorsal visual pathways. Corroborating re-
sults in 2 independent experiments differing in stimulusmaterial,
experimental protocol, and fMRI acquisition parameters, among
others, demonstrated the robustness of the MEG–fMRI fusion ap-
proach. In particular, the finding of a temporal progression from

early visual areas to high-level ventral visual areas over time is a
direct reproduction across experiments, and corroborates a previ-
ous study (Cichy et al. 2014).

Beyond providing corroborative evidence and reproduction,
the results presented here go further in both novel insight and
methodological approach. Cichy et al. (2014) limited analysis to

Figure 6. Analysis scheme and results of fMRI-category model fusion for Experiment 1. (A) Analysis scheme for fMRI-categorical model fusion. For each investigated

category subdivision, we created a model RDM capturing category membership, with cell entries 1 and 0 for objects between- and within-category, respectively (here

shown for animacy). For each voxel, we determined the similarity between the corresponding searchlight RDM and the model RDM, yielding 3-D maps of category-

related signals in the brain. (B) fMRI-category model fusion results for each of the 5 categorical divisions investigated. (n = 15, cluster-definition threshold P < 0.001,

cluster threshold P < 0.01).
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the ventral visual cortex as the major pathway involved in object
recognition, in particular regions V1 and IT. Here, adding an
additional data set, we extended the analysis to the study of
the dorsal visual pathway and elucidated the relation between
object representations in ventral and dorsal pathway. Second,
whereas Cichy et al. (2014) investigated the emergence of cat-
egory-related activity over time using MEG only, here we extend
the analysis to the spatial dimension and the spatio-temporal
dynamics using MEG–fMRI fusion.

Concerning methodological advance, here we showed that
MEG–fMRI fusion by representational similarity is not restricted
to a spatially limited region-of-interest analysis, but extendable

to a spatially unbiased analysis. This strongly widens the applic-
ability of MEG–fMRI fusion to the pursuit of scientific questions
without spatial priors.

Together, our results provide evidence that object recogni-
tion is a hierarchical process unfolding over time (Robinson
and Rugg 1988; Schmolesky et al. 1998; Bullier 2001; Cichy
et al. 2014) and space (Ungerleider and Mishkin 1982; Felleman
and Van Essen 1991; Grill-Spector and Malach 2004; Wandell
et al. 2007; Op de Beeck et al. 2008; Kravitz et al. 2011; Grill-
Spector and Weiner 2014) in both dorsal and ventral streams
(Ungerleider and Mishkin 1982; Milner and Goodale 2008;
Kravitz et al. 2011).

Figure 7.Axial splices displaying the results of fMRI-categorymodel fusion for Experiment 1 and its relation to a probabilistic atlas of visual regions. (A) Same as Figure 6 in

axial slices view. Colored voxels (same color code as in Fig. 6) indicate statistical significance (n = 15, cluster-definition threshold P < 0.001, cluster threshold P < 0.01). (B)

Visualization of ventral and dorsal regions from a probabilistic atlas (Wang et al. 2015).
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Tracking Neural Activity During Visual Object
Recognition: The Ventral Visual Stream

The time course of neural activity revealed by MEG–fMRI fusion

largely concurred with previously reported increases of response

latencies along the posterior–anterior gradient in the ventral

pathway in humans (Mormann et al. 2008; Liu et al. 2009) and

in monkeys (Schmolesky et al. 1998; Bullier 2001). This provides

further evidence that object recognition is a hierarchical process

unfolding over time (Robinson and Rugg 1988; Schmolesky et al.

1998; Bullier 2001; Cichy et al. 2014) and space (Ungerleider and

Mishkin 1982; Felleman and Van Essen 1991; Grill-Spector and

Malach 2004; Wandell et al. 2007; Op de Beeck et al. 2008; Kravitz
et al. 2011; Grill-Spector and Weiner 2014).

To elucidate the contents of the spatio-temporal neural dy-
namics uncovered by theMEG–fMRI approach in the ventral visual
stream, we investigated whether the reported signals indicated
category membership of objects. Our analysis revealed extended
spatio-temporal effects for the categorical division of animacy,
faces versus bodies, andhumanversus animal faces. This comple-
ments previous findings about the temporal dynamics of category
processing in the human brain for the same categorical divisions
(Carlson, Tovar, et al. 2013; Cichy et al. 2014) by providing a view
that is both spatial and temporal of the neural dynamics.

Figure 8. Relationship between dorsal and ventral visual stream activity. (A) Region-of-interest-based MEG–fMRI fusion analysis. For each ROI, we constructed an fMRI

RDM and compared it (Spearman’s R) with time point-specific MEG RDMs for Experiment 1 (B and C) and Experiment 2 (D–F). This yielded time courses of MEG–fMRI

correspondence in (B,D) early visual cortex (EVC) (C,E) ventral stream regions LO1&2, TO1&2, VO1&2, and PHC1&2, and (F) parietal regions IPS0 to 5. Solid gray line

indicates stimulus onset. Dashed gray lines indicate EVC peak latency for Experiment 1 (B and C) and 2 (D and E). Significant time points (horizontal lines above plots)

were identified for all cases other than the parietal regions IPS3 to 5.
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A resulting question is which part of the estimated neural ac-
tivity supports perceptual decisions such as categorization
(Haxby et al. 2001; Williams et al. 2007; Haushofer et al. 2008).
For example, it remains debated whether behavioral tasks on
faces and bodies categorization (Spiridon and Kanwisher 2002;
Reddy and Kanwisher 2006; Pitcher et al. 2009; Cichy et al. 2011,
2012) engage activity in local regions or on widely distributed
representations in the ventral visual stream. The findings
here extend this question into the temporal domain, that is, at
which spatio-temporal coordinates does neural activity deter-
mine behavior? Future studies that constrain the results of the
MEG–fMRI fusion approach by behavioral measures, for example,
reaction times in categorization tasks (Carlson, Ritchie, et al.
2013; Ritchie et al. 2015), are necessary to resolve this issue.

Tracking Neural Activity During Visual Object
Recognition: The Dorsal Visual Stream and Its Relation
to the Ventral Visual Stream

Our results provide novel evidence for 2 questions concerning
neural activity in dorsal cortex: the timing of activity in dorsal cor-
tex and its relation to activity in other portions of visual cortex.

Concerning timing, to our knowledge, no gold-standard
intracranial response profiles for parietal cortex have been de-
termined in humans due to typically scarce electrode coverage
and low visual responsiveness in that part of the cortex (Liu
et al. 2009). In monkey, 2 measures of neuronal timing in

parietal cortex have been assessed: onset and peak response la-
tencies. While onset latencies were short and varied between
50 and 90 ms (Robinson and Rugg 1988; Colby et al. 1996;
Lehky and Sereno 2007; Janssen et al. 2008; Romero et al.
2012), peak latencies occurred later at 100–200 ms, often fol-
lowed by a long plateau of high firing rates (Colby et al. 1996;
Shikata et al. 1996; Lehky and Sereno 2007; Janssen et al. 2008;
Romero et al. 2012). The similarity of peak latency in electro-
physiological recordings and the results observed here suggest
that our approach reveals spatio-temporal neural dynamics
mostly matching peak rather than onset firing rates in the dor-
sal stream. Future human intracranial studies and studies
combining intracranial recordings with fMRI in primates are
necessary to further resolve the relationship between the ob-
served MEG–fMRI correspondence in representations and neur-
onal activity.

Concerning the relation of other portions of visual cortex, we
found that MEG–fMRI correspondence in representations in dor-
sal regions peaked later in time than in EVC, but no evidence for
latency differences between ventral and parietal cortex. A sup-
plementary analysis investigating the representational similarity
between dorsal cortex and other visual regions using partial cor-
relation provided further evidence that representations in dorsal
regions are different from representations in EVC (see Supple-
mentary Analysis 1 and Fig. 2). This suggests that dorsal cortex
processes objects in a hierarchical fashion, too (Konen and
Kastner 2008).

Table 1 Mean peak and onset latency of the first significant cluster in (A) early visual cortex, (B) dorsal, and (C) ventral regions for Experiments 1
and 2

Region of interest Experiment 1 Experiment 2

Peak latency (ms) Onset of significance (ms) Peak latency (ms) Onset of significance (ms)

(A) Early visual regions
100 (82–119) 51 (46–55) 127 (110–134) 77 (68–84)

(B) Dorsal regions
IPS0 172 (117–204) 96 (78–212)
IPS1 172 (154–246) 146 (98–276)
IPS2 172 (154–204) 119 (100–151)

(C) Ventral regions
LO1&2 112 (79–127) 56 (51–62) 166 (147–326) 91 (83–96)
VO1&2 120 (128–285) 111 (100–119) 166 (155–203) 96 (155–302)
TO1&2 134 (128–355) 114 (107–119) 139 (136–155) 115 (88–124)
PHC1&2 139 (128–285) 111 (100–119) 172 (165–207) 119 (97–147)

Note: Dorsal regions only reported for Experiment 2 due to limited fMRI coverage in Experiment 1. All values are averages across subjects (n = 15), with 95% confidence

intervals in brackets.

Table 2 Comparison of peak latencies of EVC versus ROIs in (A) dorsal and (B) ventral regions for Experiments 1 and 2

Comparing peak latency in EVC to Experiment 1 Experiment 2

Latency difference (ms) Significance (P value) Latency difference (ms) Significance (P value)

(A) Dorsal regions
IPS0 45 0.010
IPS1 45 0.146
IPS2 45 0.001

(B) Ventral regions
LO1&2 12 0.25 39 0.011
VO1&2 20 0.001 39 0.001
PHC1&2 39 0.001 45 0.001
TO1&2 34 0.001 12 0.008

Note: Dorsal regions only reported for Experiment 2 due to limited fMRI coverage in Experiment 1. The table reports the latency difference and P values determined by

bootstrapping the sample of participants (1000 samples).
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Relation of the Approach to the Standard Taxonomy
of fMRI-M/EEG Integration Approaches

How does our approach fits into the taxonomy of previous ap-
proaches for integrating fMRI and M/EEG, and in effect how does
it relate to its advantages and limitations? Typically 4 distinct cat-
egories are proposed: asymmetric approacheswhere onemodality
constraints the other, that is, 1) fMRI-constrained M/EEG and 2)
M/EEG constrained fMRI analysis, and symmetric approaches
(fusion) in which data from either modality is weighted equally,
combined in a 3) model- or 4) data-driven way (for review, see
Rosa et al. 2010; Huster et al. 2012; Sui et al. 2012).

Our approach does not fit the asymmetric constraint taxa.
fMRI does not constrain the solution of M/EEG source reconstruc-
tion algorithms, nor do M/EEG features enter into the estimation
of voxel-wise activity. Instead, fMRI and MEG constrain each
other symmetrically via representational similarity. Thus, our
approach evades the danger of asymmetric approaches in giving
an unwarranted bias to either imaging modality.

By exclusion, this suggests that our approach belongs to a
symmetric approach taxon. However, our approach also differs
critically from previous symmetric approaches, both model-
and data-based. Whereas model-based approaches typically
depend on an explicit generative forward model from neural
activity to both fMRI and M/EEG measurements, our approach
does not. The advantage of this is that our approach evades the
computational complexity of solutions to such models, as well
as the underlying necessary assumptions about the complex
relationship between neuronal and BOLD activity (Logothetis
and Wandell 2004; Logothetis 2008).

Data-driven symmetric approaches, in turn, typically utilize
unsupervised methods such as independent component ana-
lysis for integration, whereas our approach relies on the explicit
assumption of similarity to constrain the solution space. Our ap-
proach is data-driven, because it uses correlations to extract and
compare representational patterns. However, it has the advan-
tage that, whereas understanding results ofmost data-driven ap-
proaches need additional interpretational steps, our results are
directly interpretable.

In summary, our approach is fundamentally different than
existing fMRI and M/EEG integration approaches and offers the
distinct advantages: while providing interpretational ease due
to the explicit constraint of representational similarity, it evades
the bias of asymmetric approaches as well as the assumptions
and complexities of symmetric approaches.

Sensitivity, Specificity, and Potential Ambiguity of the
Proposed Approach

Our approach has several characteristics that provide high sensi-
tivity and specificity with a limited risk of ambiguity in the re-
sults. The first advantage is its high sensitivity to detect
information in either modality through the use of multivariate
analyses. Multivariate analyses of both fMRI activity patterns
(Haxby et al. 2001; Haynes and Rees 2006; Kriegeskorte et al.
2006; Norman et al. 2006; Tong and Pratte 2012) and MEG sensor
patterns (Carlson, Tovar, et al. 2013; Cichy et al. 2014; Clarke et al.
2015; Isik et al. 2014) have been shown to provide increased infor-
mational sensitivity over mass univariate approaches.

While our integration approach epitomizes on the increased
sensitivity provided by multivariate analysis in each modality,
the multivariate treatment is not complete. Our approach does
not allow estimation of the relation between any set of voxels
and MEG data but is constrained in that only local response

fMRI patterns are considered in the searchlight approach. We
thus trade the ability to account for widely distributed informa-
tion across thewhole brain for precise localization and computa-
tional tractability.

The second advantage of the integration approach is the high
specificity of the integration results. By seeking shared MEG and
fMRI similarity patterns across a large set of conditions, that is,
covariance in similarity relations, our approach provides rich
constraints on integration: for a set of any C conditions, there
are ((C × C)− C)/2 different values in the representation matrices
being compared. In contrast, previous approaches relied on smal-
ler sets, that is, co-variance in activation across few steps of para-
metric modulation (Mangun et al. 1997; Horovitz et al. 2004;
Schicke et al. 2006) or co-variance across subjects (Sadeh et al.
2011). However, the high specificity of our approach is limited
to experimental contexts where a large number of conditions
are available. For best results, specifically optimized experimen-
tal paradigms are thus required.

A third advantage of technical nature is that M/EEG and fMRI
data need not be acquired simultaneously (Eichele et al. 2005;
Debener et al. 2006; Huster et al. 2012) but can be acquired con-
secutively (for the case of EEG-fMRI). This avoidsmutual interfer-
ence during acquisition and allows imaging modality-specific
experimental design optimization. Note this is also a disadvan-
tage: currently our approach does not use the information pro-
vided by single-trial-based analysis of simultaneously acquired
EEG-fMRI data. However, our entire approach extends directly
to EEGwithoutmodification and can thus be applied to simultan-
eously acquired EEG-fMRI data. Future research may address the
combination of information from single-trial-based analysis
with representational similarity analysis as used here.

Finally, a specific limitation of our approach is a particular case
of ambiguity: if 2 regions share similar representational relations
but are in fact activate at different time points, we cannot ascribe
a unique activation profile to each. While this case cannot be ex-
cluded, it is highly unlikely due to the strong nonlinear transforma-
tions of neural information across brain regions, and if observed, it
is an interesting finding by itself worthy of further investigation.

Summary Statement

In conclusion, our results provide a spatio-temporal integrated
view of neural dynamics underlying visual object recognition
in the first few hundred milliseconds of vision. The MEG–fMRI
fusion approach bears high sensitivity and specificity, promising
to be a useful tool in the study of complex brain function in the
healthy and diseased brain.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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