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ABSTRACT

Purpose: Interleukin (IL)-17A plays a critical role in the pathogenesis of allergic airway 
inflammation. Yet, the exact roles of IL-17A in asthma are still controversial. Thus, the aim 
of this study was to dissect the roles of IL-17A in toluene diisocyanate (TDI)-induced mixed 
granulocytic asthma and to assess the effects of neutralizing antibody in different effector 
phases on TDI-induced asthma.
Methods: IL-17A functions in allergic airway inflammation were evaluated using mice deficient 
in IL-17A (Il17a−/−) or IL-17A monoclonal antibody (IL-17A mab, intraperitoneally, 50 μg per mouse, 
100 μg per mouse). Moreover, the effects of exogenous recombinant IL (rIL)-17A in vivo (murine 
rIL-17A, intranasally, 1 μg per mouse) and in vitro (human rIL-17A, 100 ng/mL) were investigated.
Results: TDI-induced mixed granulocytic airway inflammation was IL-17A-dependent 
because airway hyperreactivity, neutrophil and eosinophil infiltration, airway smooth muscle 
thickness, epithelium injury, dysfunctional T helper (Th) 2 and Th17 responses, granulocytic 
chemokine production and mucus overproduction were more markedly reduced in the Il17a−/− 
mice or by IL-17A neutralization during the sensitization phase of wild-type (WT) mice. By 
contrast, IL-17A neutralization during the antigen-challenge phase aggravated TDI-induced 
eosinophils recruitment, with markedly elevated Th2 response. In line with this, instillation 
of rIL-17 during antigen sensitization exacerbated airway inflammation by promoting 
neutrophils aggregation, while rIL-17A during the antigen-challenge phase protected the 
mice from TDI-induced airway eosinophilia. Moreover, rIL-17A exerted distinct effects on 
eosinophil- or neutrophil-related signatures in vitro.
Conclusions: Our data demonstrated that IL-17A was required for the initiation of TDI-
induced asthma, but functioned as a negative regulator of established allergic inflammation, 
suggesting that early abrogation of IL-17A signaling, but not late IL-17A neutralization, may 
prevent the progression of TDI-induced asthma and could be used as a therapeutic strategy 
for severe asthmatics in clinical settings.
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INTRODUCTION

Asthma has increased dramatically in prevalence and severity over the last 3 decades, 
currently affecting about 334 million individuals at all ages around the world.1 Work-
relatedness accounts for 15%–33% in adult-onset asthma cases, but delays in diagnosis 
remain common and lead to declined lung function and poor prognosis.2 Severe asthma 
represents 10% of the asthmatic population, but has greater morbidity and mortality, posing 
a greater financial burden on the healthcare system. As one of the most commonly reported 
causes of occupational asthma, toluene diisocyanate (TDI) exhibited the capacity to induce 
mixed granulocytic inflammation characterized by a larger number of neutrophils and a 
smaller number of eosinophils infiltrating into the airways, which responses poorly to both 
systemic and inhaled steroid treatment.3,4 Evidence from clinical and in vivo investigations 
revealed that distinct subgroups of CD4+ T lymphocytes (especially T helper [Th] 2 and Th17 
cells), with their secreted mediators, play preeminent roles in the steroid irresponsiveness of 
mixed granulocytic asthma.3,5,6 Thus, a better understanding of mechanisms underpinning 
TDI-induced mixed granulocytic airway inflammation is of great importance to the precise 
therapy of refractory asthma.

Interleukin-17A (IL-17A, namely IL-17) is a cytokine mainly produced by Th17 cells, a Th-
cell lineage distinct from Th1 and Th2 cells, which is negatively regulated by interferon-γ 
(IFN-γ) and IL-4.7 Although the role of IL-17A in allergic airway inflammation has been 
extensively investigated in animal models and patients, the exact roles of IL-17A in asthma 
are still in dispute. Increased expression of IL-17A was detected in the airways of allergic 
asthmatic subjects8 and positively linked to asthma severity and steroid resistance.9 In 
addition, blockade of IL-17A signaling using gene-deficient mice or neutralizing antibody 
abrogates house dust mite (HDM)- or ovalbumin (OVA)-induced airway hyperresponsiveness 
(AHR), airway eosinophil and neutrophil recruitment and remodeling.10-12 Yet, other 
researchers reported that IL-17A acts as a negative regulator of established allergic asthma 
and exogenous IL-17A could markedly blunt OVA-induced AHR, Th2 response and lung 
eosinophil aggregation.13,14 Even the latest study found that IL-17A blocking antibody 
significantly inhibited airway neutrophil infiltration, but promoted eosinophil accumulation 
in a HDM/complete Freunds adjunvant (CFA)-induced mixed granulocytic asthma model.15 In 
addition, IL-17A directly enhances IL-13-driven airway inflammation.16,17 Indeed, researchers 
have already detected elevated IL-17A concentrations in TDI-induced asthma model and 
discovered that IL-17A neutralization could alleviate TDI-induced airway inflammation 
and remodeling.18,19 Conversely, we previously demonstrated that anti-IL-17A-neutralizing 
antibody evidently aggravated TDI-induced allergic airway inflammation through amplifying 
Th2 responses and eosinophil infiltration,3 which seems opposite to the results by using 
Il17a−/− mice.20,21 These conflicted results addressed the crucial but controversial roles of IL-17A 
in asthma, yet how IL-17A contributes to the pathogenesis of TDI-induced asthma is still 
incompletely understood.

Over the past decades, great advances have been made in the generation of neutralizing 
antibodies that target IL-17A signaling directly or indirectly, which sparked a series of 
clinical trials to examine whether this approach is effective in several refractory diseases 
including rheumatoid arthritis, severe asthma, psoriasis, psoriatic arthritis, uveitis and 
Crohn disease.22,23 In 2010, Hueber and coworkers demonstrated that a human IL-17A 
monoclonal antibody, AIN457, improved the severity of psoriasis, rheumatoid arthritis and 
uveitis.22 However, Busse et Al.23 reported that inhibition of IL-17RA by using brodalumab, 
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a monoclonal antibody, did not exert a therapeutic effect on the symptoms of asthmatics. 
Actually, our research group found that elevated IL-17A was detected in the serum of early-
onset severe asthmatics, but not in the serum of late-onset severe asthmatics, and positively 
correlated to sputum neutrophils.24 In addition, our preliminary results demonstrated that 
in vivo deficiency of IL-17A attenuates TDI-induced experimental asthma. All these drove us 
to propose our hypothesis that IL-17A conveys distinct effects on TDI-induced asthma during 
different effector phases and that intervention of IL-17A signaling during different phases 
would produce different effects on TDI asthma. Thus, the purpose of this study is: 1) to 
elucidate the functional roles of IL-17A in TDI-induced asthma and 2) to assess the effects of 
IL-17A neutralizing antibody on TDI-induced asthma during different effector phases.

MATERIALS AND METHODS

Animals
For this study, 6- to 8-week-old female C57BL/6 mice were supplied by Guangdong Medical 
Laboratory Animal Center and female Il17a−/− mice on C57BL/6 background (generated by 
Prof. Yoichiro Iwakura and provided as a gift by Prof. Eyal Raz, University of California, 
San Diego, CA, USA) were bred in-house. All mice were housed in a specific pathogen-
free facility with 12 hours dark/light cycles (temperature 23°C ± 2°C, humidity range 
40%–70%, 12 hours light/dark cycle [lighting, 7:00–19:00]). Water and food were provided 
ad libitum. All animal experiments described here complied with the guidelines of the 
Committee on the Use and Care of Animals of Shenzhen People’s Hospital (Shenzhen, 
China), and were approved by the Animal Subjects Committee of Shenzhen People’s 
Hospital. The genotyping of Il17a−/− mice was carried out using the following polymerase 
chain reaction (PCR) primers: primer 1, 5′-ACTCTTCATCCACCTCACACGA-3′; primer 2, 
5′-GCCATGATATAGACGTTGTGGC-3′; primer 3, 5′-CAGCATCAGAGACTAGAAGGGA-3′. 
Primers 1 and 2 were used to detect wild-type alleles (1.3 kb), and primers 1 and 3 were used 
to detect mutant alleles (0.5 kb).

Reagents
Toluene diisocyanate (toluene-2, 4-diisocyanate, ≥ 98.0%), methacholine and acetone were 
obtained from Sigma-Aldrich (Shanghai, China). Anti-IL-17A monoclonal antibody (IL-17A 
mab, #BP0173) and mouse IgG1 isotype control antibody (#BP0083) were purchased from 
Bio X Cell (Lebanon, PA, USA). Recombinant mouse IL-17A (#210-17) and human IL-17A 
(#200-17) were purchased from PeproTech (Rocky Hill, NJ, USA). Multiplex immunoassays 
for IL-4, IL-5, IL-13, IL-17A, IL-6, IL-18, CCL11, CXCL1 and CSF-3 and enzyme-linked 
immunosorbent assay (ELISA) kits for IL-17F and total immunoglobulin (Ig) E was purchased 
from eBioscience (San Diego, CA, USA). TRIzol reagents for extracting total RNA and gene 
expression analysis were purchased from Takara (Guangzhou, China).

TDI-induced asthma model
TDI-induced asthma model was prepared according to our previous work.3 C57BL/6 and 
Il17a−/− mice were dermally sensitized with 0.3% TDI on days 1 and 8. After that, on days 15, 
18 and 21, the mice were placed in a horizontal rectangle chamber and challenged through 
compressed air nebulization (NE-C28; Omron, Kyoto, Japan). TDI was diluted in a mixture of 
3 volumes of olive oil and 2 volumes of acetone for the sensitization and 4 volumes of olive oil 
and 1 volume of acetone for the challenge. Control mice were sensitized and challenged with 
the same amount of vehicle.
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Treatment
IL-17A mab (Bio X Cell: 50 μg/mouse and 100 μg/mouse) or mouse IgG isotype control 
antibody (50 μg/mouse and 100 μg/mouse) was administered separately via the 
intraperitoneal route.13,19 Recombinant mouse IL-17A (rmIL-17A; PeproTech) was dissolved 
in sterile phosphate buffered saline (PBS) and instilled at a dose of 1 μg/mouse per time.13 
During allergen sensitization, IL-17A mab and rmIL-17A were given every 3 days beginning 
from the first to the second immunization for 3 times after each sensitization in total 
(marked as “TDI + IL-17A mab/S” and “TDI + recombinant IL [rIL]-17A/S”), while during the 
TDI challenge phase, IL-17A mab and rmIL-17A were given immediately after each inhalation 
(marked as “TDI + IL-17A mab/C” and “TDI + rIL-17A/C”).

Cell culture
The BEAS-2B cells cultured in Dulbecco’s Modified Eagle Medium (DMEM) medium 
supplemented with 10% calf serum were grown to 70%–80% confluent and then treated with 
TDI (2 mM) + PBS or TDI (2 mM) + IL-17A (100 ng/mL) for 24 hours; thereafter, collected for 
detecting gene expression by quantitative PCR.

Airway responsiveness measurement
Twenty-four hours after the last challenge, measurements of lung resistance (RL) were taken 
on anaesthetized and mechanically ventilated (Buxco Electronics, Troy, NY, USA) mice in 
response to increasing doses of methacholine by ultrasonic nebulization (6.25, 12.5, 25 and 
50 mg/mL).

Sample collection
Mice were euthanized with overdoses of pentobarbital (100 mg/kg, intraperitoneally [i.p.]) 24 
hours after the last airway challenge. Blood samples were taken from the retroorbital plexus/
sinus and placed at room temperature for 1 hour; they were centrifuged (3,000 g, 20 minutes) 
and their supernatants were harvested for detection of total IgE using an ELISA kit according 
to the manufacturer’s instructions. After blood was taken, the lungs were lavaged twice in situ 
with 0.8 mL prewarmed sterile saline (0.9% NaCl) and the recovered fluid was pooled. Cell 
counts were determined for each bronchoalveolar lavage fluid (BALF) sample, and differential 
cell counts were performed on cytospin preparations stained with haematoxylin and eosin 
(H&E). The remaining fluid was centrifuged (1,000 g, 10 minutes) and supernatants were 
stored at −80ºC for further analysis.

Histopathological analysis
The left lung was harvested, fixed overnight in 4% neutral formalin and embedded in 
paraffin. Sections (4 μm) were stained with H&E and periodic acid-Schiff (PAS). Airway 
inflammation, PAS stainning and cellular infiltration were assigned a random code to blind 
the examiner to the identity of each specimen. PAS-positive epithelial cells of the total 
epithelial cells were counted to obtain a percentage and compare groups. The 10–16 image 
fields of 8 sections from 5–8 mice per group were analyzed. Thickness of airway smooth 
muscle was measured as previously described.3 Briefly, the thickness of the peribronchial 
smooth muscle layer (the transverse diameter) in large airways was measured from the 
innermost aspect to the outermost aspect of the circumferential smooth muscle layer. The 
10–24 image fields of eight sections from 5–8 mice per group were analyzed.
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Cytokine and chemokine analysis
Levels of cytokines and chemokines in BALF, including Th2-related IL-4, IL-5, IL-13, Th17-
related IL-17A, IL-17F, Th17 cell maturation associated IL-6, neutrophil chemokine IL-18 and 
eosinophil attractants CCL11, were detected using multiplex immunoassay or ELISA kits 
according to the manufacturer’s specifications.

Gene expression analysis
Total RNA was extracted with an RNAiso Plus kit and reverse-transcribed to complementary 
DNA in the presence of PrimeScript™ RT reagent kit. Real-time PCR was carried out in a 20 
µL reaction system using SYBR Green Premix Ex Taq (Takara) by LightCycler 480 Fast Real-
Time PCR System. The primers used were listed in Table.

Statistical analysis
Data are expressed as mean ± standard error of the mean. Results were interpreted using one-
way analysis of variance and LSD-t with SPSS version 22.0 (SPSS, Chicago, IL, USA). A value of 
P < 0.05 was considered statistically significant.
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Table. Primer sequences for quantitative PCR
Gene Species Forward sequence (5′→3′) Reverse sequence (5′→3′)
β-actin Murine GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
Muc5ac Murine CAGGACTCTCTGAAATCGTACCA AAGGCTCGTACCACAGGGA
Il4 Murine ACGAGGTCACAGGAGAAGGGA AGCCCTACAGACGAGCTCACTC
Il5 Murine CTGGCCTCA AACTGGTAATGTAG ATGAGGGGGAGGGAGTATAACTC
Il13 Murine CCTCTGACCCTTAAGGAGCTTAT CGTTGCACAGGGGAGTCT
Il17a Murine GAGAGCTTCATCTGTGTCTCTG GCGCCAAGGGAGTTAAAGAC
Il17f Murine CGTGAAACAGCCATGGTCAAG GGGACAGAAATGCCCTGGTT
Ccl11 Murine TGCTCACGGTCACTTCCTTC CTTGAAGACTATGGCTTTCAGGGTG
Clca3 Murine AGGAAAACCCCAAGCAGTG GCACCGACGAACTTGATTTT
Cxc11 Murine AACCGAAGTCATAGCCACACT CCGTTACTTGGGGACACCTT
Cxcl3 Murine CACCCAGACAGAAGTCATAGCC CCGTTGGGATGGATCGCTTT
Csf3 Murine GTGCTGCTGGAGCAGTTGT TCGGGATCCCCAGAGAGT
Tbet Murine GGACGATCATCTGGGTCACATTGT GCCAGGGAACCGCTTATATG
Gata3 Murine CTACCGGGTTCGGATGTAAGTCG GTTCACACACTCCCTGCCTTCT
Rorc Murine ACAACAGCAGCAAGTGATGG CCTGGATTTATCCCTGCTGA
β-actin Human GAGACCGCGTCCGCC ATCATCATCCATGGTGAGCTGG
Il4 Human CACAGAGCAGAAGAACACAACTG GCGAGTGTCCTTCTCATGGT
Il5 Human TGACTTTTGGAAGGGGAGACC AACATGGATGAACCCCGCTT
Il13 Human ATGGCGCTTTTGTTGACCAC ATTGCAGAGCGGAGCCTTC
Il17a Human TCTCATAGCAGGCACAAACTCA AGCAGTAGCAGTGACACCAAT
Il17f Human TTGGACCGCTGAACTTGTGG AAGTACTTGACCATGGCTGGG
IL1β Human GCTCGCCAGTGAAATGATGG CTGGAAGGAGCACTTCATCTGT
Ccl11 Human ACCACCTGCTGCTTTAACCT CTTGAAGATCACAGCTTTCTGGG
Ccl24 Human CTGTTACCTCCGGGTCCTTT GATGATGTGGTGGGCACAGA
Cxcl1 Human AACCGAAGTCATAGCCACACTC AGGAACAGCCACCAGTGAG
Cxcl3 Human AAGATACTGAACAAGGGGAGCAC TTTTCAGCTCTGGTAAGGGCA
Csf3 Human AGAGCTTCCTGCTCAAGTGC TGGCACACTCACTCACCAG
Tbet Human CTGGATGCGCCAGGAAGTT TGGAGCACAATCATCTGGGTC
Gata3 Human CAGCACAGGCAGGGAGTG AGCCTTCGCTTGGGCTTAAT
Rorc Human AAGAAGACCCACACCTCACAAA GCACCCCTCACAGGTGATAA
PCR, polymerase chain reaction.



RESULTS

IL-17A is required for the initiation of TDI-induced experimental asthma
To directly test the role of IL-17A in TDI-induced asthma, we sensitized Il17a−/− and wild-type 
(WT) mice on days 1 and 8 with 0.3% TDI (dermally immunized on the dorsum of each 
ear), followed by 3 challenges with 3% TDI on day 15, 18 and 21 (Supplementary Fig. S1A). 
TDI-inhaled WT mice exhibited a robust neutrophil and eosinophil infiltration into 
airway compared to the controls. However, TDI-induced airway inflammation, epithelial 
hyperplasia, AHR, smooth muscle thickening, and epithelium denudation were markedly 
blunted by IL-17A deficiency (Fig. 1A-F and I). Likewise, we found a reduction in neutrophil 
and eosinophil recruitment in BALF of TDI-sensitized and challenged Il17a−/− mice compared 
to WT mice (Fig. 1J, K and L).
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Fig. 1. IL-17A deficiency alleviates TDI-induced mixed granulocytic asthma. (A) Representative H&E-stained lung sections of different groups. (B) Representative 
PAS-stained lung sections of different groups. Original magnification was 200×. (C, D) Semi-quantification of airway inflammation was performed (n = 5–8). (E, 
F) Analysis of ASM thickness and epithelial denudation was performed (n = 5–8). (G) Semi-quantification of PAS-positive staining was determined by counting 
the number of PAS-positive epithelial cells (n = 5–8). (H) Expression of Muc5ac gene (quantitative PCR) in the lungs (n = 3). (I) Airway hyperresponsiveness 
was measured by lung resistance (RL). Results are shown as percentage of baseline value (n = 4). (J, K) Numbers of total inflammatory cells, neutrophils and 
eosinophils in BALF (n = 5–8). 
IL, interleukin; TDI, toluene diisocyanate; H&E, haematoxylin and eosin; PAS, periodic acid-Schiff; ASM, airway smooth muscle; PCR, polymerase chain reaction; 
BALF, bronchoalveolar lavage fluid. 
*P < 0.05; **P < 0.01; ***P < 0.001. (continued to the next page)



To further explore how IL-17A orchestrates TDI-induced allergic responses, we analyzed 
the BALF and lung tissues from TDI-exposed WT mice and Il17a−/− mice by multiple assays 
and quantitative real-time PCR. BALF levels of Th2-related IL-4, IL-5, IL-13 and Th17-related 
IL-17A, IL-17F, IL-6 were significantly reduced in Il17a−/− mice compared to WT mice after TDI 
challenge (Fig. 2A and B). Other cytokines, including eosinophil chemoattractants CCL11, 
neutrophil chemokines CXCL1 and CSF-3, were markedly blunted in the absence of IL-17A. 
Meanwhile, IL-17A deficiency promoted IL-22 production in BALF, but had no effects on the 
secretion of BALF IL-18 and serum total IgE (Fig. 2A-C). Consequently, the mRNA levels of 
Th2 markers Il4, Il5, Clca3 and Th17 markers Il17a, Cxcl3, Csf3 were extensively up-regulated 
by TDI, of which Il4, Il17a, Cxcl3, and Csf3 mRNA levels were suppressed by the lack of IL-17A. 
Yet, IL-17A knockout had no effect on the expression of Il5 mRNA, but led to increases in Clca3 
and Il17f mRNA (Fig. 2D and E). To further investigate the effect of IL-17A deficiency on the 
differentiation of Th1, Th2 and Th17 cells, we assessed their key transcription factors T-bet, 
Gata3 and Rorc mRNA levels and found that both TDI exposure and removal of IL-17A did not 
alter their gene expression patterns (Fig. 2F). Hence, IL-17A is required to develop a robust 
allergic response because TDI-induced AHR, airway inflammatory cells infiltration, mucus 
overproduction, Th2/Th17-related cytokines and chemokines production were impaired in 
the mice lacking IL-17A.
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Fig. 1. (Continued) IL-17A deficiency alleviates TDI-induced mixed granulocytic asthma. (A) Representative H&E-stained lung sections of different groups. 
(B) Representative PAS-stained lung sections of different groups. Original magnification was 200×. (C, D) Semi-quantification of airway inflammation was 
performed (n = 5–8). (E, F) Analysis of ASM thickness and epithelial denudation was performed (n = 5–8). (G) Semi-quantification of PAS-positive staining was 
determined by counting the number of PAS-positive epithelial cells (n = 5–8). (H) Expression of Muc5ac gene (quantitative PCR) in the lungs (n = 3). (I) Airway 
hyperresponsiveness was measured by lung resistance (RL). Results are shown as percentage of baseline value (n = 4). (J, K) Numbers of total inflammatory 
cells, neutrophils and eosinophils in BALF (n = 5–8). 
IL, interleukin; TDI, toluene diisocyanate; H&E, haematoxylin and eosin; PAS, periodic acid-Schiff; ASM, airway smooth muscle; PCR, polymerase chain reaction; 
BALF, bronchoalveolar lavage fluid. 
*P < 0.05; **P < 0.01; ***P < 0.001.



Neutralizing IL-17A during antigen sensitization or challenge plays different 
roles in TDI-induced allergic asthma
To test our hypothesis, IL-17A monoclonal antibody at a dose of 100 μg/mouse was given to the 
mice during antigen sensitization or after each airway challenge (Supplementary Fig. S1C). As 
expected, we observed different outcomes after neutralizing IL-17A during different effector 
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Fig. 2. Reduced granulocytic chemokines and Th2/Th17 markers in mice deficient in IL-17A. (A) BALF levels of IL-4, IL-5, IL-13, and eosinophils attractant CCL11 
were quantified by multiplex immunoassays (n = 5–8). (B) BALF levels of IL-17A, IL-17F, IL-6, IL-18, as well as neutrophils attractants CXCL1 and CSF-3 were 
quantified by multiplex immunoassays or ELISA (n = 5–8). (C) Serum total IgE concentrations were determined by ELISA (n = 5–8). (D) Whole lung tissue 
expression of Th2 markers Il4, Il5, and Clca3 was assessed by quantitative PCR (n = 3). (E) Whole lung tissue expression of the Th17 markers Cxcl3 and Csf3, as 
well as Il17a and Il17f was assessed by quantitative PCR (n = 3). (F) Whole lung tissue expression of transcription factors Tbet, Gata3, and Rorc was assessed by 
quantitative PCR (n = 3). 
Th, T helper; IL, interleukin; BALF, bronchoalveolar lavage fluid; ELISA, enzyme-linked immunosorbent assay; Ig, immunoglobulin; PCR, polymerase chain 
reaction; TDI, toluene diisocyanate. 
*P < 0.05; **P < 0.01; ***P < 0.001. (continued to the next page)



phases in TDI-inhaled mice. In line with our previous study, administration of IL-17A mab 
during antigen challenge exacerbated TDI-induced AHR and inflammation, resulted in more 
severe epithelial cell hyperplasia and denudation, and drove greater numbers of eosinophils 
into the airways (Fig. 3). In the meantime, we detected larger amounts of Th2-related IL-4, 
IL-5 and Th17-related IL-17F but lower level of CXCL1 in BALF after the mice were treated with 
IL-17A mab during antigen challenge, whereas levels of IL-13, IL-6, IL-18 and CSF-3 in TDI 
asthmatic mice were not affected (Fig. 4A and B). In line with this, TDI-induced increased 
mRNA expression of Th2 markers Il4, Il13 and Clca3 was enhanced by anti-IL-17A during 
antigen challenge, while Cxcl1, Cxcl3 and Csf3 expression patterns remained unchanged (Fig. 
4C and D). The effects of isotype IgG, IL-17A mab and rIL-17A on naive mice were shown in 
Supplementary Fig. S2. Actually, IL-17 mab at a lower dose of 50 μg/mouse was also used in 
TDI-induced asthma model and the results were shown in Supplementary Fig. S3 and S4.

On the other hand, blocking IL-17A during TDI sensitization exerted a list of protective 
functions. Intraperitoneal injection of IL-17A mab at a dose of 100 μg/per mouse per time 
during immunization for a total 3 times (Supplementary Fig. S1B) resulted in decreased 
airway inflammation and AHR, extensively compromised epithelial hyperplasia, goblet cell 
metaplasia and mucus production, as well as a smaller number of neutrophils in BALF, while 
airway eosinophil recruitment was not inhibited (Fig. 3). Moreover, IL-17A mab treatment 
during sensitization inhibited the release of IL-6, IL-18 and CSF-3 in BALF, while IL-4, IL-5, 
IL-13, CCL11, IL-17F and CXCL1 in BALF did not show obvious differences between mice treated 
with isotype IgG and mice treated with IL-17A mab during the antigen-immunized phase (Fig. 
4A and B). Accordingly, TDI-induced increased gene expression of Th17 markers Cxcl1 and Cxcl3 
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Fig. 2. (Continued) Reduced granulocytic chemokines and Th2/Th17 markers in mice deficient in IL-17A. (A) BALF levels of IL-4, IL-5, IL-13, and eosinophils 
attractant CCL11 were quantified by multiplex immunoassays (n = 5–8). (B) BALF levels of IL-17A, IL-17F, IL-6, IL-18, as well as neutrophils attractants CXCL1 and 
CSF-3 were quantified by multiplex immunoassays or ELISA (n = 5–8). (C) Serum total IgE concentrations were determined by ELISA (n = 5–8). (D) Whole lung 
tissue expression of Th2 markers Il4, Il5, and Clca3 was assessed by quantitative PCR (n = 3). (E) Whole lung tissue expression of the Th17 markers Cxcl3 and Csf3, 
as well as Il17a and Il17f was assessed by quantitative PCR (n = 3). (F) Whole lung tissue expression of transcription factors Tbet, Gata3, and Rorc was assessed 
by quantitative PCR (n = 3). 
Th, T helper; IL, interleukin; BALF, bronchoalveolar lavage fluid; ELISA, enzyme-linked immunosorbent assay; Ig, immunoglobulin; PCR, polymerase chain 
reaction; TDI, toluene diisocyanate. 
*P < 0.05; **P < 0.01; ***P < 0.001.



was down-regulated by neutralizing IL-17A during immunization. Interestingly, IL-17A mab 
treatment during the antigen-sensitized phase also inhibited mRNA expression patterns of Th2 
markers Il5, Il13 and Ccl11 in the lungs of each TDI-inhaled mouse (Fig. 4C and D).
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Fig. 3. Neutralization of IL-17A during antigen immunization and antigen challenge exerts distinct effects on TDI-elicited airway hyperreactivity and inflammation. (A, 
B) Representative H&E- and PAS-stained lung sections of different groups. Original magnification was 200×. (C, D) Semi-quantification of airway inflammation was 
performed (n = 8–10). (E, F) Analysis of ASM thickness and epithelial denudation was performed (n = 8–10). (G) Semi-quantification of PAS staining was performed 
(n = 8–10). (H-J) Numbers of total inflammatory cells, neutrophils and eosinophils in BALF (n = 8–10). (K) Expression of Muc5ac gene (quantitative PCR) in the whole 
lung (n = 3). (L, M) Airway hyperresponsiveness was measured by lung resistance (RL). Results are shown as percentage of baseline value (n = 5). 
IL, interleukin; TDI, toluene diisocyanate; H&E, haematoxylin and eosin; PAS, periodic acid-Schiff; ASM, airway smooth muscle; BALF, bronchoalveolar lavage 
fluid; PCR, polymerase chain reaction; Ig, immunoglobulin. 
*P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 4. Neutralizing IL-17A during different effector phases displays different capacity to orchestrate Th2 and Th17 responses. (A) BALF levels of IL-4, IL-5, IL-13, 
and eosinophils attractant CCL11 were quantified by multiplex immunoassays (n = 8–10). (B) BALF levels of IL-17A, IL-17F, IL-6, IL-18, as well as neutrophils 
attractants CXCL1 and CSF-3 were quantified by multiplex immunoassays or ELISA (n = 8–10). (C) Whole lung tissue expression of the Th2 markers Il4, Il5, Il13, 
Ccl11 and Clca3 was assessed by quantitative PCR (n = 3). (D) Whole lung tissue expression of the Th17 markers Cxcl1, Cxcl3 and Csf3 as well as Il17a and Il17f, was 
assessed by quantitative PCR (n = 3). 
IL, interleukin; Th, T helper; BALF, bronchoalveolar lavage fluid; ELISA, enzyme-linked immunosorbent assay; PCR, polymerase chain reaction; TDI, toluene diisocyanate. 
*P < 0.05; **P < 0.01; ***P < 0.001.



Instillation of exogenous IL-17A during different effector phases exhibits 
distinct capacity for orchestrating TDI-induced airway inflammation
To further confirm aforementioned results, subsequently, murine recombinant IL-17A 
(rmIL-17A) at a dos of 1 μg/mouse were respectively given to the mice during antigen 
sensitization or antigen challenge (Supplementary Fig. S1D and E). Likewise, we observed 
distinct results from TDI-exposed mice treated by instillation of exogenous IL-17A during 
antigen sensitization or antigen challenge. Without exerting any effects on airway epithelia 
denudation, airway eosinophilia and lung Muc5ac mRNA expression (Fig. 5F, J and K), 
rmIL-17A during antigen sensitization aggravated TDI-induced AHR and inflammation, led 
to more severe goblet cell metaplasia and airway smooth muscle thickening, and attracted 
greater numbers of neutrophils into the airways (Fig. 5A-E, G-I and L-M). Administration 
of rmIL-17A during antigen immunization did not affect the secretion of IL-4, IL-5, IL-13, 
IL-17F, IL-6 or IL-18 in BALF, but decreased levels of BALF CCL11 and lung Ccl11, Il17f as well 
as Cxcl1 mRNA (Fig. 6A, C and D). At the same time, we detected markedly enhanced mRNA 
expression of neutrophil-active chemokine Cxcl3 and Csf3, eosinophils attractant Clca3 in the 
lung homogenates (Fig. 6D), though BALF levels of CXCL1 and CSF-3 in TDI asthmatic mice 
was not affected by rmIL-17A (Fig. 6B).

By contrast, inhalation of exogenous rmIL-17A during antigen challenge period displayed the 
capacity to inhibit Th2 responses and airway eosinophilia. Plus, exogenous rmIL-17A in TDI 
challenge alleviated TDI-elicited airway hyperreactivity, airway epithelium denudation airway 
smooth muscle thickening as well as goblet cell metaplasia and mucus production, coupled 
with less granulocyte aggregation (especially eosinophils) around the airway (Fig. 5).  
Furthermore, the concentrations of IL-4, IL-5, CCL11, IL-6, IL-18 and CXCL1 in BALF were 
markedly reduced by rmIL-17 administration, yet BALF levels of IL-13, IL-17F and CSF-3 was not 
inhibited (Fig. 6A and B). Moreover, TDI-induced increased gene expression of Th2 markers 
Il4, Il5 and Il13, together with Th17 markers Il17a, Il17f, Cxcl1 and Csf3, was down-regulated by 
exogenous IL-17A inhalation during the antigen-challenged phase, while mRNA expression of 
other genes including Ccl11, Clca3 or Cxcl3 was not affected (Fig. 6C and D).

Exogenous human recombinant IL-17A (rhIL-17A) exerted distinct biological 
effects on TDI-induced airway inflammation in vitro
Th2 and Th17 signatures would result in distinct gene expression patterns in lung epithelia. 
Finally, we evaluated the effects of exogenous rhIL-17A on TDI-treated human bronchial 
epithelial cell line (BEAS-2B). As expected, TDI stimulation (2 mM) markedly increased the 
gene expression of the Th2 markers Il5, Il13, Ccl11 and Ccl24 as well as of the Th17 markers Il17f 
and Il1β in BEAS-2B, but did not affect the mRNA expression of Il4, Il17a, Cxcl1, Cxcl3, Csf3, 
Tbet, Gata3 or Rorc. In addition, rhIL-17A at a dosage of 100 ng/mL suppressed TDI-induced 
increased gene expression of the Th2 markers Il5, Il13, Ccl11 and Ccl24 as well as of the Th17 
markers Il17f and Il1β in BEAS-2B, and caused a declined trend for TDI-raised Gata3 mRNA, 
though not significant (Fig. 7). Yet, rhIL-17A had no effect on the mRNA expression of Il4, 
Il17a, Cxcl1, Cxcl3 or Csf3 in TDI-treated BEAS-2B, and it seemed that rhIL-17A gave rise to an 
augmented effect of Tbet and Rorc gene expression (Fig. 7).
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Fig. 5. Inhalation of exogenous IL-17A during the antigen-immunized or antigen-challenge phase has opposite effects on TDI-induced airway hyperreactivity and 
inflammation. (A, B) Representative H&E- and PAS-stained lung sections of different groups. Original magnification 200×. (C, D) Semi-quantification of airway 
inflammation was performed (n = 6–10). (E, F) Analysis of ASM thickness and epithelial denudation was performed (n = 6–10). (G) Semi-quantification of PAS 
staining was performed (n = 6–10). (H-J) Numbers of total inflammatory cells, neutrophils and eosinophils in BALF (n = 6–10). (K) Expression of Muc5ac gene 
(quantitative PCR) in the whole lung (n = 3). (L, M) Airway hyperresponsiveness was measured by lung resistance (RL). Results are shown as percentage of 
baseline value (n = 5). 
IL, interleukin; TDI, toluene diisocyanate; H&E, haematoxylin and eosin; PAS, periodic acid-Schiff; ASM, airway smooth muscle; BALF, bronchoalveolar lavage 
fluid; PCR, polymerase chain reaction; PBS, phosphate buffered saline. 
*P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 6. Exogenous IL-17A shows distinct roles for TDI-induced Th2 and Th17 responses during different effector phases. (A) BALF levels of IL-4, IL-5, IL-13, and 
eosinophils attractant CCL11 were quantified by multiplex immunoassays (n = 6–8). (B) BALF levels of IL-17A, IL-17F, IL-6, IL-18, as well as the neutrophils 
attractants CXCL1 and CSF-3 were quantified by multiplex immunoassays or ELISA (n = 6–8). (C) Whole lung tissue expression of Th2 markers Il4, Il5, Il13, Ccl11 
and Clca3 was assessed by quantitative PCR (n = 3). (D) Whole lung tissue expression of the Th17 markers Cxcl1, Cxcl3 and Csf3 as well as Il17a and Il17f was 
assessed by quantitative PCR (n = 3). 
IL, interleukin; TDI, toluene diisocyanate; Th, T helper; BALF, bronchoalveolar lavage fluid; ELISA, enzyme-linked immunosorbent assay; PCR, polymerase chain 
reaction; PBS, phosphate buffered saline. 
*P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 7. Recombinant IL-17A exerts distinct effects on TDI-induced Th2 and Th17 signatures in vitro. The BEAS-2B cells cultured in DMEM medium supplemented 
with 10% calf serum were grown to 70%–80% confluent and then treated with TDI (2 mM) + PBS or TDI (2 mM) + IL-17A (100 ng/mL) for 24 hours, and then 
collected for detecting genes expression by quantitative PCR. (A, B) Expression of the Th2 markers Il4, Il5, Il13, Ccl11 and Ccl24 in human bronchial epithelial cell 
line was assessed by quantitative PCR (n = 4). (C, D) Expression of Th17 markers Cxcl1, Cxcl3, Csf3 as well as Il17a and Il17f in human bronchial epithelium was 
assessed by quantitative PCR (n = 4). (E) Expression of the transcription factors Tbet, Gata3 and Rorc in human bronchial epithelial cell line was assessed by 
quantitative PCR (n = 4). 
IL, interleukin; TDI, toluene diisocyanate; Th, T helper; DMEM, Dulbecco’s Modified Eagle Medium; PBS, phosphate buffered saline; PCR, polymerase chain reaction. 
*P < 0.05; **P < 0.01; ***P < 0.001.

(continued to the next page)



DISCUSSION

In the present study, we discovered that IL-17A deficiency relieved TDI-induced allergic asthma. 
Then, we interfered with IL-17A signaling using neutralizing antibody or exogenous IL-17A 
during the immunization or in the antigen challenge, demonstrating that IL-17A exhibits 
distinct capacities to orchestrate airway inflammation during different effector phases.

Although eosinophil played a preeminent role in the pathogenesis of allergic asthma, 
increasing evidence demonstrates that mixed granulocytic airway inflammation is also 
recognized as a cardinal feature of TDI-induced severe asthma.25 IL-17A is a potent neutrophil-
mobilizing cytokine, which attracts granulocytes into the mucosal surface and promotes 
neutrophil recruitment by prompting the release of neutrophil-modulating mediators such 
as IL-1β, IL-6 and granulocyte-colony stimulating factor from structural cells.26 Increased 
expression of IL-17A has been proposed to be associated with airway mixed granulocytic 
inflammation and declined lung function in severe asthmatics,27-29 supporting that IL-17A is 
critically implicated in the physiopathology of severe asthma. Kim et al.18 demonstrated the 
important role for IL-17A in the pathogenesis of TDI-induced asthma and discovered that 
IL-17A neutralization dramatically alleviated TDI-induced airway inflammation.18,19 In the 
current study using Il17a−/− mice, we generated an asthma model to explore the functional role 
of IL-17A in the development of mixed granulocytic asthma in response to TDI. Intriguingly, 
the TDI-exposed Il17a−/− mice exhibited declined AHR, airway neutrophil and eosinophil 
aggregation, together with diminished Th2- and Th17-related cytokines in BALF when 
compared to WT mice, indicating that IL-17A plays a proinflammatory role in the initiation of 
TDI-induced experimental allergic asthma. In addition, TDI-induced mucus overproduction 
and airway smooth muscle (ASM) thickening were suppressed by the lack of IL-17A. This is 
in agreement with the results of several published studies showing that deficiency in IL-17RA 
or IL-17A leads to an impaired neutrophilic response to allergens, lack of AHR and reduced 
airway remodeling,20,30 but seems opposite to our previous findings that blocking IL-17A with 
neutralizing antibody during antigen challenge aggregated TDI-induced responses.3 Indeed, 
our group examined whether IL-17A is modulated in severe asthmatics and found that higher 
serum IL-17A levels were detected in severe early-onset asthmatics compared to severe 
late-onset asthmatics,24 suggesting that IL-17A might contribute to the initiation of allergic 
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Fig. 7. (Continued) Recombinant IL-17A exerts distinct effects on TDI-induced Th2 and Th17 signatures in vitro. The BEAS-2B cells cultured in DMEM medium 
supplemented with 10% calf serum were grown to 70%–80% confluent and then treated with TDI (2 mM) + PBS or TDI (2 mM) + IL-17A (100 ng/mL) for 24 hours, 
and then collected for detecting genes expression by quantitative PCR. (A, B) Expression of the Th2 markers Il4, Il5, Il13, Ccl11 and Ccl24 in human bronchial 
epithelial cell line was assessed by quantitative PCR (n = 4). (C, D) Expression of Th17 markers Cxcl1, Cxcl3, Csf3 as well as Il17a and Il17f in human bronchial 
epithelium was assessed by quantitative PCR (n = 4). (E) Expression of the transcription factors Tbet, Gata3 and Rorc in human bronchial epithelial cell line was 
assessed by quantitative PCR (n = 4). 
IL, interleukin; TDI, toluene diisocyanate; Th, T helper; DMEM, Dulbecco’s Modified Eagle Medium; PBS, phosphate buffered saline; PCR, polymerase chain reaction. 
*P < 0.05; **P < 0.01; ***P < 0.001.



responses in severe asthma. Given that different mechanisms are involved during antigen 
sensitization and challenge phases of allergic asthma,13,31 we set to test the hypothesis that IL-
17A exerts distinct effects on TDI-induced asthma during different effector phases.

Subsequently, we investigated the functional role of IL-17A during the sensitization and 
challenge of TDI-induced asthma. On one hand, we showed that IL-17A neutralization in WT 
mice during sensitization diminishes allergic inflammation, which indicates that IL-17A is 
required to develop allergic airway inflammation. On the other hand, IL-17A neutralization 
during the challenge phase exacerbates the disease, indicating a tissue protective role for IL-17A. 
Consistent with this, we found out that exogenous IL-17A given during TDI immunization acts 
to promote airway neutrophilia, while rIL-17A given with the TDI challenge protects from lung 
eosinophil recruitment. These results demonstrated that IL-17A prompts the initiation of TDI-
induced asthma, but functions as a negative regulator in established allergic inflammation. 
Our data are consistent with a study demonstrating that blocking IL-17 signaling by using 
IL-17RA-deficient mice significantly attenuated OVA-induced airway inflammatory responses, 
while neutralizing IL-17A during the allergen-challenge phase markedly aggravated airway 
eosinophil infiltration that could be ameliorated by rIL-17A.13 The authors ascribed the negative 
regulatory function of IL-17A to its dependence on IL-4 signaling and a direct inhibitory effect 
of this cytokine on dendritic cells, IL-5 and IL-13 production.13 Furthermore, in 2017, the 
same group reported this similar phenomenon in a HDM-induced asthma murine model.11 
Coincidentally, Hellings et al.31 also found that neutralizing IL-17A in the challenge period 
worsened OVA-induced airway eosinophilia through the up-regulation of BALF IL-4, IL-5 and 
IL-13. Additionally, these literatures also revealed that suppression of IL-17A signaling during 
allergen immunization by using gene-knockout mice impaired OVA/HDM-induced neutrophilic 
influx into the airways.11,13,31 Several researchers have also discovered that IL-17A neutralization 
during allergen sensitization alleviated TDI-induced airway hyperreactivity and inflammation.19 
They attributed these phenomenon to the capacity of IL-17A to directly induce maturity, 
activation and recruitment of neutrophils11,13,31 as well as initiate allergic responses.21 This 
interpretation is in agreement with the work of Wilson et al.20 proposing that airway allergic 
sensitization primed Th17-dependent neutrophilia in a lipopolysaccharide (LPS)/OVA -induced 
asthma model. Actually, the effect of IL-17A in neutrophils is also indirect by means of activating 
structural cells, including airway epithelial cells, fibroblasts and ASM cells, to produce the 
related cytokines and chemokines that in turn interact with neutrophils.32 Moreover, other 
researchers found that antigen-specific T cell sensitization is impaired in Il17a−/− mice, causing 
the suppression of allergic cellular and humoral responses.21 All these findings support a notion 
that IL-17A functions differently during different effector phases of asthma. As aforementioned, 
studies have reported higher levels of IL-17A in bronchial biopsies, sputum, and serum of severe 
asthmatics as compared to mild asthmatics.8,27-29 In fact, an IL-17A level of 20 pg/mL in serum 
was identified as an independent risk factor for severe asthma.29 Thus, in our opinion, higher 
IL-17A in sputum or serum could be used as a biomarker for distinguishing severe asthma from 
mild or moderate asthma. Plus, we speculated that IL-17A mab could be administered when 
the asthmatics initially need systemic steroid treatment, in line with the findings of a work 
conducted in a HDM/CFA-induced mixed granulocytic asthma model showing that combined 
administration of anti-IL-17A and systemic corticosteroid significantly attenuated both overall 
and neutrophilic airway inflammation.15 Actually, the challenging task of targeting severe 
asthma is further complicated by the complex pathobiology of asthma., but it still hits us that 
interfere with IL-17A signaling during an earlier phase would be more beneficial to severe 
asthmatics in clinical practice. However, the exact time-point of intervention is needed to be 
further explored in the future.
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The levels of Th2 or Th17 cytokines could reflect immune homeostasis and indicate Th2 or 
Th17 predominance during inflammatory process. TDI-induced asthma is characterized 
by a larger number of neutrophils and a handful of eosinophil influx into the airways, with 
combined Th2 and Th17 responses.3 In the present study, dysregulation of Th2 and Th17 
responses in TDI-exposed mice were decreased by IL-17A deficiency, indicating that IL-17A 
is a crucial regulator of Th2/Th17 responses in TDI asthma. Also, IL-17A blockade during 
immunization not only inhibits TDI-induced release of IL-6, IL-18 and CSF-3 in BALF, but also 
suppresses the mRNA expression of Cxcl1 and Cxcl3, while blocking IL-17A during challenge 
amplifies levels of IL-4 and IL-5 in BALF as well as lung gene expression of Il4, Il13 and Clca3, 
suggesting that IL-17A prompts TDI-induced airway neutrophilia and Th17 response during 
sensitization, but restricts airway eosinophilia and Th2 response during TDI challenge. In 
addition, in vitro exogenous IL-17 seems to inhibit Th2 response, but augment Th17 response. 
In agreement with our data, studies have revealed that IL-17A blocking antibody inhibited 
Th17 response and neutrophil aggregation, but promoted Th2 response and eosinophil 
accumulation in a HDM/CFA- or OVA-induced mixed granulocytic asthma model.15,31 Actually, 
researchers have demonstrated that Th2 and Th17 inflammatory pathways are reciprocally 
regulated in asthma, which means that therapies targeting Th2 or Th17 cytokines can 
lead to amplification of the opposing pathway.33 Moreover, IL-17A could drive an airway 
inflammatory phenotype shift from airway eosinophilia to neutrophilia in LPS/OVA-induced 
asthma model.34 Thus it is evident that IL-17A exerts distinct effects on TDI-induced airway 
neutrophilia and eosinophilia. Yet, TDI exposure has no effects on BALF levels of IL-22 or 
IL-33 in vivo, while IL-17A deficiency increases the secretion of IL-22 in BALF, which might 
be attributed to its crosstalk with IL-17A.35 This suggests that compensatory mechanisms are 
possibly involved in the mutual regulation of IL-17A and IL-22 in the pathogenesis of asthma, 
which may account for the failure of neutralizing antibody targeting IL-17RA to improve the 
symptoms of severe asthmatics.23 Specifically targeting pathogenic Th17 cells would be more 
appropriate and attractive in the future treatment of refractory asthma.

In conclusion, IL-17A is required for the onset of TDI-induced allergic asthma, but functions 
as a negative regulator of established allergic inflammation. Importantly, these data 
suggested that earlier abrogation of IL-17A signaling, but not late IL-17A neutralization, 
prevents the progression of TDI-induced asthma and could be used as a therapeutic strategy 
for severe asthmatics in clinical practice.
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SUPPLEMENTARY MATERIALS

Supplementary Fig. S1
Experimental treatment schedules. (A) Mice were dermally sensitized with 0.3% TDI on days 
1 and 8. On days 15, 18 and 21, the mice were challenged with 3% TDI through compressed 
air nebulization. (B) Mice were dermally sensitized and challenged with TDI. Anti-IL-17A 
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monoclonal antibody or the isotype control antibody was administered separately via the 
intraperitoneal route at the doses of 50 μg/mouse per time or 100 μg/mouse per time every 
three days beginning from the first sensitization to second sensitization. (C) Anti-IL-17A 
monoclonal antibody or the isotype control antibody was administered separately via 
the intraperitoneal route at the doses of 50 μg/mouse per time or 100 μg/mouse per time 
immediately after each airway challenge. (D) Mice were dermally sensitized and challenged 
with TDI. Recombinant IL-17A was instilled at the dose of 1 μg/mouse per time every three 
days beginning from the first sensitization to second sensitization. (E) Recombinant IL-17A 
was instilled at the dose of 1 μg/mouse per time immediately after each airway challenge.

Click here to view

Supplementary Fig. S2
None of the antibodies affected airway inflammation in naive mice. C57BL/6 mice were treated 
with mouse isotype IgG1 control (100 μg/per mouse, i.p.), IL-17A mab (100 μg/per mouse, i.p.), 
rIL-17A (1 μg/per mouse, i.n.) or vehicle control once daily every other 2 days for a total of 3 
times. The vehicle used to dissolve the blocking antibodies was PBS. Analysis was performed 
one day after the last treatment. (A) Representative H&E-stained lung sections of different 
treatment groups. No inflammation was seen around the airways of all enrolled mice. Original 
magnification was 200×. (B-D) Total and differential inflammatory cell counts in BALF (n = 3). 
There were no significant differences among all groups. (E) Airway hyperresponsiveness was 
measured by lung resistance (RL). Results are shown as percentage of baseline value (n = 3).

Click here to view

Supplementary Fig. S3
IL-17A blockade (50 μg/per mouse) during TDI immunization and challenge exert distinct 
effects on airway hyperreactivity and inflammation. (A, B) Representative H&E- and PAS-
stained lung sections of different groups. Original magnification was 200×. (C, D) Semi-
quantification of airway inflammation was performed (n = 8–10). (E, F) Analysis of ASM 
thickness and epithelial denudation was performed (n = 8–10). (G) Semi-quantification 
of PAS staining was performed (n = 8–10). (H) Expression of Muc5ac gene (quantitative 
PCR) in the whole lung (n = 3). (I-K) Numbers of total inflammatory cells, neutrophils and 
eosinophils in BALF (n = 8–10).

Click here to view

Supplementary Fig. S4
Neutralization of IL-17A (50 μg/per mouse) during different effector phases display distinct 
capacity for modulating Th2 and Th17 signatures. (A, B) Whole lung tissue expression of Th2 
markers Il4, Il5, Il13, as well as Ccl11 and Clca3 was assessed by quantitative PCR (n = 3). (C, D) 
Whole lung tissue expression of Th17 markers Il17a and Il17f as well as Cxcl1, Cxcl3 and Csf3 was 
assessed by quantitative PCR (n = 3).

Click here to view
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